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One important distinction in psychology is between inferences based on associative
memory and inferences based on analysis and rules. Much previous empirical work
conceive of associative and analytical processes as two exclusive ways of addressing a
judgment task, where only one process is selected and engaged at a time, in an either-or
fashion. However, related work indicate that the processes are better understood as
being in interplay and simultaneously engaged. Based on computational modeling and
brain imaging of spontaneously adopted judgment strategies together with analyses of
brain activity elicited in tasks where participants were explicitly instructed to perform
similarity-based associative judgments or rule-based judgments (n = 74), we identified
brain regions related to the two types of processes. We observed considerable overlap
in activity patterns. The precuneus was activated for both types of judgments, and its
activity predicted how well a similarity-based model fit the judgments. Activity in the
superior frontal gyrus predicted the fit of a rule-based judgment model. The results
suggest the precuneus as a key node for similarity-based judgments, engaged both
when overt responses are guided by similarity-based and rule-based processes. These
results are interpreted such that similarity-based processes are engaged in parallel
to rule-based-processes, a finding with direct implications for cognitive theories of
judgment.
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INTRODUCTION

How accurately can we expect humans to combine evidence in order to produce a quantitative
estimate of a criterion, as medical doctors, prosecutors, teachers, or brokers are forced to do on a
daily basis? Arguably, the answer to that question boils down to how well we are able to describe
and predict the cognitive processes and knowledge representations that humans draw on to produce
such judgments. Human multiple-cue judgments – the estimate of a continuous criterion based on
multiple different cues – have repeatedly been shown to involve considerations of abstract rules
about how different pieces of evidence relate to the criterion that is to be judged (e.g., Einhorn et al.,
1979; Brehmer, 1994; Juslin et al., 2003; Gigerenzer and Gaissmaier, 2011). Such judgment data is
well predicted by linear regression models or other so called cue-based, heuristic or rule-based
models.
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Human multiple-cue judgments have also been shown to
involve a different type of strategy, namely the use of associations
to memories of previous similar situations and are assumed to
be made based on the similarity between the to-be-judged object
and similar examples stored in memory. Such judgment data is
well predicted by exemplar models (e.g., Medin and Schaffer,
1978; Nosofsky, 1984; Juslin et al., 2003). Categorical judgments
(i.e., where the criterion is binary instead of continuous)
are traditionally described remarkably well by such models
(e.g., Medin and Schaffer, 1978; Nosofsky, 1984; Nosofsky
and Johansen, 2000). During the last decade, the field has
seen an explosion of studies demonstrating the prevalence
of exemplar-based strategies also in multiple-cue judgment
(e.g., Juslin et al., 2003, 2008; Olsson et al., 2006; Karlsson
et al., 2007, 2008; von Helversen and Rieskamp, 2009; von
Helversen et al., 2010, 2013; Mata et al., 2012; Pachur and
Olsson, 2012; Hoffmann et al., 2013, 2014). This is usually
investigated empirically by pitting detailed cognitive models
of the different kinds of processes against each other, using
specific task structures to generate different predictions from
the models, and classifying participants as more reliant on one
or the other type of strategy. These studies have advanced the
theory of human judgment by demonstrating the importance of
considering not only analytical types of strategies in judgment,
but also exemplar-based strategies. However, an assumption
inherent in these studies is the conception of similarity-based
and rule-based processes as two exclusive ways of addressing a
task, where only one type of process is selected and engaged,
in an either-or fashion. Several authors have even argued for
the plausibility of controlled strategy shifts (Haider et al., 2005;
Rehder and Hoffman, 2005; Meeter et al., 2006; Karlsson et al.,
2008).

In contrast, there are empirical observations from the
categorization literature demonstrating effects of irrelevant
similarity features on accuracy and response times, even when
inferences are done following a rule-based strategy (Brooks
and Hannah, 2006; Hahn et al., 2010). Results of that kind
would appear to contradict an either-or view. Indeed, several
computational accounts of category learning instead suggest an
interplay between rule-based and similarity-based processes in
categorization. On this view, rule-based and similarity-based
processes should be seen as parallel, simultaneously competing to
control behavior on a trial-by-trial basis rather than being chosen
and executed in an either-or fashion (e.g., Palmeri, 1997; Ashby
et al., 1998; Erickson and Kruschke, 1998).

Despite an impressive amount of empirical behavioral
evidence for the distinction between rule-based and
similarity-based processes, both in categorization and judgment,
brain-imaging techniques have arguably not been used to
its fullest potential to test the validity of the distinction and
hypotheses regarding the relationship between the two.

Several of the more recent brain-imaging studies investigating
similarity-based processes in categorization have focused on
different aspects of this type of process, with the help of
model-based approaches. For example, it has been demonstrated
that similarity-based processes as captured by an exemplar-based
model (EBM) might underlie both categorization as well as

recognition memory, as parameter changes of the EBM could be
used to explain the relatively few differences in brain activation
between the two types of cognitive tasks (Nosofsky et al., 2012).
In the same vein, Davis et al. (2014) managed to demonstrate
that an estimate of memory strength based on global neural
pattern similarity in medial temporal lobes correlated well with
behavioral measures in both categorization and recognition
memory. Further, it has been shown that participants’ perception
of how typical an exemplar is of its category match very well
with a neural typicality measure in occipital and medial temporal
lobes, derived by an EBM using similarity computation on
patterns of brain activation (Davis and Poldrack, 2014). As a last
example, Mack et al. (2016) found support for the proposal that
representations used for categorization in the hippocampus are
dynamically updated depending on the learning context (e.g.,
when facing a new task goal for which the representations are
supposed to be used).

The question regarding a distinction between rule-based
and similarity-based processes and hypotheses regarding the
relationship between the two, have however not seen the
same attention lately. Hitherto, most brain-imaging studies
investigating the distinction have tended to focus on discussing
the differences in brain activity related to the two types of
processes (see e.g., Patalano et al., 2001; Grossman et al.,
2002; Koenig et al., 2005; von Helversen et al., 2014b). By
doing so, it has been suggested that rule-based processes
should be associated with relatively higher brain activity in
dorsolateral prefrontal cortex, anterior cingulate cortex and/or
posterior parietal cortex compared to similarity-based processes,
while similarity-based processes should be associated with
relatively higher brain activity in anterior prefrontal cortex,
inferior parietal cortex and/or posterior cingulate cortex as
compared to rule-based processes (see e.g., Patalano et al., 2001;
Grossman et al., 2002; Koenig et al., 2005; von Helversen et al.,
2014b).

However, focusing only on the relative differences in brain
activity between two kinds of processes is misleading because
brain activity important for both kinds of processes runs the risk
of being canceled out. This might be especially unfortunate when
investigating whether a distinction between processes is useful in
the first place, and also with regard to how a relationship between
them should be construed.

In the present study, we use functional magnetic resonance
imaging (fMRI) to acquire neurocognitive data informative for
the distinction between rule-based and similarity-based processes
in human judgment and how the relationship between them
should be construed (i.e., according to an either-or view or
an interplay view). Prior to scanning, participants learned to
make multiple-cue judgments either using cue abstraction (a
rule-based process, captured by a cue-abstraction model, CAM)
or exemplar memory (a similarity-based process, captured by
an EBM, see details on the modeling below) as the basis for
judgments. The general task set-up was previously successfully
used in numerous behavioral studies (e.g., Juslin et al., 2003,
2008; von Helversen and Rieskamp, 2009) and one brain
imaging study (von Helversen et al., 2014b) of multiple-cue
judgment, aiming at investigating the reliance on rule-based and
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similarity-based processes. The task was to judge the toxicity (a
pseudo-continuous criterion) of the lethal but fictitious “Death
bug” varying on five binary cues (i.e., legs, eyes, back, head and
mandibles) shown as illustrations on a computer screen (see
Figure 1). The general logic of the task was, as in the previous
studies, that the items included in the training and test phases
were chosen to yield qualitatively distinct judgment predictions
from CAM and EBM. Specifically, the test phase introduced new
items that were not experienced during the training phase. In
order to be judged correctly, these items require both intra- and
extrapolation (i.e., judgments beyond the criterion range seen
in training). EBM predicts that judgments on a new test item
are based on the similarity of that item to similar items that
are experienced during training and stored in memory. Because
CAM, a linear and additive model weighting and adding the
impact of each cue on the criterion, makes no such assumptions,
EBM and CAM predict qualitatively distinct response patterns for
the test phase.

In the present study, we had four different conditions in a
between-subjects design, taking advantage of the logic of the
task set-up just described. As mentioned, prior to scanning,
participants learned to make judgments either using a rule-based
or a similarity-based process. In two separate experiments,
rule-based and similarity-based processes were learnt in one of
two different learning modes: (1) after instruction (“Instructed”
conditions) or (2) by spontaneous choice by the participants
(“Spontaneous” conditions). Strategy adherence was confirmed
with cognitive modeling, and the two different learning modes
were used in order to capture the core aspects of these
processes irrespective of learning mode. After each learning
phase, participants in all four conditions performed a test phase
during fMRI scanning. The test phase was identical in all
conditions and involved judging the toxicity of the Death bugs,
without feedback on the correct answers (Figure 1). A visual
detection judgment task was used as a baseline and involved
detecting whether a dot was apparent on the upper body, lower
body or both upper and lower body of a bug.

To address the issue of whether the relationship between
rule-based and similarity-based processes should be construed
according to an either-or view or an interplay view, we analyzed
the overlap in task-related brain activity, i.e., what brain activity
that is shared between making judgments with rule-based and
similarity-based processes, compared with the baseline task, as
identified statistically in conjunction analyses (Nichols et al.,
2005; for recent similar approaches in relation to perceptual
decision making and category learning see Milton and Pothos,
2011; Mega et al., 2015; Carpenter et al., 2016; Milton et al.,
2017). If no overlap exists, or if the overlap does not play a
functional role for judgment (i.e., overlapping brain activity is not
related to whether judgment data is well described by a rule-based
model or a similarity-based model), this would support the
either-or view. On the other hand, if the two types of processes
share considerable task-related brain activity and at least parts of
this brain activity also play a functional role for judgment (i.e.,
overlapping brain activity is related to model fit), the interplay
view would be supported. Note that evidence in relation to the
interplay view would not be possible to obtain if only focusing on
the relative differences in brain activity related to the two kinds of
processes (e.g., Koenig et al., 2005; von Helversen et al., 2014b).

MATERIALS AND METHODS

We conducted two separate experiments using a between-
subjects design. Participants learned to make judgments either
using a rule-based process or a similarity-based process, using
one of the two learning modes: instructed (experiment 1) or
spontaneous (experiment 2). After learning, in all four conditions,
participants performed a test phase in the fMRI scanner.
Participants were all right-handed by self-report. The study was
carried out in accordance with the recommendations of the
Regional ethical review board in Umeå, Sweden. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The study was approved by the Regional ethical

FIGURE 1 | An illustration of the experimental procedure during the fMRI test phases. (A) A judgment task trial, (B) a visual detection baseline trial. ISI, inter-stimulus
interval; ITI, inter-trial interval. In reality, the scale for the judgment task depicted all whole numbers between 0 and 30.
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review board in Umeå. All data supporting the conclusions of this
manuscript will be made available by the authors upon request,
without undue reservation, to any qualified researcher.

Instructed Strategies
Participants
Forty neurologically healthy participants (Mage = 25.8; range = 19
to 34; SDage = 4.5; 22 females), with normal or corrected-
to-normal vision, were recruited for instruction of rule-based
processing (n = 20) or similarity-based processing (n = 20).
Participants received 500 SEK for participation. We discarded
data from two participants from the analyses due to extensive
head movements.

Judgment Task
The task was to judge the toxicity of the “Death bug”. Participants
were taught how to do this by either relying on rule-based
processing or similarity-based processing.

The Death bugs varied on five binary cues (i.e., legs, eyes,
back, head and mandibles) with cue values “−1” or “1” (e.g.,
the legs can be either short or long). In general, a cue value of
“−1” implies that the presence of this cue value decreases the
criterion, while a cue value of “1” implies that the presence of
this cue value increases the criterion (see Table 1). The criterion
values were a linear function of the cues, where each cue is given a
different weight. The weights are monotonically decreasing such
that some cues more strongly implies a higher or lower criterion
value. Thus, in contrast to most categorization studies, in this
judgment task it is necessary to attend to more than one cue in
order to perform well.

The criterion values (the toxicity, c) in the instructed strategy
conditions were given by a linear, additive function of the five
cues:

c = 15+ 5× C1 + 4× C2 + 3× C3 + 2× C4 + 1× C5. (1)

where the importance of each cue is determined by the
coefficients 5, 4, 3, 2 and 1, respectively. For example, a Death
bug with cue values [−1 −1 −1 −1 −1] will have a toxicity level
of 0, while a Death bug with cue values [1 1 1 1 1] will have a
toxicity level of 30 (see Table 1).

Behavioral Procedure
The procedures for instruction of rule-based processing or
similarity-based processing were identical but differed in terms
of content. The instructions contained four general phases: (1) a
memorization phase, where participants either memorized each
of the 10 cue-criterion relations, written as verbal statements,
or six illustrations of Death bugs together with their toxicity
value (exemplars denoted “M” in Table 1); (2) a recognition
phase, where participants saw the memorized material again and
were asked whether it was from the memorization phase or
not. Participants had to reach a performance criterion before
moving on to the next phase; (3) a judgment training phase where
participants were taught how to use the knowledge they had
just learnt, in order to judge the toxicity of the bugs, and (4) a
repetition phase where participants were shown the memorized
material one last time.

TABLE 1 | Items in the instructed strategies conditions (experiment 1).

Exemplar # Cues Criteria fMRI
role

C1 C2 C3 C4 C5

1 1 1 1 1 1 30 E

2 1 1 1 1 −1 28

3 1 1 1 −1 1 26

4 1 1 1 −1 −1 24 M

5 1 1 −1 1 1 24 N

6 1 1 −1 1 −1 22

7 1 1 −1 −1 1 20 M

8 1 1 −1 −1 −1 18 N

9 1 −1 1 1 1 22

10 1 −1 1 1 −1 20

11 1 −1 1 −1 1 18

12 1 −1 1 −1 −1 16

13 1 −1 −1 1 1 16 M

14 1 −1 −1 1 −1 14

15 1 −1 −1 −1 1 12 N

16 1 −1 −1 −1 −1 10

17 −1 1 1 1 1 20

18 −1 1 1 1 −1 18

19 −1 1 1 −1 1 16 N

20 −1 1 1 −1 −1 14 M

21 −1 1 −1 1 1 14 N

22 −1 1 −1 1 −1 12

23 −1 1 −1 −1 1 10 M

24 −1 1 −1 −1 −1 8 N

25 −1 −1 1 1 1 12

26 −1 −1 1 1 −1 10

27 −1 −1 1 −1 1 8

28 −1 −1 1 −1 −1 6

29 −1 −1 −1 1 1 6 M

30 −1 −1 −1 1 −1 4

31 −1 −1 −1 −1 1 2

32 −1 −1 −1 −1 −1 0 E

The table shows the cues and criterion values of all exemplars and the exemplars
that were used during the fMRI test. N, new exemplars, included only during the
fMRI test for both conditions; M, exemplars included in the memorization phase
of the EBM condition and during the fMRI test for both conditions; E, extreme
exemplars included during the fMRI test for both conditions, but used only for
behavioral measures. Marked in gray are items critical for the reported fMRI contrast
analyses.

Procedure for instruction of the rule-based process
In a memorization phase participants were shown each of the
10 cue-criterion relations, written as verbal statements, on
a computer screen (e.g., “A striped head strongly implies
high toxicity” or “A dotted head strongly implies low
toxicity” or “Green mandibles weakly implies high toxicity”).
Participants were first shown all statements in a summary
table followed by each statement separately on the screen, in
random order, self-paced, for a total of five repetitions per
statement. Participants were instructed to carefully memorize the
importance of each cue value and whether it implied high or low
toxicity. In the recognition phase, participants saw each statement
again, in random order, and were asked whether it was one of the
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statements from the memorization phase or not, with corrective
feedback (right/wrong). This phase contained the 10 original
statements and 10 false statements, where the importance and/or
the direction of each cue (i.e., whether it implied high or low
toxicity) had been altered. The recognition phase continued
until the participant had reached 100% correct on a block of 20
statements. In the judgment training phase, participants were
taught how to use the knowledge of cue-criterion relations
they had just learnt, in order to judge the toxicity of the bugs.
Participants were instructed that upon viewing a bug they were
supposed to consider what they had learnt about all the five
cues, starting with the most important cue, in order to come up
with a numerical estimate between 0 and 30. Participants were
then given a few practice trials (without feedback) for getting
acquainted with making toxicity judgments with the newly learnt
knowledge. For the first trial, they were told the correspondence
between the verbal cue labels and the visual features of the bug.
Participants also received a few practice trials to judge bugs with
only two cues visible (for a separate manipulation, not reported)
and a few practice trials for the cognitive-perceptual baseline
task: to judge whether similarly looking bugs had a gray dot
painted on the bottom, top or both bottom and top of the body.
Finally, in the repetition phase, participants were shown all 10
verbal statements again, in a random order on the screen, for
5 s each, in order to make sure they would remember them
correctly.

Next, participants were invited to the scanner for a test phase
(see below under Imaging procedure).

Procedure for instruction of the similarity-based process
In a memorization phase participants were not shown any verbal
statements but instead six illustrations of Death bugs together
with their toxicity value (exemplars denoted “M” in Table 1),
on a computer screen, in random order, one at a time, for a
total of five repetitions per bug. A time limit of 8 s per bug
was used in order to minimize the possibility for elaborate cue
abstraction processes. Participants were instructed to carefully
memorize the illustration of each bug together with its toxicity.
Moreover, participants were explicitly told that it was important
that they considered the illustration as a whole together with
the toxicity and that they should not try to figure out any rules
how to relate parts of the illustration to the toxicity value. In the
recognition phase, participants first saw each bug again without
its toxicity value, in random order, and were asked whether it
was one of the bugs from the memorization phase or not, with
corrective feedback (right/wrong). This phase contained the six
memorized bugs and six of the other bugs. This part of the
recognition phase continued until the participant had reached
100% correct on a block of 6 × 2 bugs. In a second part of the
recognition phase, participants were shown each of the six bugs
from the memorization phase together with a toxicity value, in
random order, and were asked whether it was the correct toxicity
value or not (feedback: right/wrong). This phase contained the
six memorized bugs with their correct toxicity value and the
same bugs but with an incorrect toxicity value. This part of
the recognition phase also continued until the participant had
reached 100% correct on a block of 6 × 2 bugs. In the judgment

training phase, participants were taught how to use the Death
bugs they had just learnt, in order to judge the toxicity of other
bugs. Participants were instructed that upon viewing a bug they
were supposed to consider whether they had memorized any
bug(s) that were similar to the one they were shown currently and
to consider the toxicity value of that/those bugs, in order to come
up with a toxicity estimate between 0 and 30. Participants were
then given a few practice trials (without feedback) for getting
acquainted with making judgments about the toxicity with the
newly learnt knowledge. On some practice trials, the shown bug
was only similar to one of the memorized bugs (for a separate
manipulation, not reported). Participants were also given a few
practice trials for the cognitive-perceptual baseline task: to judge
whether similarly looking bugs had a gray dot painted on the
bottom, top or both bottom and top of the body. Finally, in the
repetition phase, participants were shown all six memorized bugs
again together with their toxicity value, in a random order on the
screen, for 8 s each, in order to make sure they would remember
them correctly.

Next, participants were invited to the scanner for a test phase
(see below under Imaging procedure).

Spontaneous Strategies
In a between-subject design, the task was to judge the
toxicity of the Death bugs (Table 2). To induce spontaneous
use of rule-based processing or similarity-based processing,
respectively, we used a task manipulation previously shown to
be effective for this goal (see e.g., Karlsson et al., 2007; Juslin
et al., 2008; von Helversen and Rieskamp, 2009; Hoffmann et al.,
2013). It has been demonstrated that if the cue-combination
rule that combines the cue values into a criterion is additive,
participants can abstract the linear relations between each cue
and the criterion, and prefer a rule-based strategy. However, if
instead the cue-combination rule is multiplicative, participants
are unable to abstract the independent contribution of each cue to
the criterion. In such a task, participants have instead been shown
to prefer a similarity-based strategy (see e.g., Karlsson et al., 2007;
Juslin et al., 2008; von Helversen and Rieskamp, 2009; Hoffmann
et al., 2013). Half of the participants in the spontaneous strategy
condition learnt to make judgments with outcome feedback in an
additive task and half in a multiplicative task (Table 2).

The general procedure for the spontaneous strategy conditions
was as follows: in a screening training phase, participants judged
the toxicity of illustrations of Death bugs, and received outcome
feedback after each trial in the form of the correct numerical
answer. The training phase continued until a performance
criterion was met, or after a maximum of 640 trials. After the
training phase followed a screening test phase, where judgments
were made without outcome feedback. Participants best fit by
CAM in the additive task and by EBM in the multiplicative
task, were sent to do a second test phase during fMRI later the
same day.

Participants
The 137 neurologically healthy participants, with normal or
corrected-to-normal vision, were recruited for spontaneous
strategy adoption, whereof the 41 that were best fit by CAM in
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TABLE 2 | Items in the spontaneous strategies conditions (experiment 2).

Exemplar # Cues Criteria Screening
role

fMRI role

C1 C2 C3 C4 C5 Add. Mult.

1 −1 −1 −1 −1 −1 0 2 E E

2 −1 −1 −1 −1 1 2 2 T

3 −1 −1 −1 1 −1 4 2 T

4 −1 −1 −1 1 1 6 3 S

5 −1 −1 1 −1 −1 6 3 T

6 −1 −1 1 −1 1 8 3 N

7 −1 −1 1 1 −1 10 3 N

8 −1 −1 1 1 1 12 4 S

9 −1 1 −1 −1 −1 8 3 S

10 −1 1 −1 −1 1 10 3 S

11 −1 1 −1 1 −1 12 4 N

12 −1 1 −1 1 1 14 5 S

13 −1 1 1 −1 −1 14 5 T

14 −1 1 1 −1 1 16 6 T

15 −1 1 1 1 −1 18 7 N

16 −1 1 1 1 1 20 9 T T

17 1 −1 −1 −1 −1 10 3 T T

18 1 −1 −1 −1 1 12 4 T T

19 1 −1 −1 1 −1 14 5 T

20 1 −1 −1 1 1 16 6 T

21 1 −1 1 −1 −1 16 6 N

22 1 −1 1 −1 1 18 7 N

23 1 −1 1 1 −1 20 9 N

24 1 −1 1 1 1 22 12 T T

25 1 1 −1 −1 −1 18 7 T T

26 1 1 −1 −1 1 20 9 T T

27 1 1 −1 1 −1 22 12 S

28 1 1 −1 1 1 24 15 T

29 1 1 1 −1 −1 24 15 N

30 1 1 1 −1 1 26 21 T T

31 1 1 1 1 −1 28 28 T T

32 1 1 1 1 1 30 39 E E

The table shows the cues and criterion values of all exemplars, and the exemplars that were used during the screening procedure and the fMRI test, respectively. Add.,
Additive criterion; Mult., Multiplicative criterion; T, exemplars included during the training phase and during the screening test and/or fMRI test, for both conditions; S, new
exemplars included only during the screening test for both conditions; N, new exemplars included only during the fMRI test for both conditions; E, extreme exemplars
included during the screening test and the fMRI test for both conditions, but used only for behavioral measures. Marked in gray are items critical for the reported fMRI
contrast analyses.

the additive task and EBM in the multiplicative task were sent
to the fMRI session (CAM adoption, n = 20; EBM adoption,
n = 21; Mage = 23.3; range = 19 to 37; SDage = 3.5; 16 females).
See below under Cognitive modeling for details regarding the
modeling. Participants received 700 SEK for participation. We
discarded data from five participants from the analyses: one
because of extensive head movements, two because they were
ruled out during the screening procedure but mistakenly sent
to the scanner, one misinterpreted the instructions during fMRI
testing and one because the cognitive modeling of the fMRI test
data suggested he or she was not using either CAM or EBM.

Judgment Task
As for the instructed conditions, the Death bugs varied on the
same five binary cues (i.e., legs, eyes, back, head and mandibles)

with cue values “−1” or “1”. The criterion values (the toxicity,
c) in the spontaneous strategy conditions were given by either a
linear, additive function or a multiplicative function of the five
cues (see also Juslin et al., 2008). In the additive condition, the
toxicity, c, is:

c = 15+ 5× C1 + 4× C2 + 3× C3 + 2× C4 + 1× C5. (2)

In the multiplicative condition, the toxicity, c, is:

c = 2+ 3× e(5×C1+4×C2+3×C3+2×C4+1×C5)/6. (3)

The training range was held constant between the additive and
multiplicative conditions, such that the bug with the lowest and
highest criterion values encountered during the training phase
had the same value for both conditions (see Table 2).
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Behavioral Procedure
Participants were randomly assigned to the additive or the
multiplicative task condition. First, participants read a cover story
about the species of the Death bugs and were informed that
Death bugs have varying toxicity. Next, during the screening
training phase, illustrations of the Death bugs were presented
one at a time on a computer screen, and participants made
their judgments by typing the toxicity of each Death bug as a
numerical estimate between 0 and 100 (%) on the keyboard,
immediately followed by the correct numerical feedback. The
training phase consisted of 16 different exemplars (exemplars
denoted “T” in Table 2) per block. The training phase continued
until a learning criterion was met (<2 RMSE between criterion
and judgment on one block) or after a maximum of 40 blocks
(640 trials). After the training phase followed a screening test
phase. Participants judged 24 exemplars twice without outcome
feedback. The screening test phase consisted of the 16 training
exemplars, six new exemplars (exemplars denoted “S” in Table 2)
and the two extreme exemplars (denoted “E” in Table 2). The
screening test phase was used to analyze which participants were
best fit by CAM or EBM. Participants best fit by CAM in the
additive condition and by EBM in the multiplicative condition
were invited to an fMRI test phase later the same day (see below
under Imaging procedure).

Imaging Procedure, Image Acquisition,
and Data Analyses
Imaging Procedure
E-prime 2.0 (Psychology Software Tools, Inc., United States)
was used to control presentation and logging of responses,
and Lumitouch fMRI optical response keypads (Photon Control
Inc., Canada) were used to collect responses. During fMRI,
participants in both the instructed and spontaneous strategy
conditions judged Death bugs and visual detection baseline bugs
without outcome feedback (see Figure 2 and Table 1, 2). Each
Death bug was judged three times, in random order, for a total of
three functional runs. Each baseline bug was however unique, so
the baseline bugs were not repeated across the test. After a task
probe (1.5 s.), participants had a maximum of 20 s. (self-paced)
to indicate with their right ring finger on a four-button keypad
when they had formed a judgment. This was followed by a jittered
crosshair (2–10 s.) and a numerical response scale (self-paced,
max. 10 s.), which participants could step through to give their
response (step to the left on the scale: right index finger, step to
the right: the right middle finger, confirm: right ring finger). After
a last jittered cross-hair (2–6 s.) the next trial began.

Image Acquisition and Preprocessing
All images were acquired using a 3.0 T whole-body MRI system
(MR 750, GE, Medical Systems) equipped with a 32 channels
head coil. T2∗-weighted images were obtained with a single-shot
GE-EPI sequence used for BOLD imaging. The sequence had
the following parameters: echo time (TE) 30 ms; repetition
time (TR) 2000 ms; flip angle 80◦; field of view (FOV) 25 cm;
matrix = 96× 96; 3.4 mm slice thickness (37 slices acquired). The
10 dummy scans were collected prior to data collection to allow

for equilibration of the fMRI signal. High-resolution T1-weighted
structural images were also obtained for each participant. Stimuli
were presented on a computer screen seen by the participant
through a mirror attached to the head coil. To reduce perception
of the scanner noise, headphones and earplugs were used, and
cushions in the coil reduced head movement.

Functional data were preprocessed and analyzed in SPM8
(The Wellcome Department of Cognitive Neurology, London,
United Kingdom), with a batch function in an in-house program
(DataZ). All images were corrected for slice timing, realigned
with unwarp to correct for head movements, spatially normalized
to MNI-space and smoothed (8 mm FWHM Gaussian filter
kernel). Statistical analyses were calculated on the smoothed data
with a high-pass filter (128 s cutoff period) in order to remove
low-frequency noise.

fMRI Data Analyses
As judgments on new test items are most diagnostic concerning
the cognitive processes in question, and, importantly, as the
new test items shared the same history for all conditions (i.e.,
they had never been encountered before during instructions or
training) the analyses of fMRI data concentrated on the contrasts
between judgments on new test items (denoted with “N” in
Tables 1, 2) and judgments of baseline bugs. Thus, as effects of
interest were the task events of new death bugs and baseline bugs,
respectively. For the instructed strategy conditions, three effects
of no interest were modeled: task events with bugs with only two
cues visible/bugs with only one similar exemplar (for a separate
manipulation not reported here), task events with memorized
exemplars (denoted with “M” in Table 1) and the rating scale
events. For the spontaneous strategy conditions, two effects of
no interest were modeled: task events with training exemplars
(denoted with “T” in Table 2) and the rating scale events. The six
movement parameters were included as covariates of no interest.

All regressors except the head movement parameters were
convolved with a hemodynamic response function. In the first
level analysis, model estimations were made for each participant
and contrast images (“N” items vs. baseline items) were generated
for input to the second-level analyses. Second-level analyses
consisted of three main types: (i) two-sample t-tests to investigate
activation differences between the conditions, (ii) conjunction
analyses to investigate whether the conditions shared brain
activity (testing the “conjunction null” hypothesis; Nichols et al.,
2005), and (iii) correlational analyses (Pearson’s r) with model
fit (RMSD for CAM and EBM) to investigate the potential
functional roles played by such shared brain activity.

Three conjunction analyses were made: one across all four
rule-based and similarity-based conditions, one across the two
rule-based conditions and one across the two similarity-based
conditions.

A set of correlational analyses were carried out between model
fit and brain activity across the whole sample (n = 74). For these
analyses, brain activity was averaged across voxels within a sphere
with a radius of 5 mm around peak voxels from the conjunction
analyses. First, correlation analyses were made between model
fit (RMSD for the CAM and EBM model, respectively) and
activity in brain regions identified with the conjunction analysis
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with all four rule-based and similarity-based conditions. Second,
correlation analyses were made between model fit and activity in
brain regions identified with the conjunction analysis with the
two rule-based conditions. Third, correlation analyses were made
between model fit and activity in brain regions identified with the
conjunction analysis with the two similarity-based conditions.
We test whether the difference between correlations is significant
by an asymptotic z-test (Lee and Preacher, 2013).

The statistical threshold for contrasts and conjunction
analyses was set to p < 0.05 (FDR-corrected at the voxel level),
for the correlation analyses it was set to p ≤ 0.05 (Bonferroni
correction will be used) and for the asymptotic z-test it was set
to p ≤ 0.05.

Technically, the conjunction analyses were conducted as
follows: for each of the individual group tests considered in the
conjunction analyses, an uncorrected p-value was calculated for
each voxel. A conjunction was made by taking the maximum of
these p-values for each voxel, using a function in the in-house
program (DataZ). The same method as implemented in SPM was
then used to calculate FDR-corrected p-values.

One set of control analyses was carried out. Following the
correlation analyses, two whole-brain correlation analyses were
made, in order to investigate the specificity of any of the
functional relations identified in the first correlation analyses. To
accommodate this, we set up two general linear models using
task vs. baseline with model fit of EBM and model fit of CAM,
respectively, as covariates of interest (p < 0.05 FDR-corrected).

Cognitive Modeling
We used mathematical models to infer which strategy a
participant was relying on.

Cue abstraction model
The cue abstraction model (CAM) assumes an abstracted
knowledge of the cue-criterion relations which connect a specific
cue to a criterion (Juslin et al., 2003). The final estimate ĉCAM is a
linear additive function of the cues Ci,

ĉCAM = k+
5∑

i= 1

ωi · Ci (4)

where the intercept (k) and the cue-weights (wi) are free
parameters (see also Juslin et al., 2008).

Exemplar-based model
The EBM assumes judgments are based on the memory of
previously encountered exemplars (Juslin et al., 2003). The final
estimate ĉEBM is continuous and is given by

ĉEBM =

∑
N Sn · cn∑

N Sn
, (5)

where N refers to the number of exemplars, Sn refers to the
probe-exemplar similarity and cn to the criterion of exemplar
n. The similarity rule of the original context model (Medin and
Schaffer, 1978) was applied to compute the similarity between the
probe and exemplar xn,

S(n) = 5I
i di (6)

where di is an index that takes value 1 if the cue values on
cue dimension i (i = 1,..., I) coincide and si if they deviate. si
are five free parameters in the interval [0, 1] (see also Juslin
et al., 2008). When using EBM to predict judgments in the
instructed rule-based condition, for simplicity, an identical pool
of six previously encountered exemplars was assumed as for the
instructed similarity-based condition.

The models were fitted to each participant’s individual
judgment data from the fMRI judgment test phases with a
leave-one-out cross validation procedure (Stone, 1974). The
free parameters of the models were estimated by fitting
the models to all but one of the test items to predict
the response of the remaining test item with the estimated
parameters. This procedure was repeated for all test items.
Root mean squared deviation (RMSD) between the models
predictions and the participants judgments were used as a
goodness-of-fit criterion. The parameters were estimated using
unconstrained non-linear optimization with a simplex algorithm
as implemented in MATLAB (MathWorks Inc., Natick, MA,
United States).

For cognitive modeling of the screening test-phase judgments
in the spontaneous conditions, the models were fitted to each
participant’s individual data with a procedure of projective
fit (Juslin et al., 2003). Parameters for each of the models
were estimated from the last part of the training phase
(i.e., the last three blocks) and the best fitting parameters
were used to predict the screening test phase data. RMSD
between the models predictions, and participants judgments
were used as a goodness-of-fit criterion. The parameter values
for EBM were estimated with a non-linear least squares fit
as implemented in MATLAB (MathWorks Inc., Natick, MA,
United States). The parameter values for CAM were estimated
analytically with multiple linear regression (as implemented in
MATLAB).

RESULTS

Performance
Performance was measured as the root mean squared error
(RMSE) between participants’ judgment data and criteria. All
participants included in the analyses (n = 74) reached the learning
criteria by passing the instruction procedure in the instructed
strategy conditions or, in the spontaneous strategy conditions, by
having a RMSE < 2 on one block of training items before reaching
40 blocks.

Performance (RMSE) on the test phase items critical for
the fMRI contrast analyses (i.e., new items introduced at test,
denoted “N” in Tables 1, 2) is presented in Table 3. Two
one-way ANOVAs with strategy condition (rule-based vs.
similarity-based) as between-subjects factor and performance
(RMSE) as dependent variable revealed an effect of strategy
condition for both learning modes: instructed strategies
(F(1,36) = 4.87; MSE = 12.2; p = 0.034) and spontaneous strategies
(F(1,34) = 11.3; MSE = 29.5; p = 0.002). Participants on average
performed better on these test phase items in the rule-based
conditions compared to the similarity-based conditions.
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TABLE 3 | Mean performance (RMSE) on test items critical for the fMRI contrast
analyses (i.e., new items introduced at test, denoted “N” in Tables 1, 2) separately
for the four conditions.

Strategy condition

Learning mode Rule Similarity

Instructed 4.26 (1.89) 5.39 (1.20)

Spontaneous 2.62 (0.96) 4.45 (1.99)

Numbers within parentheses are standard deviations.

Importantly, the test phase was designed to produce
qualitatively distinct response patterns with rule-based and
similarity-based processes, predicted by the CAM model and
the EBM model, respectively. Therefore, the key analysis of our
behavioral data is to use cognitive modeling to infer which model
fit participants’ data best.

Cognitive Modeling Evidence for
Similarity-Based and Rule-Based
Judgment Processes
The model fits (as estimated with cross-validation and measured
with RMSD, between predictions and test phase judgment data)
demonstrated that participants in the similarity-based conditions
were better fit by the EBM model than by the CAM model, while
in the rule-based conditions, participants were better fit by the
CAM model, or equally well fit by both models (Figure 2, see
Supplementary Table S1 for mean best fitting parameter values).
Repeated measurements ANOVAs with model fit (CAM vs. EBM)
as within-subjects factor and condition (inducing rule-based or

FIGURE 2 | Model fit (RMSD; lower values indicate better model fit) on test
phase judgment data (Total n = 74). Left panel: instructed strategies
conditions (n = 38); middle and right panel: spontaneous strategies
conditions (n = 36). Blue bars: fit of the CAM model. Orange bars: fit of the
EBM model. Rule, instructed to use rule-based strategy. Similarity, instructed
to use similarity-based strategy. ADD, additive learning environment inducing
rule-based processing (see section “Materials and Methods”). MULT,
multiplicative learning environment inducing similarity-based processing (see
section “Materials and Methods”). Error bars denote ±1 SEM.

similarity-based processing) as between-subjects factor revealed
a significant interaction between model and condition for both
learning modes: instructed strategies (F(1,36) = 48.8; MSE = 13.2;
p < 0.001) and spontaneous strategies (in the screening test phase
before the fMRI session: F(1,34) = 84.6; MSE = 15.9; p < 0.001;
in the fMRI judgment test phase: F(1,34) = 53.3; MSE = 30.7;
p < 0.001).

Direct Contrasts Between Rule-Based
and Similarity-Based Judgments
For the fMRI data, for being able to explicitly relate the brain
imaging results to the related literature on the topic focusing on
activation differences between the two kinds of processes, we first
report activation differences (see Table 4 for a list of significant
clusters).

One previous study has investigated the neural correlates
of rule-based and similarity-based multiple-cue judgments by
contrasting brain activity during an instructed similarity-based
process with an instructed simple heuristic rule-based process
(von Helversen et al., 2014b). Even though the heuristic
process instructed in that study can be assumed to be less
cognitively demanding than the rule-based processes under
study here, it might still be worth-while to relate the two
studies. In line with von Helversen et al. (2014b), for instructed
similarity-based processing compared to instructed rule-based
processing we observed higher brain activity in left anterior
prefrontal cortex (BA 10/46) and left inferior parietal cortex
(angular gyrus). In addition, we observed higher brain activity
in precuneus, cuneus and anterior cingulate cortex for instructed
similarity-based processing compared to instructed rule-based
processing. For instructed rule-based processing compared to
instructed similarity-based processing von Helversen et al.
(2014b) identified a set of clusters, including regions in bilateral
superior frontal cortex (BA6/4) and left supramarginal gyrus.
We observed no significant differences comparing instructed
rule-based processing with instructed similarity-based processing
under the chosen statistical threshold. It should be noted
though, that under a less conservative threshold (p < 0.001,
uncorrected) we were also able to identify superior frontal cortex
(BA6) and left supramarginal gyrus in very close proximity to
the peaks reported by von Helversen et al. (2014b): bilateral
precentral sulcus (MNI x, y, z coordinates: 28, −14, 64; t = 4.42;
p < 0.001; −28, −16, 56; t = 4.19, p < 0.001), superior frontal
gyrus (BA6: MNI x, y, z coordinates: 12, −10, 64; t = 4.16;
p < 0.001) and left supramarginal gyrus (BA40: MNI x, y, z
coordinates: −60, −46, 34; t = 3.90; p < 0.001). Taken together,
the results comparing instructed versions of the strategies also
bear many similarities with corresponding studies from the
categorization literature (e.g., Patalano et al., 2001; Koenig et al.,
2005).

Next, we compared brain activity for the spontaneous
versions of the strategies. For spontaneous rule-based
processing compared to spontaneous similarity-based
processing, brain activity was higher in a large number of
clusters including precentral sulcus and superior frontal gyrus
(BA6), supramarginal gyrus, bilateral superior parietal cortex,
as well as left and right middle frontal gyrus, superior temporal
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TABLE 4 | Two-sample t-tests on fMRI-data.

t-tests Cluster # Region BA x y z t-value Voxels (k)

Instructed EBM vs.

Instructed CAM

1 Precuneus 23/31/18 −6 −60 26 5.31 304

2 Superior frontal gyrus/sulcus 10/46 −22 56 20 5.26 271

3 Medial superior frontal gyrus 8 −2 32 56 4.82 228

4 Angular gyrus 19/39 −42 −78 40 4.22 27

5 White matter −12 58 0 4.10 17

6 Cuneus 19 2 −84 32 4.06 8

7 Anterior cingulate cortex 32 −8 38 26 3.85 2

Spontaneous CAM vs.

Spontaneous EBM

1 White matter 28 −58 24 5.06 5799

Central sulcus 4/1 62 −4 22 3.95

Middle frontal gyrus 46 42 46 14 3.40

2 White matter −32 −18 30 5.02 14481

Superior parietal 7 −26 −52 58 4.88

Precentral sulcus 6 −36 −6 64 4.61

Superior parietal 7 24 −60 58 4.33

Middle frontal gyrus 8 −32 36 40 4.14

3 Superior temporal sulcus 21 −56 −28 −4 4.19 224

4 Putamen 20 0 −12 4.02 348

5 Hippocampus −32 −26 −10 3.96 244

6 Cerebellum −12 −46 −16 3.89 1241

7 White matter −4 2 8 3.66 164

8 Cerebellum 38 −52 −40 3.62 135

9 Medial superior frontal gyrus 6 −2 −6 72 3.61 164

10 Hippocampus 36 −30 −6 3.43 65

11 Precentral sulcus 6 26 −8 74 3.39 45

12 White matter −50 2 −14 3.25 58

13 Cerebellum −42 −66 −34 3.21 99

14 Superior temporal sulcus 21 52 −4 −10 3.21 30

15 White matter −28 −58 −42 3.05 56

16 White matter −26 −44 −38 2.93 15

17 Cerebellum −18 −88 −26 2.91 7

18 White matter −16 54 18 2.89 43

19 Insula −34 4 −4 2.87 29

20 Brain stem −8 −32 −4 2.84 14

21 Cerebellum −2 −78 −38 2.84 27

22 Insula 40 0 −8 2.79 47

23 Parahippocampal gyrus 35 14 −38 −8 2.77 5

24 Cingulate sulcus 32 0 6 44 2.74 21

25 Brain stem −4 −22 −2 2.71 2

26 Middle temporal gyrus 22 66 −38 10 2.70 4

27 Supramarginal gyrus 40 64 −30 32 2.70 10

28 Superior temporal sulcus 21 54 6 −14 2.65 4

29 White matter 44 −34 40 2.64 13

30 Inferior temporal gyrus 37 52 −58 −20 2.58 1

31 White matter 32 −46 −12 2.58 1

32 Brain stem 6 −22 −4 2.58 1

Up to 5 local maxima are reported for each cluster. BA, Brodmann area. Coordinates (x, y, z) in MNI space (SPM8). t-values at the peak voxel. Voxel: p < 0.05
(FDR-corrected). Cluster: k > 0.
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sulcus, putamen, hippocampus and cerebellum (Table 4).
However, spontaneous similarity-based processing compared to
spontaneous rule-based processing revealed no clusters active
above the statistical threshold. This was the case even under a
less conservative threshold (p < 0.001, uncorrected), implying
that the two processes might share important components.

Analyses of Overlap in Brain Activity
Implicate the Precuneus in All Judgment
Conditions
To address the issue of whether the relationship between
rule-based and similarity-based processes should be construed
according to an either-or view or an interplay view, we analyzed
the overlap in task-related brain activity. A conjunction analysis
between all four rule-based and similarity-based conditions
revealed that the conditions shared considerable regional activity
in a set of areas, namely: precuneus, bilateral inferior parietal
cortex (angular gyrus) and cerebellum, suggesting that rule-based
and similarity-based processes share important processing
components (Figure 3A and Table 5).

Two additional conjunction analyses were made. First,
a conjunction analysis with the two rule-based conditions
(instructed and spontaneous) revealed an almost identical pattern
as when all four conditions were included, and in addition
revealed shared brain activity in dorsolateral prefrontal cortex
(precentral sulcus, BA44), inferior occipital gyrus, middle frontal
gyrus, superior frontal gyrus (BA6) and intraparietal sulcus
(Figure 3B and Table 5). Second, a conjunction analysis with
the two similarity-based conditions (instructed and spontaneous)

FIGURE 3 | (A) Left panel: conjunction analysis: all four conditions vs.
baseline (slice at MNI coordinate y = –60). Right panel: Correlation analysis:
Brain activity difference between task and baseline in precuneus (Table 5)
significantly correlated with model fit of the exemplar-based model (RMSD:
r = –0.42; p < 0.001; n = 74). (B) Left panel: Conjunction analysis: instructed
and spontaneous rule-based conditions vs. baseline (slice at MNI coordinate
x = –2). Correlation analysis: Brain activity difference between task and
baseline in superior frontal gyrus (BA6, Table 5) significantly correlated with
model fit of the cue-abstraction model (RMSD: r = –0.36; p = 0.002; n = 74).

also revealed an almost identical pattern as when all four
conditions were included (Table 5), along with shared brain
activity in several frontal clusters, such as inferior frontal sulcus,
middle frontal gyrus, and superior frontal gyrus, as well as in
lingual gyrus.

Precuneus Activity Was Functionally
Related to Similarity-Based Judgments
Does any of the brain regions identified in the conjunction
analysis between all four conditions play a functional role for
judgment, in the sense of being related to model fit? We
related brain activity in the identified regions in the conjunction
analysis between all four conditions (four significant clusters:
Figure 3A and Table 5) with model fit (RMSD for CAM and
EBM, respectively). Because two hypotheses were tested per
cluster (i.e., the relation to CAM and EBM) the Bonferroni-
corrected significance threshold for each correlation analysis was
p < 0.006. We observed a significant correlation between model
fit of EBM and brain activity differences in the strongest cluster
in the conjunction – the precuneus – such that the better EBM
predicted participants data (i.e., the smaller the RMSD), the
higher was the activity difference between the judgment task
and the baseline task in the precuneus (r = −0.42; p < 0.001;
n = 74: Figure 3A). The correlation with the fit of CAM in this
region was low and non-significant (r = −0.12; p = 0.31; n = 74).
The difference between these two correlations was significant
(r = −0.42 vs. r = −0.12; z = −2.4; p = 0.008). We observed
no correlations above statistical threshold between model fits
of CAM or EBM and activity differences in any of the other
three clusters that were observed in the conjunction analysis
between all four conditions (i.e., bilateral inferior parietal cortices
or cerebellum; Table 5).

To assess the robustness of the observed correlation between
shared activity in precuneus and model fit of EBM we conducted
two additional sets of analyses. First, we correlated model fit
of EBM and CAM, respectively, with activity difference in each
of the remaining six local maxima in the precuneus cluster
(yielding a Bonferroni-corrected threshold of p < 0.004). Four
of these six correlations were significant (r = −0.38, p = 0.001;
r = −0.43, p < 0.001; r = −0.40, p < 0.001; r = −0.38, p < 0.001;
n = 74). The correlations with the fit of CAM in these four
local maxima were low and non-significant (r = −0.07; p = 0.57;
r = −0.13; p = 0.27; r = −0.01; p = 0.41; r = −0.28; p = 0.02;
n = 74).

Second, we examined to what extent the observed correlation
between shared activity in precuneus and model fit of EBM
holds for each of the four separate conditions, in order to
control that the overall correlation was not driven exclusively
by the conditions using a similarity-based process. Due to
the small sample size in each condition (16 ≤ n ≤ 19), the
correlations between activity difference in precuneus and model
fit of EBM were small and non-significant. Importantly, there
was a similar trend in all four conditions, with a negative
correlation between model fit of EBM and activation difference
in precuneus (Instructed rule-based: r = −0.21, p = 0.38,
n = 19; Instructed similarity-based: r = −0.23, p = 0.36, n = 19;
Spontaneous rule-based: r =−0.15, p = 0.58, n = 16; Spontaneous
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TABLE 5 | Conjunction analyses on fMRI data.

Conjunction Cluster # Region BA x y z p-value Voxels (k)

All four conditions

1 Precuneus 23/31/18 −10 −60 16 0.013 1182

2 Angular gyrus 39 −32 −72 42 0.013 136

3 Angular gyrus 39 38 −64 40 0.024 15

4 Cerebellum 36 −66 −42 0.038 4

Instructed and

spontaneous EBM

1 Precuneus 23 −6 −66 24 0.00016 6147

Retrosplenium 26 6 −40 24 0.00049

Calcarine 31 2 −56 16 0.0005

2 Angular gyrus 39 −34 −74 44 0.00016 706

3 Angular gyrus 7 38 −68 44 0.0027 191

4 Inferior frontal sulcus 46 −42 44 6 0.0031 205

5 Cerebellum 40 −64 −42 0.0056 70

6 Middle frontal gyrus 9 48 32 24 0.008 42

7 White matter −56 −50 −16 0.013 16

8 Cerebellum 12 −50 −20 0.016 49

9 Medial superior frontal gyrus 6 −8 10 52 0.022 21

10 Superior frontal gyrus 10 −22 62 8 0.025 15

11 Inferior frontal sulcus 46 −42 24 26 0.031 55

12 middle frontal gyrus 6 −30 4 62 0.041 4

13 Lingual gyrus 18 −8 −80 0 0.042 11

14 Medial superior frontal gyrus 6 −4 26 40 0.043 2

15 Central sulcus 3 −32 −28 62 0.046 1

Instructed and

spontaneous CAM

1 Precuneus 23/31/18 −12 −60 18 0.01 1363

2 Angular gyrus 39 −32 −76 46 0.01 164

3 Precentral sulcus 44 −48 12 36 0.015 68

4 Cerebellum 32 −62 −44 0.015 70

5 Angular gyrus 39 38 −64 38 0.019 39

6 Inferior occipital gyrus 17 −6 −102 −2 0.024 17

7 Middle frontal gyrus 9 48 30 32 0.039 6

8 Medial superior frontal gyrus 6 −2 −2 74 0.042 2

9 Intraparietal sulcus 7 −34 −54 36 0.05 1

Up to 5 local maxima are reported for each cluster. BA, Brodmann area. Coordinates (x, y, z) in MNI space (SPM8). p-values at the peak voxel. Voxel: p < 0.05
(FDR-corrected). Cluster: k > 0.

similarity-based: r = −0.21, p = 0.39, n = 20). There were
no significant differences between these four correlations: all
p’s > 0.82 (Preacher, 2002). We interpret these results as that the
overall correlation is not driven exclusively by the two groups
using a similarity-based process (or the two groups using a
rule-based process).

Superior Frontal Gyrus (BA6) Activity
Was Functionally Related to Rule-Based
Judgments
The conjunction analysis between the two rule-based conditions
identified an almost identical pattern as when all four conditions
were included and, in addition, shared brain activity in
dorsolateral prefrontal cortex (precentral sulcus, BA44), inferior
occipital gyrus, middle frontal gyrus, superior frontal gyrus (BA6)

and intraparietal sulcus (see Table 5). Because two hypotheses
were tested per each of these additional five clusters the
Bonferroni-corrected significance threshold for each correlation
analysis was p < 0.005. We observed a significant correlation
between brain activation difference in superior frontal gyrus
(BA6) and model fit of CAM (r = −0.36; p = 0.002; n = 74:
Figure 3B). Also, we observed a significant correlation between
brain activation difference in precentral sulcus (BA44) and
model fit of CAM (r = −0.33; p = 0.004; n = 74). The
correlations between the model fit of EBM and activity in these
regions were low and non-significant (superior frontal gyrus
(BA6): r = 0.09; p = 0.43; n = 74, precentral sulcus (BA44):
r = −0.19; p = 0.10; n = 74). However, while the difference
between the two correlations was significant for superior frontal
gyrus (BA6: r = −0.36 vs. r = 0.09; z = −3.5; p < 0.001) it
was not significant for precentral sulcus (BA44: r = −0.33 vs.
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r = −0.19; z = −1.11; p = 0.13), questioning the specificity
of the precentral sulcus activation difference in relation to
CAM.

We observed no correlations above statistical threshold
between model fits of CAM or EBM and activity differences in
any of the other identified additional clusters.

The conjunction analysis between the two similarity-based
conditions identified an almost identical pattern as when all
four conditions were included and, in addition, shared brain
activity in several frontal clusters, such as inferior frontal sulcus,
middle frontal gyrus, and superior frontal gyrus, as well as in
lingual gyrus (Table 5). Because two hypotheses were tested per
each of these additional nine clusters (the white matter cluster
not included) the Bonferroni-corrected significance threshold
for each correlation analysis was p < 0.003. We observed no
correlations above statistical threshold between model fits of EBM
or CAM and activity differences in any of these additional nine
clusters.

Whole-Brain Correlation Analyses
Confirmed Specificity of Precuneus and
Superior Frontal Gyrus
For completeness, whole-brain correlation analyses were
performed in order to investigate to what extent the correlations
between activity differences in precuneus and model fit of EBM,
and activity differences in superior frontal gyrus (BA6) and
precentral sulcus (BA44) and model fit of CAM, respectively,
could be replicated when applying an exploratory perspective
(see Supplementary Tables S2, S3).

The results revealed that precuneus was included in the
strongest cluster correlating with model fit of EBM, thus
replicating the negative correlations between activity differences
in precuneus and model fit of EBM. At the same time, superior
frontal gyrus in the vicinity of the cluster identified above as
correlating with model fit of CAM was not identified in this
analysis (under the chosen statistical threshold, Supplementary
Table S2). However, precentral sulcus (BA44) overlapped with
clusters identified in this analysis (Supplementary Table S2),
again questioning its specificity for CAM. The correlation
with the model fit of CAM in the precuneus local maximum
was low and non-significant (r = −0.06; p = 0.62; n = 74).
Interestingly, among the strongest local maxima correlating
with model fit of EBM were also peaks in anterior medial
prefrontal cortex and bilateral hippocampus (Supplementary
Table S2).

In terms of whole-brain correlation analysis with model fit
of CAM, the negative correlations between activity differences
in superior frontal gyrus (BA6) and precentral sulcus (BA44)
and model fit of CAM was replicated, whereas precuneus in
the vicinity of the cluster identified above as correlating with
model fit of EBM was not identified in this analysis (under
the chosen statistical threshold, Supplementary Table S3). The
correlation with the model fit of EBM in the superior frontal
gyrus local maxima of interest (x, y, z = 2, −2, 72) was low
and non-significant (r = 0.09; p = 0.47; n = 74). Among the
strongest local maxima correlating with model fit of CAM were

also peaks in parieto-occipital cortex, temporo-parietal cortex,
precentral sulcus and middle frontal cortex (Supplementary
Table S3).

DISCUSSION

The current study contributes with novel neuroimaging findings
related to the distinction between inferences based on analytical
processes and inferences based on associative memory (e.g.,
Patalano et al., 2001; Grossman et al., 2002; Koenig et al., 2005;
von Helversen et al., 2014b). We demonstrate that (i) when
contrasting brain activity during rule-based and similarity-based
judgment processes there are observable activation differences in
brain regions corroborating previous related literature (Patalano
et al., 2001; Koenig et al., 2005; von Helversen et al., 2014b),
(ii) both kinds of processes share extensive task-related brain
activity, most notably in parietal cortex: specifically in the
precuneus, and in bilateral inferior parietal cortices (angular
gyrus), (iii) task-related brain activity in the precuneus correlates
with how well a similarity-based model fit judgment data, while
(iv) task-related brain activity in superior frontal gyrus (BA6)
correlates with how well a rule-based model fit judgment data.
These results imply key roles for superior frontal gyrus (BA6)
and the precuneus in human judgment, and have implications
for how a relationship between the two kinds of processes can be
understood. The findings are based on a large sample across four
conditions. In particular, the evidence for a role of precuneus in
human judgment is considerable, as this region was associated
with the strongest effect (in terms of peak activity as well as
extent) in all four conditions.

Parietal cortices has been found to be pivotal for judgment,
decision making, reasoning and categorization (see e.g., Patalano
et al., 2001; Greene et al., 2004; Koenig et al., 2005; Gold and
Shadlen, 2007; Heekeren et al., 2008; Freedman and Assad,
2011; Prado et al., 2011; Mack et al., 2013; von Helversen
et al., 2014b; Seger et al., 2015). To highlight a few examples,
Mack et al. (2013) were able to demonstrate the importance
of posterior parietal cortices for exemplar-based processes in
categorization, when finding support for an EBM in the patterns
of brain activation in this region. Seger et al. (2015) established
that parietal cortices are important when generalizing category
membership for untrained visual stimuli, based on trained
stimuli. Brain activation differences in the more medial part of
parietal cortex known as precuneus have also been observed in
relation to several different aspects of higher cognition including
memory-related processing such as retrieval from episodic
memory (for an overview, see e.g., Cavanna and Trimble, 2006)
including recognition memory (Reber et al., 2002; Dorfel et al.,
2009). Precuneus activity is also observed when judgments are
based on a recognition heuristic (Volz et al., 2006) as well
as when stimuli are freely categorized in accordance with a
similarity-based rule (Milton et al., 2009). To our knowledge,
this study is the first to explicitly stress such direct links between
similarity-based processing captured by an EBM and precuneus
activity. One reason this has not been stressed to a similar extent
in previous studies might be the tendency to focus mainly on the
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brain activity that differ between the two types of processes, where
precuneus activity is likely to have been canceled out (see e.g.,
Koenig et al., 2005; von Helversen et al., 2014b).

Tentatively, what could be the role for precuneus in exemplar-
based processing? It has been demonstrated that ventral
precuneus, together with regions such as medial prefrontal cortex
and medial temporal lobes, constitutes a network of regions
enabling retrieval from episodic memory (see e.g., Wagner et al.,
2005; Vincent et al., 2006). Recently, medial parietal cortex
extending down to retrosplenial cortex, has been suggested
to support episodic memory by acting as a gateway between
medial temporal lobes and other cortical regions (Kaboodvand
et al., 2018). Several memory tasks evoking precuneus activation
seem to have in common that memory representations need
not only be retrieved but also inspected in some way, e.g.,
with regard to the source, context or spatial details of the
representation (e.g., Lundstrom et al., 2005; see also the review
by Cavanna and Trimble, 2006). Wagner et al. (2005) explicitly
suggested that medial and lateral posterior parietal cortices role
in episodic memory might be related to directing attention
to internal representations, and/or related to the storage of
retrieved memories dynamically in order to make them accessible
to decision making. Notably, activity differences in medial
prefrontal cortex and hippocampus both fell out as negatively
correlated with model fit of EBM in our whole-brain correlation
analysis (in addition to ventral precuneus, see Supplementary
Table S2), indicating that the higher the activity difference also
in these regions, the better model fit with EBM. One possibility is
thus that the key role of precuneus in the task presented here is to
aid retrieval and inspection of exemplars from memory, thanks
to the link of this part of the brain to the medial temporal lobes
and prefrontal cortices. Importantly, this tentative explanation
would naturally connect the precuneus findings in our study to
several attempts in the categorization literature highlighting an
important role for the medial temporal lobes (see e.g., Love and
Gureckis, 2007; Seger and Miller, 2010; Davis et al., 2012a,b; Davis
and Poldrack, 2014).

Superior frontal gyrus (BA6) has previously been associated
with spatial working memory (Tanaka et al., 2005) and mental
arithmetic (for an overview, see Zamarian et al., 2009), but also
with judgment, decision making, rule-based categorization and
rule use (e.g., Patalano et al., 2001; Wallis and Miller, 2003;
Koenig et al., 2005; Cisek, 2006; Helie et al., 2010; Klaes et al.,
2011; von Helversen et al., 2014b). For example, this region was
observed when contrasting brain activation during an instructed
rule-based heuristic judgment strategy with activation during
an instructed exemplar-based strategy (von Helversen et al.,
2014b) as well as when contrasting instructed rule-based and
similarity-based strategies in categorization tasks (Patalano et al.,
2001; Koenig et al., 2005). Here, this region was associated
with rule-based processing both when directly contrasting
rule-based to similarity-based judgments, in the conjunction
analysis between the two rule-based conditions (instructed and
spontaneous), and when investigating its functional role in
correlation analyses with model fit of CAM.

Taken together, our results lend support to a distinction
between rule-based and similarity-based processes at a neural

level not only in categorization (Patalano et al., 2001; Grossman
et al., 2002; Koenig et al., 2005) but also in human judgment (see
also von Helversen et al., 2014b). Critically, our results raise the
possibility that the relationship between associative and analytical
judgments should not be conceived of as a strict dichotomy
where the processes are recruited in an either-or fashion (Juslin
et al., 2003, 2008; Karlsson et al., 2007, 2008; von Helversen and
Rieskamp, 2009; von Helversen et al., 2010, 2013; Mata et al.,
2012; Pachur and Olsson, 2012; Hoffmann et al., 2013, 2014).

Instead, our results appear to favor an interplay view on
how a relationship between the two kinds of processes could
be understood. We observed shared brain activity between all
four conditions in precuneus, a region extensively linked to
memory-based processes, and this activity was predicted by
a similarity-based model. This suggest that similarity-based
processes are routinely engaged for judgments, both when overt
responses appear to be guided by similarity-based processes and
rule-based processes. Moreover, the observation that only the two
rule-based conditions shared activity in superior frontal cortex
can be taken to suggest that rule-based processes add on to
similarity-based processes under certain circumstances instead of
being routinely engaged in parallel to similarity-based processes
(see Palmeri, 1997; Ashby et al., 1998; Erickson and Kruschke,
1998; Rieskamp and Otto, 2006). In that latter case, we should
have observed that all four conditions shared brain activity in
both precuneus and superior frontal gyrus (BA6), and that this
activity was related to model fit.

Recently, a couple of brain imaging studies corroborate our
findings in calling into question the either-or view, by likewise
considering brain activation overlap with conjunction analyses
between conditions (see e.g., Milton and Pothos, 2011; Mega
et al., 2015; Carpenter et al., 2016; Milton et al., 2017). Milton
et al. (2017) used a category learning design that instead of
cognitive modeling enabled analysis of how critical trials were
categorized in order to infer whether a participant had learnt
the task via similarity- or rule-based processes. The authors were
not able to identify any brain activation differences between
the strategies in whole-brain comparisons, but rather observed
extensive overlap in several brain regions. Milton and Pothos
(2011) and Carpenter et al. (2016) were able to demonstrate that
two categorization tasks (rule-based vs. information integration
tasks) previously believed to recruit two distinct cognitive
“systems” (a verbal system vs. a procedural system, cf. Ashby
et al., 1998) in fact shared considerable brain activity in brain
areas previously assumed to be exclusive to the verbal system.
Mega et al. (2015) demonstrated that intuitive and deliberate
strategies with which to evaluate emotional facial expressions
also shared considerable brain activity to a large extent. As
a side note, several of these studies have actually reported
precuneus activation in tables or in text, without giving that
observation much attention in the paper, such as for example
the observation that precuneus activation was significantly shared
between the two types of processes (Milton et al., 2017), that
precuneus was more engaged with the information integration
task than the rule-based task (Carpenter et al., 2016), and that
precuneus activation was associated with an intuitive judgment
strategy (Mega et al., 2015). The same goes for two very recent
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and intriguing studies on categorization (e.g., Davis et al.,
2017; Bowman and Zeithamova, 2018) both reporting relations
between quantitative measures from an EBM and activation in
precuneus.

Do our results have implications for the more general
“dual system” theories, where the distinction between two
different processing modes is intensely debated (Sloman, 1996;
Stanovich, 1999; Kahneman and Frederick, 2002; Evans and
Stanovich, 2013; De Neys, 2018)? Our results suggest how
brain imaging methods can be used to test neurocognitive
assertions that are difficult to test with behavioral data alone.
For example, within some dual systems accounts, the relationship
between two different processing modes is described as default
interventionism where one process acts as default and the
other process intervenes (Evans and Stanovich, 2013). In other
accounts, the relationship is described as parallel competitive,
in the sense that both processes are always active (Martin and
Sloman, 2013). Based on our observations that brain activations
associated with the similarity-based model was apparent in all
conditions, while brain activations associated with the rule-based
model was apparent only during the rule-based conditions,
it is tempting to interpret our results in favor of a default
interventionism account, where similarity-based processes act as
default.

Our results might also be in line with the ideas of so
called ”lazy algorithms” (Aha, 1997) and with some early
behavioral models. Early models of the conceptually similar
task function learning (where one continuous cue is used
to infer a continuous criterion, see e.g., Kalish et al., 2004)
detailed the possibility that similarity-based processes underlie
function learning but sometimes, in the case that a new
function assessment scenario requires it, abstraction and
extrapolation from the responses suggested by the learned
exemplars can take place “on demand” (DeLosh et al., 1997).
However, behavioral studies on judgment suggest that abstraction
takes place already during learning (e.g., Juslin et al., 2008)
whereby further research is needed to more clearly establish
a relation between our results and the work on function
learning.

The observation that similarity-based processes were engaged
across all conditions, even in conditions where the overt response
is guided by rule-based processes, might be used to understand
demonstrations in behavioral studies that similarity-based
considerations are hard to resist when making inferences (Hahn
et al., 2010; von Helversen et al., 2014a; Bröder et al., 2017).

Limitations and Future Studies
How do our results compare to neurocognitive accounts of
“dual systems”? Arguably, the most influential account is the
computational neuropsychological theory of category learning
COVIS (COmpetition between Verbal and Implicit Systems;
Ashby et al., 1998). In this theory it is suggested that category
learning is governed by two neurally separable systems, one
operating by verbalizable rules predominantly governed by
prefrontal cortex, and the other via implicit, procedural processes
primarily thought to involve the body and tail of the caudate.
Recently, Ashby and Rosedahl (2017) suggest in a simulation

study an interpretation of the EBM as part of the implicit system
of the model COVIS. Future studies should be designed to
specifically target the role of procedural processes in human
judgment, for example by investigating to what extent the caudate
can be related to an exemplar-based learning process.

Future studies should also be devoted to specifying the
role of precuneus for human multiple-cue judgment in more
detail, and aim toward a more mechanistic account than
presented here. Such studies could continue to take advantage of
relating psychological model-based measures to brain activation,
potentially by using less coarse measures of cognitive processing
than model fit. For example, experiments can be designed such
that quantified processing components key for exemplar-based
processing in judgment can be related to patterns of activation
in the precuneus (see e.g., Nosofsky et al., 2012; Mack et al.,
2013; Davis and Poldrack, 2014; Davis et al., 2017; Bowman and
Zeithamova, 2018).

Our findings should be taken as a first attempt to use
conjunction analysis of fMRI data in combination with
behavioral analysis with cognitive modeling to investigate
the relationship between associative and analytical judgments.
Further research could take advantage of specific fMRI
experimental protocols or brain imaging methods with a better
temporal resolution than fMRI (e.g., EEG) to more in detail probe
the question of the nature of the dynamic interplay between
the two types of processes. For example, one possibility is that
we would observe that precuneus activity precedes activity in
superior frontal gyrus in all conditions, which could be taken
as further support for our interpretation that similarity-based
processes are routinely engaged for judgment rather than being
engaged in an either-or fashion.

Previous brain imaging studies investigating brain activation
differences between rule-based and similarity-based inferences
have differed notably on the type of baseline task that is used
for the contrast analyses (e.g., Patalano et al., 2001; Grossman
et al., 2002; Koenig et al., 2005; von Helversen et al., 2014b;
Milton et al., 2017). Our choice to use a rather strict comparison
task is to increase the possibility that the activations resulting
from the conjunction analyses can actually be said to be
related to the judgment component of the task instead of
other kinds of processes that are likely to be shared between
conditions.

Finally, it should be noted that it is common to observe
large individual differences in human judgment in general
(e.g., Stanovich, 1999), so also in multiple-cue judgment
(e.g., Hoffmann et al., 2014). We believe our study makes
an important contribution to the field by linking individual
differences in brain activation to adherence to specified cognitive
models.

CONCLUSION

Through investigating brain activity modulations shared between
associative and analytic human judgments, and whether such
activity relates to cognitive modeling of the processes, we
suggest a similarity-based process for judgment, involving
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precuneus, that is routinely engaged both when responses
are guided by similarity-based processes and rule-based
processes. Analytical processes supported by regions such
as superior frontal gyrus (BA6) presumably add on to
the similarity-based considerations and together these
mechanisms can produce adaptive judgment and decision
making. Our findings thus support an interplay view on how
these two types of processes interact, rather than a strict
dichotomy, where the processes are executed in an either-or
fashion.
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