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Objective: Clock variance is an important statistic in many clinical and developmental
studies. Existing methods require a large number of trials for accurate clock variability
assessment, which is problematic in studies using clinical or either young or aged
participants. Furthermore, these existing methods often implicitly convolute clock and
memory processes, making it difficult to disentangle whether the clock or memory
system are driving the observed deviations. Here we assessed whether 20 repeated
productions of a well-engrained interval (1 s), a task that does not incorporate memory
updating nor the processing of feedback, could provide an accurate assessment of clock
variability.

Method: Sixty-eight undergraduate students completed two tasks: a 1-s production task
in which they were asked to produce a 1-s duration by ending a tone by a keypress, and
a multi-duration reproduction task. Durations presented in the reproduction task were
tones lasting 1.17, 1.4 and 1.68 s. No feedback was presented in either task, and the
order of presentation was counterbalanced between participants.

Results: The observed central tendency in the reproduction task was better explained
by models including the measures of clock variability derived from the 1-s production
task than by models without it. Three clock variability measures were calculated for each
participant [standard deviation, root mean squared residuals (RMSRs) from an estimated
linear slope, and RMSR scaled by mean production duration]. The model including the
scaled RMSR was preferred over the alternative models, and no notable effects of the
order of task presentation were observed. These results suggest that: (1) measures of
variability should account for drift; (2) the presentation of another timing task before a
1-s production task did not influence the assessment of the clock variability; and (3) the
observed variability adheres to the scalar property and predicts temporal performance,
and is thus a usable index of clock variability.

Conclusion: This study shows that just 20 repeated productions of 1 s provide a reliable
index of clock variability. As administering this task is fast and easy, it could prove to be
useful in a large variety of developmental and clinical populations.
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INTRODUCTION

Estimating and reproducing short intervals in the hundreds
of milliseconds to seconds range is central to a wide range
of behaviors. Irrespective of the theoretical framework, this
type of timing is assumed to be driven by an internal time
source, or clock, and memory traces of previously experienced
intervals. Because of this dyad, variations in interval timing
proficiency can either be driven by changes in the accuracy
of the clock, or by variations in the efficacy of the memory
mechanisms. Interestingly, deviations in timing performance
observed in clinical populations are often attributed to variations
in clock precision and accuracy (for a review see Allman
and Meck, 2011). For example, Alzheimer diseased patients
demonstrate increased timing variability in a bisection task
using sub-second intervals (Caselli et al., 2009), and similar
observations are associated with the performance of patients
with bipolar disorder (Bolbecker et al., 2014) and Parkinson’s
disease (Pastor et al., 1992; Harrington et al., 1998; Malapani
et al., 1998). Furthermore, performance of autistic children
is poorer in temporal discrimination tasks when compared
with healthy, age-matched controls (Karaminis et al., 2016).
Changes in temporal accuracy are, however, not limited
to clinical conditions. Even during normal, healthy aging,
temporal precision declines, observable by more variable timing
estimations and a general decrease in accuracy (for a review see
Paraskevoudi et al., 2018).

Even though these phenomena are often explained in terms
of deviations in clock variance, the impairment of temporal
precision may also be clock-unspecific. For example, individuals
with schizophrenia display greater variability in a rhythmic
tapping task, potentially caused by larger timing variability
(Carroll et al., 2009). Yet, these effects have also been attributed
to procedural learning (Da Silva et al., 2012), or the inability to
synchronize to external events (Wilquin et al., 2018). Thoenes
and Oberfeld (2017) propose general cognitive deficiencies as a
potential explanation for the impaired temporal performance in
individuals with schizophrenia.

Distinguishing between clock-based and more general
deficiencies is difficult as most tasks that are used to assess
the precision of the clock implicitly rely on a convolution of
clock and memory processes. Typically, the precision of interval
timing is indexed by a rhythmic tapping task or by calculating
a Weber fraction (e.g., Harrington et al., 1998; Karaminis et al.,
2016), a measure indicating the minimal proportional chance
for a changed stimulus to be discernible from the original
(‘‘just noticeable difference’’). The Weber fraction is typically
calculated from a psychometric function derived from a bisection
or discrimination task. In both tasks, participants have to learn
either one or two comparison durations or ‘‘anchors’’ during
the scope of the experiment. Performance in both tasks thus
depends on generating the correct memory representations
during the experiment itself. Moreover, calculating an accurate
psychometric function requires a relatively large number of
trials making it unsuitable for populations with shorter attention
spans or for those that are more easily fatigued. The rhythmic
tapping task on the other hand is closely linked to motor

performance, a process that undergoes a separate decline in
aging and certain clinical conditions (Paraskevoudi et al.,
2018; PD: Jankovic, 2008). Based on similar considerations,
Paraskevoudi et al. (2018) proposed that ‘‘more appropriate
methods for detecting the accuracy and imprecision signatures
of a slower clock are verbal estimation tasks, production
tasks, and unpaced finger tapping tasks, which presumably
reflect the internal tempo in its pure form’’ (page 11). Here,
we present a first validation of a pure clock variability
measure that does not incorporate memory updating during the
experiment, nor the processing of feedback, and can be quickly
administered.

In our study, participants were asked to produce 20 1-s
intervals by ending a machine-started tone by a key-press,
without feedback or prior presentation of the defined interval.
As 1-s intervals are likely to be highly familiar or trained to
the participants, we assumed a stable internal representation
and thus attributed the variability observed in the repeated
production of this interval to clock variability. The most
straightforward way of determining the precision of the repeated
1-s duration is by calculating a standard deviation. This
way of determining precision assumes that the accuracy of
the 1-s estimation remains the same over the 20 repeated
productions. However, human performance on simple tasks such
as continuation tapping (e.g., Lemoine et al., 2006) is known to be
subject to drifts, especially over the shorter sequences used in this
study (Wagenmakers et al., 2004). These drifts are defined as slow
changes of the running mean, for example, participants might
speed up or slow down during the course of the experiment. Even
though there is disagreement in literature about the patterns best
describing long-term dependencies, it is clear that an accurate
measurement of precision in the 1-s production task should
account for potential drifts.

Noise is ubiquitous in human information processing (Faisal
et al., 2008), and earlier work has demonstrated that humans
use knowledge of their sensory variability to produce estimates
that are optimal in the context of the task (e.g., Körding and
Wolpert, 2004; Murai and Yotsumoto, 2018): the noisier the
incoming information on a particular trial, the stronger the
influence of the expectation that was built up during previous
trials. Thus, the temporal precision measures derived from the
1-s task should determine how much a learnt temporal context
influences the performance on a specific trial. We therefore
asked participants to also complete a reproduction task of three
different durations. A typical phenomenon observed in these
tasks is a central-tendency effect (Hollingworth, 1910, often
referred to as Vierordt’s law; see Lejeune and Wearden, 2009,
for a discussion). This tendency of judgments of quantities to
gravitate towards their mean, irrespective of whether it is in terms
of spatial distances, durations, or any other perceptual quantity,
is a highly robust perceptual effect (Jazayeri and Shadlen,
2010; Petzschner and Glasauer, 2011; Wiener et al., 2016).
This effect is typically explained by assuming that the internal
representation of a currently observed quantity is a mixture of
the actually perceived quantity and a memory representation
of all previous quantities. In the context of this study, the
consequence of this ‘‘central tendency’’ driven by previously
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experienced durations is that durations shorter than this central
tendency are overestimated, whereas those longer than it are
underestimated.

This highly robust phenomenon that demonstrates the
influence of memory on perception (see for reviews on memory
influences on timing Shi and Burr, 2016 or van Rijn, 2016)
can be captured in terms of Bayesian Inference (Jazayeri and
Shadlen, 2010; Shi et al., 2013; see also Taatgen and van Rijn,
2011), in which the perceived duration (sensory likelihood) is
integrated with previously perceived intervals that are stored in
the reference memory (prior). The key feature of this process
for the purpose of this work is that a narrower (or less noisy)
likelihood will yield a smaller regression to the mean, and, vice
versa, a stronger prior will result in more central tendency, and
that the likelihood is driven by the precision of the interval
timing processes. For example, in highly trained professional
musicians, such as percussionists, reproduced auditory durations
are reproduced to perfection, indicative of an extremely peaked
likelihood, and resulting in a relatively small influence of the
prior (Cicchini et al., 2012). Inversely, as aged participants exhibit
more uncertainty, indicative of a wide likelihood, the influence
of the prior increases, causing a stronger reliance on prior
memories (Turgeon et al., 2016). In other words, the individual
differences observed in the 1-s task should correlate with the
central tendency observed in the reproduction task. However,
both tasks rely on the production or reproduction of intervals
in a similar time range. It is therefore possible that sequential
effects can be observed (note that these are at a more global level
than the trial-by-trial sequential effects discussed in, for example,
Taatgen and van Rijn, 2011; Dyjas et al., 2012; Di Luca and
Rhodes, 2016). We tested for this possibility by counterbalancing
the order in which the production and reproduction task were
administered.

Summarizing, we set out to test whether clock variability
can be assessed with a short production task, consisting of
20 repeated productions of a 1-s interval and hypothesize that
a measure of variability derived from this task should predict
the amount of central tendency observed in a multi-duration
reproduction task.

MATERIALS AND METHODS

Participants
Sixty-eight undergraduate students from the University of
Groningen completed the experiment in exchange for course
credit. All subjects gave written informed consent in accordance
with the Declaration of Helsinki. The protocol was approved
by the Psychology Ethical Committee of the University of
Groningen. We excluded a total of five participants based on
their performance in either the production or reproduction task.
One participant was excluded based on failing to follow task
instructions (98% of trials failing to meet the inclusion criteria
for the Reproduction task discussed below; average response time
during the reproduction task was 288 ms). For the production
task, four participants were excluded due to large deviations in
produced durations, even after excluding the first two startup

trials (i.e., out of the 67 remaining participants, 63 did not
produce any intervals longer than 3 s, whereas two participants
produced intervals of over 3 s on five trials, one participant
on 10 trials, and one on 15 trials). In total, 63 participants
remained for further analyses (mean age: 21.4, range: 17–54, SD:
5.8, 43 female).

Apparatus
A MacBook Pro 13’’ (2011) controlled all experimental
events. Auditory stimuli were presented through headphones
(Sennheiser, HD280 Pro), with volume adjusted to comfortable
levels. The experiment was programmed using Psychtoolbox-3
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) in Matlab
R2014b.

Procedure
The production task consisted of 20 trials. To prevent a
rhythmic sequence, each trial commenced with an intertrial
interval (ITI) with the presentation of a fixation cross ‘‘+’’
for a random duration between 2 s and 3 s sampled from a
uniform distribution. Then a ‘‘?’’ appeared on the screen and
simultaneously a 440 Hz pure tone started. Participants were
asked to indicate when they thought 1 s since the onset of
the tone had passed by pressing the spacebar (see Figure 1).
As counting has been shown to increase the precision of
duration judgments (Thönes and Hecht, 2017), participants were
instructed to refrain from counting or keep track of time in any
other way (e.g., tapping). This instruction has been shown to
prevent influences of chronometric timing (Rattat and Droit-
Volet, 2012).

The reproduction task consisted of two blocks of 120 trials
each. Each trial consisted of the presentation of a duration,
and the reproduction of that duration (see Figure 2). The
durations presented were 1.17, 1.4 or 1.68 s long. Each trial
commenced with an ITI of a random duration between 2 s
and 3 s sampled from a uniform distribution during which a
fixation cross (‘‘+’’) was presented in the center of the screen.
Then a ‘‘!’’ appeared on the screen for 700 ms to prepare the

FIGURE 1 | Graphical depiction of the production task.
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FIGURE 2 | Graphical depiction of the reproduction task.

subjects for the presentation of the duration. Following this,
the duration was presented by means of a 440 Hz pure tone
that lasted for the duration associated with the current trial.
Within each block of 120 trials, all three durations were presented
40 times, in random order. After completion of the tone, an
inter stimulus interval (ISI) of 1.5 s was presented with a ‘‘?’’
displayed on screen. Then another 440 Hz pure tone was started.
The task was to press the spacebar when the earlier presented
duration had passed. To test for order effects, 31 participants
performed the task in ‘‘production—reproduction’’ order, and
32 in reversed order (based on parity of their sequential
participant number).

Statistical Analysis
For the reproduction task, we marked trials on which response
times were lower than 500 ms or greater than 2.5 s as outliers, and
removed them from analyses. Of the resulting dataset, 1.4% of all
data points in the reproduction task were marked as outliers.

All analyses were performed in R, with the full script and
data available at the OSF1. The Bayesian analyses were performed
with the R package BayesFactor (version 0.9.12-4.2; Morey et al.,
2015) using the default prior settings, and are interpreted based
on the guidelines provided by Jeffreys (1961), as adapted by Lee
and Wagenmakers (2014). The reported Bayes factors summarize
the extent to which an observer’s opinion of the tested variable
should change based on the data. A Bayes factor of 1 indicates
that both hypotheses are equally likely under the data and
therefore is inconclusive. Bayes factors larger than 1 represent
evidence for the alternative hypothesis of an influence of the
tested independent variable on the dependent variable, and Bayes
factors less than 1 represent evidence for the null hypothesis of
no effect of the tested variable. For the Bayesian linear mixed
effect models, we built models predicting centered estimated
duration by the entered effects including participant as random
factor. We then assessed the variable of interest by comparing the

1https://osf.io/bhe97/?view_only=9c3ea605d482416691b43588fecf92f5

Bayes factor of the model including this variable with the Bayes
factor associated with a model omitting this variable. To facilitate
interpretation, we invert Bayes factors below 1 and describe
in the text whether the Bayes factor is evidence for inclusion
or exclusion of the factor. This way, all reported Bayes factors
express the evidence for presence or absence of an effect as values
progressively greater than 1.

RESULTS

Production Task: Accuracy
As no feedback was given during the production task, the
average reproduced durations provide an index of the accuracy
of the internal representation of 1-s veridical time. The first
two trials were excluded, as discussed in the next section.
Figure 3 depicts the average produced durations per participant
and the resulting distributions as violin plots. The bar graphs
depict the mean produced durations for both order conditions
(0.98 s, SE = 0.08, when the production task preceded the
reproduction task, and 0.76 s, SE = 0.07, for the inverse
order). A Bayesian linear effect model indicated that there was
no conclusive evidence either in favor or against an effect
of order (BF = 1.46 ± 0.01%). However, the accuracy of
the internal representation of a 1-s interval is of secondary
relevance in the context of this study, as the purpose of the
1-s production task was to assess clock variability instead of
(veridical) accuracy.

Production Task: Precision
Assuming that the internal representation of a 1-s interval is
firmly encoded in long-term memory, and thus not likely to
be affected by a small number of production trials without
feedback, the variance observed in the 1-s productions reflects the
trial-by-trial clock variability. The mean trial-by-trial estimates
are depicted in Figure 4, plotted separately for the two order
conditions. As can be seen in this figure, the first trial is associated
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FIGURE 3 | Violin plots depicting the distributions of the 1-s productions and
the individual participant means, separately for the order conditions (Pr:
Production, Repr: Reproduction). The inset depicts the average duration of the
1-s productions, including error bars representing standard errors of the mean
with the within-participants Cousineau-Morey correction applied (Morey,
2008).

FIGURE 4 | Average estimated durations in the 1-s production task, plotted
per trial, separately for the order conditions (Pr: Production, Repr:
Reproduction). Error bars represent standard errors of the mean with the
within-participants Cousineau-Morey correction applied.

with very long average responses, and both the first and second
trial have noticeably bigger error bars than the following trials.
In all subsequent analyses (and the analyses reported in the
previous section), we have therefore considered these two initial
trials to be ‘‘start-up trials,’’ and excluded them from further
analysis.

The most straightforward measure of this variability is the
variance or standard deviation. Figure 5 shows, again for both
order conditions, the standard deviation of the final 18 trials
of the sequence of 20 trials. A Bayesian linear model provided
anecdotal evidence against order having an influence on the
deviation expressed in SD (BF = 2.23 ± 0%).

The standard deviation is an appropriate measure if the
noise can be assumed to be centered around a fixed mean.
However, if the repeated samples are drawn from a distribution
of which the mean changes over time, the standard deviation
calculated assuming a fixed mean will overestimate the true
variance as the shift in mean will increase the standard deviation.
In the context of this task, if the internal representation of a
1-s interval shifts, the standard deviation will overestimate the
clock’s noisiness. Figure 6 depicts the 1-s production data of
a single participant. As can be seen, this participant shows a
slow drift from productions of around 2 s to productions of 1 s,
but actually shows relatively little variance around this estimated
trend. Assuming slow drifts in performance, calculating a
standard deviance would overestimate this participant’s clock

FIGURE 5 | Violin plots depicting observed standard deviation per participant,
and the resulting continuous distributions, separately for the order conditions
(Pr: Production, Repr: Reproduction). Inset depicts mean deviation with error
bars representing standard errors of the mean with the within-participants
Cousineau-Morey correction applied.
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FIGURE 6 | Produced durations in the 1-s production task of one participant.
Dashed line depicts linear regression predicting produced duration by trial.

noise. Even though Figure 4 might suggest an overall slope
close to 0 (the mean of individual slopes is −0.0055), the
range is relatively large (−0.08 to 0.04, reflecting a drift of
−1,440 to 720 ms between trial 3 and 20). As there is decisive
evidence for a drift (one sample Bayesian t-test on the absolute
slopes as depicted in Figure 6, BF = 4.83 × 104

± 0%), a
reliable measure should account for drift when estimating clock

FIGURE 7 | Violin plots depicting observed deviation expressed in root mean
squared residual (RMSR) from a linear fit estimated per participant, and the
resulting continuous distribution, separately for the order conditions (Pr:
Production, Repr: Reproduction). Inset depicts mean deviation with error bars
representing standard errors of the mean with the within-participants
Cousineau-Morey correction applied.

variance. We therefore also calculated the root mean squared
residuals (RMSRs) based on a linear regression predicting
produced duration as a function of trial number (coded as 1–18,
after removing the first two trials) fitted separately for each
participant.

Figure 7 depicts the RMSR for the two order conditions,
analogous to the way the SD was plotted in Figure 5. As with
the SD measures, a Bayesian linear model provided anecdotal
evidence against order having an influence on the deviation
expressed in RMSR (BF = 2.26 ± 0%).

Clock Variability
To assess which of the proposed measures is a better estimate of
the clock variance, we assessed whether a participant’s standard
deviation or RMSR was a better predictor of the central tendency
observed in a reproduction task. The data of the multi-duration
reproduction task is graphically depicted in Figure 8.

For the analyses of this data, we centered both presented and
reproduced duration by subtracting 1.4 s from the presented
and reproduced durations. For the presented durations, this
ensures that the predictors have mean 0, making it easier to
interpret the effects of additional predictors. Moreover, and
this holds for both presented and reproduced durations, it
allows for easier interpretation of resulting coefficients. As
a baseline model, we fitted a Bayesian linear mixed effect
model, with participant as random factor, predicting centered
estimated duration by centered presented duration. Evidence
in favor of the more complex model that included presented
duration was decisive when compared to a model just including

FIGURE 8 | Reproduced durations as a function of presented duration,
plotted staggered on the horizontal axis, separately for the order conditions
(Pr: Production, Repr: Reproduction). Error bars are standard errors of the
mean with the within-participants Cousineau-Morey correction applied. The
dotted line represents veridical time.

Frontiers in Human Neuroscience | www.frontiersin.org 6 December 2018 | Volume 12 | Article 519

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maaß and van Rijn Efficient Measure of Clock Variability

an intercept (BF = 9.17 × 101244
± 7.99%). Comparing

this model to a model that also included experimental order
provided decisive evidence against the more complex model
(BF = 407.24 ± 14.59%). Based on the rationale that clock
variability should influence the width of the likelihood, and as
such the relative contribution of the prior, the best estimate of
the veridical clock variability should best predict reproduced
duration. Decisive evidence was obtained for the inclusion of
each of the clock variance measures when compared to the
simpler model that did not include any estimate of clock
variance (BF = 4.48 × 1010

± 9.74% for the SD-based
measure, and BF = 2.47 × 1013

± 9.75%, for the RMSR-based
measure), demonstrating that clock variability as estimated
by a 1-s production task does indeed predict the amount of
central tendency in a multi-duration reproduction task. This
is depicted in Figure 9, where participants with higher clock
variance also demonstrate a stronger central tendency effect.
More importantly, a Bayesian model including RMSR is a
decisively better predictor of the estimated durations than a
model including the SD-based measure (BF = 5514.79 ± 7.9),
demonstrating the superiority of the new RMSR measure.

One of the central findings in interval timing is that
temporal precision is relative to the duration of the interval
being estimated, a phenomenon called the scalar property of
variance. As Figure 3 demonstrates, the average produced
durations range from a couple of hundred milliseconds to
approximately 2 s. Scaling the observed variances by the mean
produced duration would result in a less biased estimate of
the internal noisiness of the clock. To test this assumption,

FIGURE 9 | Reproduced durations as a function of presented duration,
plotted staggered on the horizontal axis and plotted based on a median split
on RMSR variance. Error bars are standard errors of the mean with the
within-participants Cousineau-Morey correction applied. The dotted line
represents veridical time.

FIGURE 10 | Scaled deviation (RSMR) as a function of the estimated slope of
the regression towards the mean as observed in the reproduction task, plotted
per participant. The dashed line depicts the regression line.

we fitted another Bayesian model that included the RMSR
variance divided by the mean produced duration. This scaled
model is a decisively better predictor of the estimated
durations than a model including the non-scaled RMSR measure
(BF = 4.15 × 107

± 13.39%).
To assess the influence of the scaled RMSR measure on the

regression towards the mean, we have plotted the estimated slope
of the regression line as shown in, for example, Figure 8, against
the scaled RMSR (see Figure 10). A slope of 1 would indicate
a participant, whose reproductions are not at all influenced by
context, whereas a slope of 0 would indicate a participant who
always reproduces the exact same duration, irrespective of the
duration of the presented interval. Or, in Bayesian inference
terms, a slope of 1 indicates complete reliance on the likelihood,
whereas a slope of 0 indicates complete reliance on the prior.
As expected, increased clock variance is associated with smaller
slopes, and vice versa: results of the Bayesian correlation indicate
extreme evidence (BF = 325.58 ± 0%) in favor of a large or
moderate negative association between the scaled RSMR measure
and the slope, expressing the regression towards the mean
[r = −0.45, MAD = 0.11, 90% CI (−0.63, −0.25)].

DISCUSSION

The goal of this article was to assess whether clock variability
could be reliably measured in a span of a couple of minutes
so that it can be applied in both prototypical experimental
populations (i.e., young adults) and clinical or developmental
studies in which complex or lengthy experiments are often
problematic. We determined clock variability in a simple
production task, and demonstrate that this variability predicts
the central tendency observed in a multi-duration reproduction
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task. Following the rationale of Bayesian inference, this indicates
that the measured variance in the production task is related to
the width of the likelihood distribution in the multi-duration
reproduction task, which has been associated with the noise
in the clock parts of the temporal system (e.g., Shi et al.,
2013). Thus, we can assume that the assessed variance in the
production task, which takes less than 3 min to administer, is
a reliable index of clock variance. Here, we will first discuss
a number of methodological issues related to this paradigm
and experiment, and then discuss a number of more theoretical
considerations.

We asked the participants to produce 1-s durations by
ending a tone 1 s after onset by a keypress. We explicitly
opted for this duration as we assumed that typical participants
will have a reasonably stable and well encoded representation
of a second duration, due to the prevalence of this duration
in everyday life. Because of this well ingrained duration,
participants will hopefully be able to produce this duration
without too much effort, and at the same time, it is unlikely
that 20 repeated productions of this duration, without any
external feedback, would cause noticeable changes in the internal
representation.

Before conducting this experiment, we did not not have
specific information on whether it would be necessary to exclude
a number of initial trials as ‘‘start-up trials,’’ but as the first
two trials were clearly associated with longer and more variable
(between participants) produced durations, we categorized these
first two 1-s productions as start-up trials. However, the
population tested in this experiment are young adults who were
well trained in participating in psychophysiological experiments,
making it likely that more start-up trials might be needed when
this paradigm is administered in other populations. Also, we
considered the possibility that order effects might influence
performance in either the production, or reproduction task.
For example, after performing two blocks of the reproduction
task, which contained durations between 1 s and 2 s, the 1-s
estimates could be affected. However, Figure 3 does not show
any hints of the reproduction task influencing the 1-s production
task (the numerical effects are in opposite direction as what
we be expected), and the Bayesian analyses did not provide
any reliable evidence for a difference between the two order
conditions. This indicates that the 1-s estimations are immune
to perturbations from the multi-duration reproduction task used
in this study.

To quantify the clock variability, we assessed the predictive
power of different measures of variance. As the produced
durations show clear drifts during the 20 trials even though
no feedback was provided, standard measures of variance that
assume a fixed mean would overestimate clock variability. We
therefore fitted a linear model to the produced duration of
each individual, and calculated a deviation measure by taking
the RMSRs of this linear model. Obviously, it is not unlikely
that the drift in produced durations follows a more complex
pattern than is captured by a simple linear regression (see,
for example, the discussions on short range dependencies in
Wagenmakers et al., 2004). However, fitting more complicated
patterns would quickly result in overfitting given the limited

number of trials acquired in this task. We therefore refrained
from estimating more complex patterns. When the different
variability measures were contrasted, the linear-model-based
RMSR measure provided the best prediction of the central
tendency observed in a multi-duration production task. As
variance is known to be linearly related to the length of the
durations produced (scalar property see e.g., Gibbon et al., 1984),
we also tested the predictive power of a model in which we
divided the RMSR by the produced durations. This scaled RMSR
measure outperformed the non-scaled RMSR variance measure,
indicating that the measured variance adhered to the scalar
property. Bayesian models of time estimations (e.g., Jazayeri
and Shadlen, 2010) have demonstrated that the perception of
longer durations are reflected in wider likelihoods than those
associated with shorter intervals. Here, we demonstrate that a
similar effect can be observed between participants: the higher
the variance of participants’ performance during the 20 repeated
1-s productions, the more their reproduced durations will be
affected by the prior.

One potential caveat of this method is that the observed
variance in the 1-s production task may be driven by motor noise,
which would also result in a stronger reliance on the prior in
the reproduction task. This potential convolution of motor and
clock noise is a challenge in studies assessing clock variability
(see, for example, Cicchini et al., 2012; Turgeon et al., 2016, for
discussion). If motor noise would be the driving factor, noise
should be independent of produced durations, as all durations
have the same motor action (i.e., the keypress indicating the end
of the interval). Conversely, if the observed variability is driven by
a noisy clock, the amount of variability should be directly related
to the length of the produced duration. As the variance measure
that accounts for produced length, the scaled RMSR, resulted in
the best fit, we do not find support for the notion that motor noise
is driving the observed phenomena. Yet, a future study could
independently measure a participant’s motor noise to separately
assess its contribution to the central tendency effect.

In this manuscript, we assess whether we can measure clock
variance in a short, 20-trial production task. This observed
statistic predicts central tendency in a multi-duration task,
a phenomenon known to be dependent on clock variability.
Another way to assess the reliability of the measured clock
variability is to compare the scaled RMSR measure with the
Weber fraction, a measure typically used when clock variability
is estimated. However, as Weber fractions are derived from
paradigms that rely on memory representations learned during
the experimental session, the Weber fraction is indicative of
the noisiness of the whole temporal system (but note that
experimental or pharmacological manipulations might allow
separating both influences, e.g., Meck, 1983). Therefore, it would
be useful to determine Weber fractions based on paradigms that
vary in their reliance on memory processes to determine the
consistency of estimated clock variance statistics. At the same
time, additional research is needed to relate the here presented
1-s production method to other established measured of clock
variability.

To conclude, we have shown that just 20 trials of a 1-s
production task result in a reliable measure of clock variance.
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The observed variability adheres to the scalar property and
predicts temporal performance observed in a reproduction
task. As no feedback is required, and memory processes
are unlikely to play an important role in this paradigm,
this clock variance measure can be used to disentangle the
extent to which temporal behavior in a task is driven by
memory processes or clock deviations. With its fast and
easy application, this task is suitable to be implemented
in clinical and various developmental populations, even in
attention-span limited participants. Hopefully, this task can
be a useful addition to the toolkit of researchers interested
in unraveling the locus of deviations found in temporal
performance.
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