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Feedback outcomes are generally classified into positive and negative feedback. People
often predict a feedback outcome with information that is based on both objective facts
and uncertain subjective information, such as a mood. For example, if an action leads
to good results consecutively, people performing the action overestimate the behavioral
result of the next action. In electroencephalogram measurements, negative feedback
evokes negative potential, called feedback negativity, and positive feedback evokes
positive potential, called reward positivity. The present study investigated the relationship
between the degree of the mood caused by the feedback outcome and the error-related
brain potentials. We measured the electroencephalogram activity while the participants
played a virtual reality shooting game. The experimental task was to shoot down a
cannonball flying toward the player using a handgun. The task difficulty was determined
from the size and curve of the flying cannonball. These gaming parameters affected
the outcome probability of shooting the target in the game. We also implemented
configurations in the game, such as the player’s life points and play times. These
configurations affected the outcome magnitude of shooting the target in the game.
Moreover, we used the temporal accuracy of shooting in the game as the parameter of
the mood. We investigated the relationship between these experimental features and the
event-related potentials using the single-trial-based linear mixed-effects model analysis.
The feedback negativity was observed at an error trial, and its amplitude was modulated
with the outcome probability and the mood. Conversely, reward positivity was observed
at hit trials, but its amplitude was modulated with the outcome probability and outcome
magnitude. This result suggests that feedback negativity is enhanced according to not
only the feedback probability but also the mood that was changed depending on the
temporal gaming outcome.

Keywords: virtual reality, electroencephalogram, feedback negativity, reward positivity, real world recording,
linear mixed effect model, mood
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INTRODUCTION

Humans require feedback to evaluate their own actions,
regardless of whether they have resulted in good outcomes or
bad. If the outcome is good, we can continue the action, but if
the outcome is bad, we must modify the action. Many cognitive
neuroscience studies have focused on feedback. Feedback evokes
neural activities, which are measured as event-related potentials
(ERPs) using an electroencephalogram (EEG).

A common ERP related to feedback is feedback negativity
(FN). FN is a front-central ERP component and is strongly
observed between 200 and 350 ms after feedback is received
(Miltner et al., 1997; Gehring and Willoughby, 2002; Hajcak
et al., 2007). FN has often been observed in money-rewarding
tasks. Many studies have revealed how FN is modulated with
experimental features such as outcome valence (positive vs.
negative), magnitude (large vs. small), and probability (high
vs. low). Traditionally, a stronger FN is evoked with negative
feedback compared to positive (Miltner et al., 1997; Gehring and
Willoughby, 2002; Yeung and Sanfey, 2004; Hajcak et al., 2007).
Several studies found that unexpected negative feedback evokes
greater FN than expected feedback (Holroyd and Coles, 2002;
Nieuwenhuis et al., 2002; Potts et al., 2006; Walsh and Anderson,
2011). The relationship between the outcome magnitude and
FN modulation is currently under debate. Several studies have
argued that FN is not sensitive to magnitude (Yeung and Sanfey,
2004; Hajcak et al., 2006, 2007), while other studies have reported
that FN modulates both the outcome valence and magnitude
(Goyer et al., 2008; Wu and Zhou, 2009; Bellebaum et al., 2010;
Kreussel et al., 2012).

Many studies have discussed FN modulation from the
differences in waveforms between positive and negative
feedbacks. From here on, we defined the negative potential
generated by the differential waveform between negative
deflection after a negative feedback and positive deflection after
a positive feedback as differential feedback negativity (dFN).
Recently, several studies have argued that the amplitude of
dFN is not directly attributed to the negative potential caused
by negative feedback (Cohen et al., 2007; Holroyd et al., 2008;
Foti et al., 2011a; Walsh and Anderson, 2012). One report
hypothesizes that unexpected feedback evokes negative potential
as N200 regardless of whether the outcome valence is positive
or negative, and expected positive feedback evokes a positive
potential called reward positivity (RewP) (Holroyd et al., 2008;
Foti et al., 2011a; Walsh and Anderson, 2012). As a result, the
positive deflection attenuates the N200. Traditionally, a stronger
RewP is caused by improbable positive (reward) feedback rather
than probable positive feedback, and these modulations were
more sensitive than instances with negative feedback (Cohen
et al., 2007; Walsh and Anderson, 2012; Sambrook and Goslin,
2014, 2016). Furthermore, RewP has been reported to be related
with reward magnitude (Cherniawsky and Holroyd, 2013; Qu
et al., 2013). Therefore, the negative potential evoked by negative
feedback (e.g., loss-related FN) and RewP is considered to be
caused by different neural mechanisms. Although it is common
to define FN as the difference between positive and negative
waveforms, several recent literatures have reported various

methods to verify the FN components (Gheza et al., 2018;
Paul et al., 2020). Although the mechanisms of these ERPs are
currently under debate, we should discuss the modulation not
only of the dFN but also of the negative potential evoked by
negative feedback and the RewP evoked by positive feedback as
independent ERP components. Although “FN” has been treated
in previous studies as ERPs that were the difference in waveforms
between loss and gain feedbacks or were the negative potential
evoked by negative feedback, we treated the negative potential
evoked by the negative feedback as FN in this article.

We investigated FN/RewP from two perspectives. Firstly, our
study focused on mood related to feedback outcome. Several
previous studies reported a relationship between the mood’s
influence and FN/RewP modulation. The definition of the
keyword “moods” differed in each previous study. For example,
several previous studies have used emotional pictures or an
imagery procedure method to induce a negative or positive
mood in their participants (Foti and Hajcak, 2010; Foti et al.,
2011b; Bakic et al., 2014; Angus et al., 2015; Riepl et al., 2016;
Paul and Pourtois, 2017; Bandyopadhyay et al., 2019). In other
words, the moods were controlled to a specific valence (positive,
negative, or neutral) by the experimenter. Some studies have
also modulated participants’ positive moods by controlling the
magnitudes of feedback reward (Meadows et al., 2016; Paul
et al., 2020). A previous study defined a mood that is linked to
specific events and reflects the cumulative impact of multiple
stimuli, while an emotion typically relates to a single stimulus
(Eldar et al., 2016). They also reported the relationship between
a series of feedback outcomes and the mood changes. The
errors in positive moods result in large prediction errors. In
contrast, the accumulation of negative outcomes decreases the
mood of participants. This mood might change according to
the success and the failure rates in past trials. The temporal
mood during the task constantly fluctuates depending on each
feedback outcome in the task. Based on this definition, the
manipulation of moods through emotional pictures or memory
recall employed in the previous study was more of a manipulation
of the participants’ “emotion,” not the “mood.” Thereafter, the
moods in the present study are followed in accordance with
the definition by Eldar et al. (2016). Secondly, we focused
on the characteristics of the experimental task that generate
positive and negative feedbacks. A lot of the previous studies
discussed, in terms of positive/negative feedbacks derived from
the gambling task, choosing one of multiple options. In most
of the previous experiments, the feedback probabilities were
determined by the experimental conditions. In other words,
participants expected the upcoming outcomes according to the
probabilities determined by a computer program. In this case,
the participants did not fundamentally have the responsibility for
the outcome of their choice since the outcome depended entirely
on the probability. We used a task in which actions according
to one’s skills lead to good or bad outcomes and focused on
the mood that occurred in the tasks that involved responsibility
for the outcome of one’s actions. The novelty of this study
is that we analyzed such temporal fluctuations of moods that
occurred during tasks that involve responsibility for the outcome
of one’s actions. No research has reported an investigation of
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the relationship between the continuous temporal fluctuations of
mood and the ERP modulations.

In this study, we experimented with a gaming task to
make participants more aware of the temporal fluctuations of
mood that occur in tasks that involve responsibility for the
outcome of one’s actions. Because the gaming tasks increase the
participants’ intrinsic motivation, we expected that the mood
would enhance the feedback-related ERPs. We developed an
original virtual reality (VR) shooting game as an experimental
task. Although VR is generally used for entertainment, it is an
excellent technology for experimental tasks. For example, VR
technology was widely used in the field of neurorehabilitation
because it allows participants to feel deeply immersed in a virtual
environment and motivates them for the tasks (Adamovich et al.,
2009; Teo et al., 2016). In particular, the integration of VR
technology and tasks of adaptive computer games provides a rich
and challenging training environment and a useful rehabilitation
tool for children (Brutsch et al., 2010; Demers et al., 2020). VR
contents are also effective tools for EEG recordings. Previous
studies have confirmed that VR contents can be used as emotional
induction tools (Riva et al., 2007; Banos et al., 2012; Herrero
et al., 2014) and enhanced the intensity of emotions as well as the
sense of presence compared to non-VR contents (Chirico et al.,
2017). Other studies showed that performance enhancement
experiments using EEG in a VR environment may lead to better
results compared to non-VR experiments (Slobounov et al.,
2015; Ko et al., 2020). VR technology is able to serve as an
experimental environment that is difficult to simulate in the real
world. Furthermore, because the VR environment is controlled
by a computer program, we can acquire all event onsets in the task
with a millisecond resolution. The present study investigated the
correlation of ERP amplitude (FN and RewP) and experimental
features (VR events and mood) at a single-trial level.

MATERIALS AND METHODS

Participants
Thirty-four participants (18 males, 16 females, age range = 21–
54 years) participated in this study. All participants had normal
hearing and normal or corrected-to-normal vision. Participants
provided informed written consent after the details of the
procedure had been explained and before the experiment.
All experimental procedures were approved by the Ethical
Committee for Human and Animal Research of the National
Institute of Information and Communications Technology. All
experiments were performed in accordance with the ethical
standards described in the Declaration of Helsinki.

Experimental Procedure
We used an original VR shooting game as an experimental task.
A screenshot of the shooting game is shown in Figure 1, and
a movie of the game is shown in Supplementary Video 1. In
the game, a cannon was placed in front of a participant and
fired cannonballs toward the participant. The participants were
instructed to shoot down the cannonballs using a handgun.
Participants were allowed to fire only once at each cannonball.

FIGURE 1 | Screenshot of the virtual reality (VR) shooting game. Participants
were instructed to shoot down cannonballs using a handgun in a VR
environment.

The cannonballs flew toward the player with a straight or a
parabolic path from the cannon. If the participants failed to shoot
down the cannonball, they were bombarded with the cannonballs
and lost one life point in the game stage. When the cannonball
was located within approximately 30% distance from cannon
to the player, its color was changed from black to gray. In this
case, the cannonball did not disappear, even if it was hit by a
player’s shot. We defined this feedback result as an infrangible
hit event. This was designed to inhibit the player from firing
bullets at a close range. However, we excluded this analysis of
the feedback outcomes from the EEG analysis because it was
not the main objective of the present study. The playing time
for each level was 1 min, and a participant started with five life
points in each level. The participants were instructed to survive
for 1 min without losing all of their life points and were also
instructed to complete as many stage levels as possible. The game
stages consisted of 13 levels. Parameters for the maximum and
minimum cannonball sizes and curve trajectories were set for
each level. The size and the curve trajectory of the cannonballs
for each trial were randomly selected between the maximum and
minimum range in each level. The game became harder as it
progressed through the levels. Specifically, the cannonball’s size
became smaller and the curve of the trajectory became tighter. All
the participants practiced for 5 min before the EEG experiment.
They were instructed to restart the game from the beginning of
the stage if they lost all life points in each level. Consequently,
the player could play the shooting game at a suitable difficulty.
The participants sat in a chair and held the VR controller in their
dominant hand to play the game.

Experimental Devices
An illustration of the experimental setup is shown in Figure 2A.
Our developed VR software was able to export the gaming log
to a file. The gaming log included the participant’s position, the
cannonball’s size, cannonball’s curve trajectory, the cannonball’s
position, and any game event onset time such as error (a failed
shot) and hit (a successful shot) events. These parameters were
exported for every video frame. Furthermore, the time of each
frame based on the CPU time of a computer that ran the
software was added to the log file. In parallel, the CPU time
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FIGURE 2 | (A) Experimental setup and devices. (B) Time-synchronized electroencephalogram (EEG) device. (C) Dry electrode. (D) Virtual reality (VR) head-mounted
display with an EEG recording system.

was transmitted to the EEG device using Bluetooth with a time
precision of microseconds. All sampling data recorded by the
EEG device were linked to the CPU time of that computer. We
analyzed ERPs related to the game events in the VR software
based on the CPU time.

Illustrations of the experimental devices are shown in
Figures 2B–D. The present study used HTC Vive (HTC, New
Taipei, TWN) for the VR experience. The participants wore a
head-mounted display to observe images in the VR space and
played the game with a controller device using their dominant
hand. They could shoot the bullet by pressing the trigger
button on the controller device. The frame rate of the VR
head-mounted display was 90 Hz. To record the participants’

EEG activities while they wore the head-mounted display, we
set an electrode socket on the top band of the head-mounted
display. We attached a dry electrode (Unique Medical, Japan)
to the electrode socket and measured the EEG activities at
the FCz position according to the international 10–20 system.
EEG data were measured by one electrode using an original
eight-channel portable EEG device capable of supporting the
CPU time [Miyuki Giken, original development based on
Polymate Mini AP108 (W × D × H: 52 × 50 × 20 mm,
80 g), Japan]. To measure the electrooculograms (EOGs),
two electrodes were placed on the top and the side of
the right eye of each participant. All recorded signals were
referenced to the left mastoid, and the ground electrode was
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placed on the right mastoid. The EEG and EOG data were
sampled at 500 Hz.

EEG Data Analyses
Electroencephalogram analyses were performed using MATLAB
2017b (MathWorks, Inc., Natick, MA, United States). A digital
finite impulse response bandpass filter (1–15 Hz, order 2,500)
was applied to the continuous EEG data. Subsequently, we used
the automated artifact removal method to remove eye movement
related artifacts from the EEG data (Schlogl et al., 2007). The EEG
data were divided into 2,000-ms epochs (-1,000 to +1,000 ms)
based on the two event onsets. An illustration of the two event
onsets is shown in Figure 3. The blue sphere was the bullet
fired by the participants and indicated the action onset. The
yellow flash indicated the feedback onset. One game event was
ERROR. The ERROR is an event in which the player shot a bullet,
but did not hit a cannonball (Figure 3A and Supplementary
Video 1). The ERROR event onset is the moment the bullet hit
a wall in the playing field. The delay between the action onset
and the feedback onset for ERROR was 53.0 ms (SD = 1.59).
Another event was HIT, which is when the player successfully
shot down a cannonball (Figure 3B and Supplementary Video
1). The delay between the action onset and the feedback onset
for HIT was 31.2 ms (SD = 1.86). These two event onsets were
the feedback moments of each event and not the participant’s
shoot moment. Figure 3 was made by a series of frame images
extracted from Supplementary Video 1. Note that the frame rate
of Supplementary Video 1 was 30 frames per second, but the
actual frame rate of the VR head-mounted display was 90 frames
per second. Baseline correction was performed using the averaged
amplitude from−1,000 to−500 ms.

Automatic Artifact Rejection With
Threshold
The purpose of the threshold-based artifact rejection is to
improve the signal-to-noise ratio of the averaged EEG dataset by
removing the trials that include large noise. The unsynchronized
noise between trials is attenuated according to the root of the
number of the trials using the averaging method. Therefore,
we must employ a suitable threshold for each participant to
maximize the signal-to-noise ratio of the averaged EEG data.

We proposed a formula to minimize the noise in the averaged
data. Here, we denoted the entire EEG data matrix as D with N
trials and T time series. N includes all HIT and ERROR event
trials. Then, the data matrix composed of good EEG trials whose
maximum value in the time series did not exceed a threshold
τ was denoted as Dτ . The Dτ matrix consisted of the number
of data trials. Next, we recreated the data vector Reshaped.Dτ

by connecting the trials along the time series dimension of
the data matrix Dτ . The vector length of the Reshaped.Dτ

was NDτ
∗ T, where NDτ is the number of trials in Dτ. Here,

we defined the noise of the data as the standard deviation of
Reshaped.Dτ. Although the recorded EEG data contain ERP
activities, we made the assumption that the more fluctuations in
the recording signal, the more noise are included since the ERP
activity is constant across all the trials. Thus, we assumed that

the std(Reshaped.Dτ) is the amount of noise in the single trials
in Dτ, and std(Reshaped.Dτ)√

NDτ

is the amount of noise in the averaged

EEG data from Dτ. Here, we determined the optimal threshold
τopt for each participant as follows:

τopt = argmin
τ

std
(
Reshaped.Dτ

)√
NDτ

The thresholds τ were changed from 10 to 100 µV in 1-µV steps
in order to determine τopt, which minimizes the amount of noise
in the averaged EEG data.

Statistical Analyses
The present study employed an LME (linear mixed effects)
for statistical analysis. In traditional neuroscience studies for
event-related potentials, the EEG data are averaged for each
experimental condition and participant; then, analysis of variance
(ANOVA) is often used to test the statistical significance
between the experimental conditions. This traditional technique
is based on the hypothesis that all participants and the
experimental condition average the same number of trials.
However, because the number of trials in our study depended
on each participant’s action results, they differed greatly for each
participant. Therefore, it was not desirable to use the traditional
ANOVA approach for the current VR experimental data. Because
LME is robust for unequal number of observations for each
experimental condition and participant (Fromer et al., 2018), we
used an LME model instead of the traditional ANOVA.

The LME model allows estimation at a single trial level for
objective variables. Each game event in the VR shooting has
various gaming parameters that players could experience during
the game, such as the size and curve of the cannonball, the playing
time for each level, and the player’s remaining life points. The
LME model could reveal the relationship between the game event
defined by these game parameters and the corresponding ERPs.

The LME model estimates the regression weights of the fixed
and the random effects. We defined a corresponding value for the
size and curve of the cannonballs (size and curve, respectively),
a playing time (time), a damage count (damage) of each level,
hit count of up to 10 events before (mood index), and the
feedback outcome of a participant’s action (valence) as fixed
effects. We defined a participant difference as a random intercept
(participants). The larger the cannonball, the easier it was to
shoot it down. The wider the curve, the easier it was to shoot
the cannonball down. In this experiment, the curve trajectory
of the cannonballs was determined by two parameters related
to the horizontal and vertical axes. Here, we defined the three-
dimensional coordinate space in VR, as shown in Figure 4A. The
curve trajectory of the cannonballs was defined by the diagonal
line c =

√
a2 + b2, where a and b are the maximum separation

distances of the cannonball in the X− and Y-axis, respectively,
from the participant’s view.

The cannonball’s size and curve were parameters related to the
difficulty of the shot. Therefore, these two parameters correspond
to the size of the effect of outcome probability. The playing time
and damage count do not affect the difficulty of the shot. Because
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FIGURE 3 | Criteria for two event onsets. We focused on the two game events. The blue sphere was the bullet fired by the participants. (A) ERROR event. The bullet
fired by the participants flew in a direction different from the position of the cannonball. The ball hit the wall and the cannonball did not disappear. The scene appears
in approximately 3 s, as shown in Supplementary Video 1. (B) HIT event. The bullet fired by the participants flew into position on a cannonball. The ball hit the
cannonball, and the cannonball disappeared. The scene appears in approximately 21 s in Supplementary Video 1.

the error of shooting with a few participant life points and shorter
time remaining is a serious error, these parameters correspond to
the size of the effect of outcome magnitude.

In general, participants would underestimate the accuracy of
their next trial if they had excessive errors by then. On the other
hand, participants would overestimate their accuracy for the next
trial if they had successful hits by then. Therefore, in the present
study, we defined the mood index as how well a player had
completed shooting until the newest trial. It can be regarded as a

temporal accuracy in the trial. We defined the mood index M(n)
in trial n as:

M (n) =

T∑
t = 1

h [n− t] · αt,

where h[n - t] represents the result of shooting in the n - t
trial (hit: 1, error and infrangible hit: 0), T represents the decay
constant, and α represents the decay coefficient. We used α = 0.8
and T = 10. Note that the first 10 trials in each game stage were
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FIGURE 4 | Experimental features. (A) cannonball curve, (B) cannonball size, (C) time, and (D) damage.

discarded. The mood index corresponds to the size of the effect of
the temporal fluctuation of the mood and changes continuously
in each trial. If a player completely shot down all the cannonballs
in the recent 10 trials, the mood index was at a maximum. If a
player could not shoot any cannonballs in the recent 10 trials, the
mood index was at a minimum. The mood index was not related
to the difficulty of each trial. We used valence as a fixed effect
to express a feedback outcome of the participant’s action, and it
was a categorical variable with “0” for the ERROR event and “1”
for the HIT event.

The single-trial ERP amplitudes for the LME analysis were
obtained using the following procedures. Firstly, we calculated
the average ERPs of the hit and error events for each participant.
Secondly, the negative peak latencies, between 150 and 250 ms
after feedback in the averaged waveform of the error event,
were obtained for each participant. Similarly, the positive peak
latencies, between 150 and 250 ms after feedback in the averaged
waveform of the hit event, were obtained for each participant.
Finally, the averaged amplitude of 25 ms before and after the

peak latencies in each participant and event was considered the
single-trial ERP amplitude.

Our initial LME model described in Wilkinson notation is
as follows: single-trial ERP amplitude ∼ (size ∗ curve + time
∗ damage + mood index) ∗ valence + (1| participants).
All fixed effects were transformed into z-scores. To avoid
multicollinearity, we calculated the variance inflation factor (VIF)
of each fixed effect and the interactions. The predictors with a
VIF value greater than 10 were excluded from the initial model.
We used R version 3.5.1 for statistical analysis and performed an
LME analysis using the lme4 and the lmerTest package. We used
the anova function of the lmerTest package to perform type III
analysis of variance for the LME model. We used Satterthwaite’s
method to compute the denominator degrees of freedom and
F-statistics.

We investigated the effects of task difficulty parameters on
behavioral outcomes (HIT or ERROR) in a shooting game. The
model described in Wilkinson Notation is as follows: behavioral
outcomes ∼ size ∗ curve + (1 | participants). We performed a
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general linear mixed model analysis using the lme4 package. The
objective variable was set as a categorical variable with an HIT of
1 and an ERROR of 0. Therefore, the probability distribution was
a binomial distribution.

RESULTS

Behavioral Analysis
The averaged hit, error, and infrangible hit rates across
participants were 61.6% (SD = 0.0659), 33.4% (SD = 0.0847),
and 5.00% (SD = 0.0395), respectively. The behavioral outcome
model estimates are summarized in Table 1. Size showed a
positive correlation with the behavioral outcome. Thus, the
results showed that the HIT outcomes were dependent on the size
of the cannonball.

The averaged reaction times of hit, error, and infrangible
hit were 1.04 s (SD = 0.175), 1.02 s (SD = 0.179), and 1.47 s
(SD = 0.178), respectively. The averaged reaction time after a
hit trial was 1.01 s (SD = 0.184), and the averaged reaction time
after an error or an infrangible hit trial was 1.14 s (SD = 0.179).
The t test showed a significant difference between these reaction
times (RTs) [t(33) = 11.3, p < 0.001, r = 0.89]. Therefore, the
results showed that the RT after an error or an infrangible hit
trial was significantly slower than the RT after a hit trial. The
average number of game restarts for the participants was 38 times
(SD = 9.99).

EEG Analysis
The optimal threshold for artifact rejection of each participant
and the remaining trials are shown in Supplementary
Figures 1, 2. The averaged optimal threshold across participants
was 39.9 (SD = 15.5). As a result of artifact rejection, the average
numbers of trials across all participants in the hit and error events
were 315 (SD = 79.5) and 170 (SD = 59.1) trials, respectively.
The grand averaged ERPs for each event (HIT and ERROR) and
the difference between the events are shown in Figure 5. The
blue dashed line indicates the action onset of the HIT. It also
indicates the action onset of the ERROR. The shades around the
waveforms indicate the standard error among the participants.
For the ERROR event, we confirmed a negative potential after
event onset (from +200 to +250 ms). Thus, we defined the
negative potential in the ERROR event as the FN. For the HIT
event, we confirmed a large positive potential after event onset

TABLE 1 | Effects of behavioral outcomes.

Variable Estimate SE z-value p value

Intercept 0.755 0.0765 9.86 <0.001

Size 0.117 0.0233 5.01 <0.001

Curve −0.00349 0.0190 −0.183 0.854

Size:curve 0.0393 0.0207 1.90 0.0575

Variance components SD Goodness of fit

Participants 0.429 Log likelihood −8181.2

REML deviance 16362.5

FIGURE 5 | Grand averaged event-related potentials (ERPs) for the ERROR
and HIT events. The shades around the waveforms indicate the standard
errors among the participants.

(from +200 to +250 ms). We defined the positive potential
in the HIT event as the RewP. The shades of ERP waveforms
represent the standard errors over the participants.

Because the VIF for the interaction of time and valence was
greater than 10, we excluded this interaction from the initial
model that we have described above. The conducted model was
as follows: ERPs ∼ (size ∗ curve + damage + mood index) ∗
valence + time + time:damage + time:damage:valence + (1|
participants). The VIF of all the fixed effects and the interactions
was less than 10. All variables were transformed into z-scores.

The type III analysis of variance table for the model is
summarized in Table 2. Analysis of variance revealed main
effects (size, curve, and valence) and significant interactions
(curve:valence, mood index:valence, and time:damage:valence)
(see Table 2 for statistics). The predictor of valence showed
a significant difference between the ERROR and HIT events.
The predictors of size and curve showed significant differences,
indicating that both predictors affected the amplitude of FN
and RewP commonly. The three interactions including valence
showed significant coefficients. The curve, the mood index, and
the interaction of time and damage belonged to the outcome
probability, mood, and outcome magnitude, respectively. The
results indicate that these predictors have significantly different
effects on FN and RewP. The estimates and statistics of
each predictor for the ERROR and HIT events are shown in
Tables 3, 4, respectively. We found significant coefficients of size,
curve, and mood index in the ERROR event. The curve showed
a positive correlation with FN and the size showed negative
correlations with FN. Thus, the results showed that the error
against a smaller curve and a larger size of the cannonballs
evoked a larger negative FN amplitude. In other words, the
error of shooting in an easy situation evoked a larger negative
FN amplitude. The mood index showed a negative correlation,
suggesting that the error in good mood evoked a larger negative
FN amplitude. We found significant coefficients of size, curve,
and interaction of time and damage in the HIT event. RewP was
positively correlated with curve and was negatively correlated
with size. The interaction between playing time and damage
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TABLE 2 | Type III analysis of variance with Satterthwaite’s method for the linear
mixed-effects (LME) model.

Variable Sum of squares F value p value Partial η2

Size 15.8 18.9 < 0.001 0.00190

Curve 100.3 120.2 < 0.001 0.00910

Time 0.01 0.0156 0.900 0.00000119

Damage 1.22 1.46 0.227 0.000112

Mood index 0.97 1.17 0.280 0.0000894

Valence 942.4 1129.2 < 0.001 0.08

Size:curve 0.65 0.775 0.379 0.0000593

Time:damage 1.22 1.46 0.227 0.000112

Size:valence 0.09 0.112 0.738 0.00000856

Curve:valence 10.6 12.7 < 0.001 0.000969

Damage:valence 0.03 0.0411 0.839 0.00000314

Mood index:valence 14.1 16.9 < 0.001 0.00129

Size:curve:valence 0.29 0.342 0.559 0.0000262

Time:damage:valence 4.20 5.04 0.0248 0.000385

TABLE 3 | Effects of feedback negativity (FN) amplitude.

Variable Estimate SE t value p value

Intercept −0.526 0.0339 −15.5 < 0.001

Size −0.0541 0.0188 −2.88 < 0.01

Curve 0.0763 0.0180 4.25 < 0.001

Time −0.0124 0.0154 −0.805 0.421

Damage 0.00169 0.0135 0.125 0.901

Mood index −0.0497 0.0160 −3.11 < 0.01

Size:curve −0.0163 0.0198 −0.825 0.409

Time:damage −0.0195 0.0161 −1.21 0.227

TABLE 4 | Effects of reward positivity (RewP) amplitude.

Variable Estimate SE t value p value

Intercept 0.256 0.0297 8.63 < 0.001

Size −0.0472 0.0113 −4.18 < 0.001

Curve 0.149 0.00992 15.0 < 0.001

Time 0.00169 0.0135 0.125 0.900

Damage −0.0159 0.0135 −1.18 0.239

Mood index 0.0239 0.0137 1.74 0.0815

Size:curve −0.00331 0.0103 −0.323 0.747

Time:damage 0.0247 0.0110 2.24 0.0250

count showed a positive correlation with RewP. These results
indicate that shooting at a high difficulty and under severe
pressure resulted in a larger RewP.

DISCUSSION

The present study used an original VR shooting game as
an experimental task and measured the brain EEG activity
while participants played the game. We focused on two
kinds of ERPs related to negative and positive feedbacks.
The large FN was observed at the frontocentral electrode
during the 200 ms after negative feedback. RewP was

observed at the frontocentral electrode during the 200 ms
after positive feedback.

For FN, all fixed effects that were significant belonged
to outcome probabilities and mood, and the fixed effects
corresponding to outcome magnitude were not significant.
Therefore, these results suggest that FN is sensitive to outcome
probability and is not affected by outcome magnitude. This
finding was consistent with previous studies (Yeung and Sanfey,
2004; Hajcak et al., 2006, 2007). We suggested that the
negative potential of FN is modulated not only by the outcome
probability but also by the mood, which is the participant’s
temporal mental state.

The coefficients of the curve in RewP were larger than those
in FN. The significant interaction of the curves and valence in
Table 2 would reflect the difference. The size and curve of the
cannonball belonged to the outcome probability of feedback.
The playing time and damage count belonged to the outcome
magnitude of feedback. The single predictors of time and damage
were not significant, but the absolute value of the coefficients of
these interactions was larger than that of the coefficients of each
predictor. This result indicates that, with the passage of time, the
error event was recognized as a serious failure for the participants.
Recent reports have shown that RewP is sensitive to the outcome
magnitude (Paul et al., 2020), and the present results support
these findings. On the other hand, unlike FN, the RewP did not
show significant statistics related to the mood.

These suggest that processes underlying the generation of
the FN and RewP might have different mechanisms since the
FN was modulated not only by the outcome probability but
also by the mood. Although the mood is constantly changing
depending on the series of feedback results, it is interesting
to note that mood affects only the FN modulation. Neural
processing of the errors occurs because of the integration of
complex information processing in the brain. Moreover, neural
processing of the errors is modulated by individual differences as
subjective factors. Several studies have reported that error-related
brain responses are enhanced by various individual differences
[e.g., decisiveness (Senderecka et al., 2018), conscientiousness
(Pailing and Segalowitz, 2004), socialization (Dikman and Allen,
2000), and agreeableness (Tops et al., 2006)]. The present study
showed the novel findings that error-related brain responses are
changed not only by the individual differences due to subjective
factors but also by the temporal fluctuations of the mood for the
upcoming outcome of the task.

There are several limitations of this study. Firstly, it was
difficult to distinguish whether the positive potential in the hit
event was RewP or other kinds of ERPs (e.g., shifted P300 or P2).
The latency of positive deflection for a hit was 200 ms. Moreover,
the positive deflection appears to be formed by a bimodal peak.
For these reasons, we considered the positive peak at the 200 ms
to be RewP that superimposed on P300. Next, we considered the
possibility whether the positive peak around 200 ms after visual
feedback was P2 (P200). In general, a series of early visual ERP
components such as N1, P1, and P2 are evoked in response to
visual stimuli (Keil et al., 2002; Batty and Taylor, 2003; Carretié
et al., 2004; Foti et al., 2009). Emotional images appear to impact
the magnitude of P1 (Olofsson and Polich, 2007; Mueller et al.,
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2009), and N1 is sensitive to the emotional content of visual
stimuli (Carretié et al., 2007; Foti et al., 2009). Following N1, P2
is evoked at approximately 180 ms after stimulus onset (Carretié
et al., 2004). The P2 amplitude is enhanced for infrequent target
stimuli than for frequent standard stimuli, suggesting that P2
indexes selective attention (Luck and Hillyard, 1994). However, in
the present study, the HIT event was a frequent feedback outcome
compared to the ERROR event. Therefore, we considered the
positive peak in positive feedback at 200 ms to be RewP, not P2.
The present ERPs in positive feedback differed from the classical
ERP waveforms. We believe that this is due to the fact that the
present study used a task that involved responsibility for the
outcome of one’s actions. In fact, a previous study that used a task
involving responsibility for the outcome of one’s actions observed
similar ERP waveforms to the present study in positive feedback
(Joch et al., 2017). The differences in the task characteristics
between our task and the classical gambling task may have
contributed to the generation of different waveforms. There is a
possibility that the RewP and other ERPs (shifted P300 and P2)
are distinguished from multichannel EEG data. Moreover, the
negative and positive potentials evoked at 200–300 ms represent
brain activities related to human consciousness (Rohaut and
Naccache, 2017; Hermann et al., 2020). EEG recordings with
more electrodes allow for rich spatiotemporal ERP analysis and
can elucidate the brain mechanisms from various perspectives.
In fact, a previous study performed a spatiotemporal mapping
analysis called topographical analysis to FN and RewP using
64 channels of EEG data (Gheza et al., 2018). These analyses
will give us sophisticated data related to mood and emotion.
However, it was difficult to place a large number of channels on
the scalp while the participants wore a VR head-mounted display.
Therefore, we placed an electrode at FCz, where FN/RewP is
strongly measured. The small number of measurement electrodes
in EEG in this experiment is the second limitation. Thirdly, there
was a possibility that the head and body movements caused by the
VR content generated a lot of artifacts, which contaminated the
EEG signals. In the present study, the participants sat in a chair
and observed the canon and the cannonballs in front of them;
thus, they did not necessarily require larger body movements to
do the task. In fact, the standard error of the ERP waveforms
over the participants was not large (Figure 5). However, there was
no guarantee that artifacts caused by head and body movements
could be completely removed from the EEG signal in the present
study. To better attenuate the artifacts evoked by the head and
body movements, noise removal techniques can use estimations
of those artifacts to effectively denoise the EEG signals (Gwin
et al., 2010). Finally, the game experience of the participants
in the experiment was uncontrolled. The gaming score may
vary depending on the presence/absence of the game experience
of participants. Furthermore, the response to negative/positive
feedbacks may change. A comparison of the ERP activities of
experienced participants and naive participants who rarely play
games is a topic for future experiments.

Previous studies have reported a correlation between the
averaged accuracy of the entire experimental results and the
modulation of the feedback potential (Maurer et al., 2015; Joch
et al., 2017). However, to the best of our knowledge, no studies

have reported on the relationship between the temporal accuracy
for the task and the FN modulation at that time. Here, the
temporal accuracy for the task was defined as the mood. We used
a single-based LME analysis to reveal the relationship between
the mood and FN modulations. The results suggest that FN is
sensitive to the temporal mood in the game. In other words,
FN might reflect flow or ambiance in the game. Because FN is
modulated according to the temporal fluctuation of the mood,
it gives new evidence of error-related processing in the human
brain. In addition, it is worth noting the use of a single-trial-based
LME analysis for the negative potentials in error events instead of
the differences in the waveforms between the hit and error events.
Several studies have previously treated the negative potential in
the differences of the waveforms between good and bad events
(dFN in this manuscript) as FN modulation. Consequently, even
if the negative potential of dFN was modulated, it was difficult
to determine whether the modulation was caused by positive
feedback or by negative feedback. In this study, we observed that
the negative potential of an error event is modulated not only
by the outcome probability but also by the temporal fluctuation
of the mood. This result reinforces the importance of treating
the negative potential evoked by the negative feedback as FN
rather than treating FN as a difference between the negative
potential evoked by the error trial and the positive potential
evoked by the hit trial.

CONCLUSION

To summarize, this study used a VR shooting game as an
experimental task and recently defined temporal mood in
addition to the outcome magnitude and outcome probability. FN
was observed during an error event in a shooting game and RewP
was observed during a hit event. A linear mixed-effects model was
used to investigate the relationship between the game factors and
the modulation of the ERPs. As a result, the amplitudes of FN
and RewP were changed according to the outcome probability,
which is the task difficulty. Furthermore, FN was changed
according to the temporal fluctuation of the mood, which is the
participant’s temporal mental state in the game. We found that
FN, a negative potential in negative feedback, was sensitive to
temporal mood and was one of the experimental features that
amplify the potential.
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