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Cognitive control processes are advantageous when routines would not lead to the
desired outcome, but this can be ill-advised when automated behavior is advantageous.
The aim of this study was to identify neural dynamics related to the ability to adapt
to different cognitive control demands – a process that has been referred to as
‘metacontrol.’ A sample of N = 227 healthy subjects that was split in a ‘high’ and
‘low adaptability’ group based on the behavioral performance in a task with varying
control demands. To examine the neurophysiological mechanisms, we combined
event-related potential (ERP) recordings with source localization and machine learning
approaches. The results show that individuals who are better at strategically adapting to
different cognitive control demands benefit from automatizing their response processes
in situations where little cognitive control is needed. On a neurophysiological level,
neither perceptual/attentional selection processes nor conflict monitoring processes
paralleled the behavioral data, although the latter showed a descriptive trend. Behavioral
differences in metacontrol abilities were only significantly mirrored by the modulation of
response-locked P3 amplitudes, which were accompanied by activation differences in
insula (BA13) and middle frontal gyrus (BA9). The machine learning result corroborated
this by identifying a predictive/classification feature near the peak of the response-locked
P3, which arose from the anterior cingulate cortex (BA24; BA33). In short, we found
that metacontrol is associated to the ability to manage response selection processes,
especially the ability to effectively downregulate cognitive control under low cognitive
control requirements, rather than the ability to upregulate cognitive control.

Keywords: cognitive control, EEG, working memory load, machine learning, predictive feature

INTRODUCTION

Cognitive control is one of the key competencies required to adapt to dynamic environments
and to control our behavior (Botvinick et al., 2004; Gruber and Goschke, 2004; Bocanegra and
Hommel, 2014; Larson et al., 2014). While cognitive top–down control processes are advantageous
when automated behavior (routines) would not lead to the desired outcome (Miller, 2000; Miller
and Cohen, 2001; Botvinick et al., 2004; Ochsner and Gross, 2005; Botvinick and Braver, 2015),
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exerting cognitive control in situations where automated
behavior is beneficial can have detrimental effects on behavior
(Olivers and Nieuwenhuis, 2005; Taatgen et al., 2009; Bocanegra
and Hommel, 2014; Stock et al., 2016c). Individuals who are
able to flexibly adapt to situations where less cognitive control
is required might benefit more from rather automated behavior,
which is faster and less capacity demanding. Demands on
cognitive control can vary as a function of many factors,
including the complexity of a given task rule (Rubinstein
et al., 2001; Pieczykolan and Huestegge, 2017): If the task
rule is more/less complex, demands on cognitive control are
higher/lower. Lower cognitive controls demands are associated
with more automatic response processes, which tend to be less
error prone than cognitive control mechanisms, once they are in
place (Möschl et al., 2017).

Against this background, it has increasingly been recognized
that cognitive control processes sub-serving goal-directed actions
require a dynamic, context sensitive balancing of how much
cognitive control is ‘invested’ (Goschke and Bolte, 2014; Hommel
and Wiers, 2017): Behavior would be ill-advised by a system
that pursues goals irrespective of what is ‘optimal’ in a given
situation (Hommel and Wiers, 2017). It would be much more
beneficial and expedient to adjust cognitive control or response
selection processes depending on task rule complexity because
both of those processes are known to be capacity-limited (Meyer
and Kieras, 1997; Engle and Kane, 2003; Kane and Engle, 2003;
Tombu and Jolicoeur, 2003; Lavie et al., 2004; Marois and Ivanoff,
2005; Sigman and Dehaene, 2008; Engle, 2010; Lavie, 2010; Yildiz
et al., 2013; Yildiz and Beste, 2015). In this context, the central
question is how information is processed and responses are
selected (Doya, 2008; Goschke and Bolte, 2014) in situations
with different control requirements. This aspect has been referred
to as ‘metacontrol’ (Goschke and Bolte, 2014; Hommel and
Wiers, 2017). Several models were proposed that describe the
ability to adapt to different aspects of cognitive control. In
a model by Shenhav et al. (2013) emphasis was put on the
role of an internal evaluation of the expected value of control
(EVC; Shenhav et al., 2013), which would then result in up-
or downregulation of cognitive control capacities. Others have
described how individuals might strategically adapt to errors
(Ullsperger et al., 2014) or conflicts (Reuss et al., 2014). Yet,
the neurophysiological mechanisms related to the ability to
strategically adapt to different cognitive control demands, which
vary as a function of task rule complexity have remained elusive1.

To examine this question, we used a paradigm that consists
of two complementary tasks with high and low cognitive
control demand (Bocanegra and Hommel, 2014). Based on the
aforementioned findings, we assumed that individuals who can
flexibly adjust to varying demands and effectively tone down
their top–down control mechanisms when control requirements
are low, should perform better. This effect should be most
pronounced in the easy task, where automated behavior is
beneficial. Yet still, such an improvement should always be

1Please note that for the purpose of this paper, the term “metacontrol” will be
solely used to describe the ability to strategically adapt to different cognitive control
demands.

related to the performance in the hard task in order to account
for inter-individual performance differences. We therefore
calculated a behavioral score that accounts for the relation of
speed and accuracy and the performance difference between
the two tasks. Those who displayed larger task differences due
to better task performance in the easy task were classified as
the “high adaptability group,” while those with smaller task
differences were termed “low adaptability group” (please see
“Materials and Methods” and “Results”).

In order to identify the neurophysiological processes and
functional neuroanatomical networks that are differently
modulated by varying cognitive control demands, we recorded
an EEG. The advantage of electrophysiological (EEG) techniques
and event-related potentials (ERPs) in this context is that they
allow to dissociate different cognitive sub-processes involved in
information processing on the basis of their temporal occurrence
in a high temporal resolution. When combined with source
localization techniques, it is possible to identify brain regions
being associated with above-mentioned ‘metacontrol’ dynamics;
i.e., how individuals differently adapt to varying cognitive control
demands. Regarding neurophysiological processes that may be
modulated by the adaptability to different cognitive control
demands, ERPs like the mid-central N2 and N450 (Larson et al.,
2014) may be important to consider. Both have been shown
to be enhanced in case of larger cognitive control demands
(Botvinick et al., 2004; Folstein and Van Petten, 2008; Larson
et al., 2014; Stock et al., 2016c). Although the difference between
those ERPs is not entirely clear, the N2 has repeatedly been
associated with conflict adaptation and monitoring as well as
cognitive effort (Botvinick et al., 2004; Folstein and Van Petten,
2008; Larson et al., 2014; Chmielewski et al., 2016) and the N450
has been shown to reflect detection, monitoring, and resolution
of conflicts (Szûcs and Soltész, 2012; Vanderhasselt et al., 2012;
Larson et al., 2014). The finding that the N450 has previously
shown larger task/control demand-induced differences in a
comparable experimental paradigm than the N2 (Stock et al.,
2016d; Zink et al., 2018), suggests that we might find the N450 to
better reflect effects of task adaptation than the N2. Specifically,
we would expect smaller (i.e., less negative) N450 amplitudes
during the low control demand task in individuals with a high
adaptability (i.e., metacontrol abilities) than in individuals with
low adaptability. The dual mechanism framework of cognitive
control (Braver, 2012) has been shown to give rise to two different
families of P3-like ERP potentials (Barcelo et al., 2002; Barceló
and Cooper, 2017), with one P3 originating from stimulus-
driven frontal attention mechanisms during task processing, and
another originating from temporal–parietal activity associated
with attention and appears related to subsequent memory
processing (Polich, 2007). In this study, the adaptation to varying
cognitive control demands may also be reflected by modulations
of the parietal P3 component, which is known to represent the
process of mapping a stimulus onto an appropriate response
(Verleger et al., 2005; Twomey et al., 2015; Verleger et al.,
2015). In a previous study using a comparable experimental
paradigm, we found the response-locked parietal P3 to also
reflect differences in cognitive control requirements (Stock et al.,
2016d) and observed larger amplitudes in case of low than in case
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of high control demands. In dual task situations (Polich, 2007)
or during processes of early vision (Schubö et al., 2001), this
amplitude increase has repeatedly been suggested to reflect the
attentional resources left over by the primary task. Based on the
assumption that cognitive control is not only more effortful, but
also demands more attentional resources than a rather automatic
approach to response selection, we expected larger response-
locked parietal P3 amplitudes during the low control task in
individuals with a high adaptability (i.e., metacontrol abilities)
than in individuals with low adaptability. The reasoning behind
this hypothesis is that if individuals with higher metacontrol
are better able to refrain from engaging top-down strategies
in situations with low control requirements, this will leave
more attentional resources at the disposal of the participant,
which should be reflected by a larger parietal P3 component.
Consequentially, task differences in parietal P3 amplitude should
be larger in individuals who can flexibly adapt their response
selection procedure to a more automatic or a more controlled
mode (i.e., in the high adaptability group) compared to those
who lack this flexibility (low adaptability group). However, as
stimulus-driven frontal attention mechanisms reflected by a
fronto-central P3 modulation may also account for differences
in the adaptability toward different levels of cognitive control,
the fronto-central P3 was also assessed. Moreover, as larger P3
amplitudes are thought to reflect changes in the availability of
attentional resources, we also quantified attentional processes as
reflected by the P1 and N1 ERP components (Luck et al., 2000;
Herrmann and Knight, 2001). In line with our previous paper,
we expected to find larger amplitudes in case of low control
demands. But given that both ERPs represent early attentional
processing of incoming stimuli (Luck et al., 2000; Schneider
et al., 2012) and occur much earlier than the P3, we are skeptical
whether the attentional resources available at the time point of
stimulus-response mapping could already show in those earlier
processes. Hence, we did not expect to find group differences in
those two ERPs.

In addition to those classical ERP analyses, we chose to
complement our methodological approach with a machine
learning approach using support vector machines (SVMs)
(Boehler et al., 2008; Plewan et al., 2016; Stock et al.,
2016b). Importantly, this SVM approach is unbiased by prior
findings/hypotheses and allows to identify neurophysiological
features from the entire time series (and not just the ERP peaks)
that best classify (or predict, to use the common machine learning
term) behavioral performance. The main reason for choosing
this approach is that the selection and analysis of ERPs is
usually based on previous correlative findings and furthermore
limited to minima, maxima, or pre-defined time windows in
the course of the neurophysiological times series. This excludes
a wealth of data “in between” the investigated ERPs. This is
problematic as neurophysiological signals are usually composed
of different signals which may vary in latency and thus not all
be (best) reflected by composite ERP peaks. Moreover, it has
recently been pointed out (Bridwell et al., 2018) that component
peaks may detract from the ability to detect EEG features that
relate to behavior. Further, components are often defined by
latent cognitive constructs that may not necessarily be a good

characterization of neural computations. In fact it has been
shown that transient activity is important to consider for the
dynamics of cognitive functions (Bridwell et al., 2018). Since
theoretical concepts dealing with the question how to strategically
adapt to different cognitive control demands stress the dynamics
of cognitive processes (Goschke and Bolte, 2014; Hommel
and Wiers, 2017), the ability to be able to detect transient
aspects in EEG activity (i.e., processes not necessarily captured
by ERP-peaks) machine learning approaches are particularly
suitable. Moreover, the SVM approach enables us to overcome
those issues and consider the entire time series to identify
the neurophysiological features and brain activation differences
which best differentiate between the high and low adaptability
groups.

Regarding the functional neuroanatomical structures that are
associated with metacontrol (i.e., how efficiently individuals can
adapt to different control requirements), the prefrontal cortex
is of importance, as it plays a key role in cognitive control
(Miller and Cohen, 2001; Stuss and Knight, 2002) and has
been shown to be associated with the adaptation of response
strategies toward statistically optimal behavior (Koechlin, 2016).
Especially the ACC seems to have a monitoring function that
serves to regulate both cognitive and emotional processing (Bush
et al., 2000), conflict detection (van Veen et al., 2001; Botvinick
et al., 2004; Carter and van Veen, 2007), control execution
(Ridderinkhof et al., 2004; Nee et al., 2007; Shackman et al.,
2011; Niendam et al., 2012), and adaptive behaviors (Holroyd
and Coles, 2002). It was argued that the underlying function of
the ACC is to raise the threshold for initiating ‘wanted’ behavior,
while the threshold is lowered for all “unwanted” alternatives
(Paus, 2001) or “energizing” the neural systems that needed to
make the decisions and initiate the responses (Stuss et al., 2005).
While these theories assume that activation in this region is
mostly useful for boosting weak processes in order to establish
top down control, the complementary idea is that the ACC is
involved in metacontrol, or the modulation between upregulating
processes (i.e., exerting top–down control) and downregulating
processes/keep the ongoing processes unaltered (automatic
mode). Shenhav et al. (2013) proposed that the diversity of
functions associated with the ACC can be understood in terms
of a single underlying function, the allocation of control based on
the evaluation of the EVC. Compared to individuals from the low
adaptability group, individuals from the high adaptability group
might be better in assigning the optimal amount of cognitive
control that needs to be invested. Therefore, we expected that
the hypothesized differential modulation of neurophysiological
processes between the low and high adaptability groups should
be related to activation differences within the ACC.

MATERIALS AND METHODS

Sample
For this study, n = 227 healthy young participants (165♀, 62♂)
aged 18–32 (mean 23.7, SD 3.1) were tested. As gender is clearly
unbalanced in favor of female participants, potential impacts
on the generalizability of the results cannot be ruled out. None
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of the included participants reported neurologic or psychiatric
disorders and all participants stated to have normal or corrected-
to-normal vision. Based on Beck Depression Inventory (BDI)
scores (Beck et al., 1961), depression was ruled out (mean score
4.69, SD 4.34). All participants gave written informed consent and
received a reimbursement of 25 €. The study was approved by
the ethics committee of the TU Dresden and participants were
treated in accordance with the declaration of Helsinki.

Task
A modified version of an experimental paradigm developed by
Bocanegra and Hommel (2014) was used in this study. The
paradigm consists of two separate tasks, which were originally
termed “automatic” and “control” task. As they differ with respect
to the complexity of task rules and thus the required amount of
cognitive control, we however, decided to refer to them as “easy”
and “hard” task, respectively.

According to the protocol adapted from Bocanegra and
Hommel (2014) and to keep potential order effects constant,
all participants first performed the hard task and then the easy
task while seated at a distance of 57 cm from a 17′′ monitor.
“Presentation” software (version 14.9. by Neurobehavioral
Systems, Inc.) was used for stimulus presentation, response
recording, and EEG triggers. Each trial started with the
presentation of a single visual stimulus in the center of a black
screen for 2000 ms, or until a response was given (cf. Figure 1A).
Stimuli varied in shape (square or diamond), color (green or red)
and size (small/∼2.5 cm diameter or large/∼5 cm diameter). All
combinations of stimulus features were presented equally often
in both tasks (cf. Figure 1B). In the easy task, participants were
instructed to respond only to the shape of the stimuli: Whenever
the target stimulus was a diamond, the left Ctrl button of a
regular keyboard had to be pressed with the left index finger,
and the right Ctrl button had to be pressed with the right index
finger when the target stimulus was a square. For the hard task
(originally termed “control task” by Bocanegra and Hommel,
2014), participants were asked to respond to a combination of
size and color of the target stimulus (cf. Figure 1B): Whenever
the target stimulus was large and red or small and green, the left
Ctrl button had to be pressed. When the target stimulus was large
and green or small and red, participants had to press the right
Ctrl button. In case of no response was given within 2000 ms,
stimulus presentation was terminated and the trial was coded as
a “miss.” 700 ms after target stimulus offset, a 500 ms feedback
was given to inform the participants whether their response was
correct (“+”) or incorrect (“–”). This was followed by a fixation
cross for 500 ms before the next trial was presented. Each task was
subdivided into 5 equally sized blocks with a total of 480 trials.
Behavioral measures (accuracy and the mean response times of
correct responses) were separately collected for the low and hard
tasks.

Formation of Cognitive Control
Adaptability Groups
In order to examine how individuals differently adapt to varying
levels of cognitive control induced by task rule complexity

FIGURE 1 | (A) Illustration of the task. Each trial started with the target
presentation, which was either terminated by the first response or after
2000 ms had elapsed (in this case, the trial was coded as a “miss”). The
target was followed by a 700 ms blank screen, a 500 ms feedback (“+” for
correct and “–” for incorrect or missed responses) and a second 500 ms
blank screen. (B) Illustration of employed target stimuli. Targets could vary in
shape (square vs. diamond), size (small vs. large) and color (green vs. red).
Please note that those are examples and not all of the employed stimulus
combinations are illustrated here. The easy task required left button presses
for squares and right button presses for diamonds. The hard task required left
button presses for targets that were either large and red OR small and green
while right button presses were required for targets that were either large and
green OR small and red. Hence, the two exemplary stimuli on the left of this
graph required a left hand response while the two stimuli on the right on the
graph required a right hand response in both of the tasks.

manipulation, individuals were classified into a “low” and “high”
adaptability groups based on their task performance. Two equally
large groups were formed by means of a median split of a
performance score. For this performance measure, we employed
the following equation, which takes speed-accuracy tradeoff
effects into account:

Adaptability Score =
ACCeasy

RTeasy
−

ACChard

RThard

Here, Acc is the accuracy in percent and RT is the hit RT in ms.
When dividing Acc by RT, (relatively) larger outcomes indicate
a better performance, which is characterized by faster and/or
more correct responses. By subtracting the performance score
of the hard task from that of the easy task, the adaptability
score (Easy task: min = 0.14, max: 0.28, range = 0.14,
SD = 0.028; Hard task: min = 0.08, max: 0.20, range = 0.12,
SD = 0.021) reflects the magnitude of behavioral performance
differences between the hard and easy task: Individuals with
large adaptability scores show larger performance differences
between tasks than individuals with small adaptability scores.
Based on the assumption that differences in adaptability should
be mainly driven by performance differences in the easy task (see
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behavioral results section for confirmation), we named the two
groups resulting from a median split of the adaptability score
“high adaptability group” and “low adaptability group.” While it
has been shown that a median split lowers experimental power
and increases the risk of type I errors (Wicherts and Scholten,
2013), it is important to consider that a binary classification is
a mandatory requirement for our machine learning approach
(Kleinbaum et al., 2013). Machine learning algorithms require
a strict and objective criterion for classification (Kleinbaum
et al., 2013); e.g., to classify individuals as good or bad
performers: Other than research on topics concerning a strictly
categorical distinction, psychological research on inter-individual
performance differences can usually not provide fixed or
objective cutoffs for classifying human behavior. The reason
for this is that behavioral performance can only be judged
as “good” or “bad” in relation to the performance of others.
Thus, performance rating always depends on what comparable
individuals are capable of and behavioral parameters of any
subject are compared to the behavior observed in either large
groups (typically 50 to several hundred individuals) or two or
more different experimental groups are contrasted.

EEG Recording and Data Processing
EEG recordings were made using 60 sintered Ag/AgCl ring
electrodes located at standard equidistant scalp positions with
a sampling rate of 500 Hz, using electrode Fpz as reference
(customized BrainCap Fast‘n Easy sub-inion model EEG caps).
All electrodes were connected to a QuickAmp amplifier
(BrainProducts Inc.) and impedances were kept below 5 k�.
After recording with the Brain Vision Recorder (Brain Products
Inc.), the data were average-referenced, down-sampled and
interpolated to 256 Hz and a band-pass filter (IIR filter from
0.5 Hz to 20 Hz at a slope of 48 db/oct) was applied using
Brain Vision Analyzer (Brain Products Inc.). Subsequently,
a raw data inspection was conducted in order to manually
remove pauses and rare technical artifacts. For removing
periodically recurring artifacts including eye -movements, blinks
and ECG artifacts, an independent component analysis (ICA;
Infomax algorithm) was applied. Segments of trials with correct
responses were separately formed for all experimental conditions.
Stimulus-locked segments ranged from −2000 ms before to
2000 ms after the onset of the target stimulus and response-
locked segments 2000 ms around the response. The segments
underwent an automatic artifact rejection (rejection criteria
allowed for a maximal value difference of 200 µV in a
200 ms interval and excluded activity below 0.5 µV in a
100 ms interval). Subsequently, a current source density (CSD)
transformation was run to obtain a reference-free evaluation
of the electrophysiological data (Perrin et al., 1989) with the
order of splines set to 4 and the maximal degree of legendre
polynomials set to 10. The CSD transformation furthermore
serves as a spatial filter that helps to identify electrodes that best
reflect activity related to cognitive processes as it accentuates
the scalp topography (Nunez and Pilgreen, 1991; Tenke and
Kayser, 2012; Kayser and Tenke, 2015). For the stimulus-locked
segments a baseline correction was applied to the interval from
−300 ms to 0 ms before stimulus onset. For the response-locked

segments, a baseline correction was applied to the interval from
300 to 400 ms after the response. Segments were then separately
averaged for each participant and condition. Next, different ERP
components were quantified at the single-subject level. Electrodes
for ERP quantification were chosen on the basis of a visual
inspection of the scalp topography, which was validated and
confirmed by a procedure described in (Mückschel et al., 2013):
For each ERP component, a search interval was defined, in
which the respective component was expected to be maximal.
Then, the mean amplitude within each of these search intervals
was extracted for all 60 electrodes. Each electrode was then
compared to the average of all other electrodes using Bonferroni-
correction for multiple comparisons. Only electrodes that showed
significantly different mean amplitudes than the average were
chosen. Of note, this procedure revealed the same electrodes as
previously chosen on the basis of visual inspection of the scalp
topography plots. The stimulus-locked P1 ERP amplitudes at
electrodes P7 and P8 were quantified by extracting the average
voltage in the time window ranging from 95 to 105 ms. The
stimulus-locked N1 ERP amplitudes at electrodes P7, P8, P9, and
P10 were quantified by extracting the average voltage in the time
window ranging from 170 to 180 ms. The stimulus-locked N2
and fronto-central P3 amplitudes were quantified at electrode
Cz in the time window ranging from 230 to 250 ms and 500 to
700 ms respectively. The stimulus-locked N450 amplitudes were
also quantified at electrode Cz. Due to a latency shift between the
two tasks, amplitudes were quantified for the easy task in the time
window ranging from 380 to 400 ms, and in the hard task in the
time window ranging from 395 to 415 ms. The stimulus-locked
parietal P3 amplitude was quantified at electrodes PO1 and PO2
in the time window from 305 to 325 ms. The response-locked
parietal P3 amplitude was quantified at electrode Pz in the time
window from−35 to−25 ms.

sLORETA Analyses
To examine what functional neuroanatomical networks are
modulated during high and low cognitive control demands and
how they are modulated between the two formed groups, we
conducted source localization using sLORETA (standardized low
resolution brain electromagnetic tomography; Pascual-Marqui,
2002) from the LORETA-Key software program (Pascual-
Marqui, 2002), which provides a unique solution to the inverse
problem (Pascual-Marqui, 2002; Marco-Pallarés et al., 2005).
For sLORETA, the intracerebral volume is partitioned into 6239
voxels at 5 mm spatial resolution. Then, the standardized current
density at each voxel is calculated in a realistic head based
on the MNI152 template (Mazziotta et al., 2001). sLORETA
provides reliable results without a localization bias (Sekihara
et al., 2005). Moreover, there is evidence from EEG/fMRI and
neuronavigated EEG/TMS studies underlining the validity of
the sources estimated using sLORETA (Hoffmann et al., 2014;
Dippel and Beste, 2015). The voxel-based sLORETA images
were compared between the two groups (high adaptability
group vs. low adaptability group) in the experimental conditions
(hard vs. easy task) using the sLORETA-built-in voxel-wise
randomization tests with 2000 permutations, based on statistical
non-parametric mapping (SnPM). Voxels with significant
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differences (p < 0.01, corrected for multiple comparisons)
between contrasted conditions and groups were located in the
MNI-brain.

Data-Driven Feature Extraction
Procedure and Support Vector Machine
(SVM) Analysis
Based on a median split of our adaptability score (cf. Formation
of Cognitive Control Adaptability Groups), a machine learning
approach was employed to predict group membership on the
basis of the behavioral data from trials where the correct response
was executed.

As possible features each of the CSD-transformed data points
of each of the 60 EEG channels were extracted with the resolution
of the sampling frequency (256 Hz) for every subject. Opposed
to the stimulus-locked data, only the response-locked data
showed significant main or interaction effects of the group factor.
Therefore, all time points were extracted from 300 ms before
the onset of the response to 1000 ms after the response for the
response-locked averaged segments. All features were normalized
into a z-score, which was done for two reasons: Firstly, as
the z transformation makes all features have a mean of zero
and a standard deviation equal to one (Raschka, 2015); the
problem of features biasing the feature detection algorithm in
case they have different value ranges can be avoided. Secondly,
the convergence speed of feature detection algorithms can be
increased (Theodoridis and Koutroumbas, 1999).

After the feature normalizing procedure, a feature selection
procedure was applied. This is a crucial step for machine
learning algorithms, as it eliminates irrelevant features and
reduces the problem of having a ‘small’ data set relative to
the size of the possible feature set. Both of these factors can
otherwise reduce the classifier performance. For the feature
selection procedure, an optimal subset of features is selected
from the original feature set. Feature selection algorithms can be
classified as either using “filter” or “wrapper” methods (Guyon
and Elisseeff, 2003). Independent of the chosen classifier the
filter method selects a subset of features according to general
data characteristics, whereas the wrapper methods require a
predetermined classifier and evaluate features according to
their performance to discriminate between classes (Guyon and
Elisseeff, 2003). Wrapper methods usually lead to better results
than filter methods (Saeys et al., 2007), but are significantly
slower. One way to avoid this problem is to combine filter
and wrapper methods. Therefore, filter methods are applied
first to select some features, which are then used as input for
wrapper methods. This was done in the current study with t-test
and sequential floating forward selection (SFFS) methods (Saeys
et al., 2007). For that, a t-test is calculated between the two
groups using the median split procedure for each time point (i.e.,
feature). If the p-value is below 0.01, this time point (feature)
is selected. Then these selected features are used as input for
the SFFS algorithm. The SFFS method combines a sequential
forward selection (SFS) and sequential backward selection (SBS)
algorithm (Chandrashekar and Sahin, 2014; Khazaee et al., 2016).
The SFS starts from an empty set of features and sequentially

adds features that result in the highest classifier accuracy when
being combined with the features that have already been selected.
The SBS works in the opposite direction. In SFFS, each feature
selection step comprises SFS and SBF (Chandrashekar and Sahin,
2014; Khazaee et al., 2016) and were implemented in MATLAB
2017a (Mathworks Inc.). Then, the selected features are fed to a
support vector machine (SVM) employing a radial basis function
(RBF) kernel, using MATLAB 2017a (Mathworks Inc.) and the
LIBSVM toolbox.

Support vector machines are supervised learning algorithms
that project input data into high-dimensional feature space to
determine a hyper-plane which is able to optimally separate the
groups. Since neuroimaging studies usually deal with a ‘small’
number of subjects, the result of the SVM method was cross-
validated in this study. For this, the k-fold cross-validation (Arlot
and Celisse, 2010) method was used, as the high variance of
the classification accuracy and the computation time are two
major problems of the Leave One Out Cross Validation (LOOCV)
method (Lee and Verri, 2002). The k-fold method randomly
divides the data into k portions in which k-1 portion is considered
as training data and other as testing data. By continuing this
k-times, all subjects in the data set are part of the testing and
training set. The resulting classification accuracy is the average
of the all k-folds (Arlot and Celisse, 2010). Usually, the value of
k is between 5 to 10 in machine learning. We used k = 10 in
this study. This means that for each extracted feature there were
10 estimations of the predictability of behavioral performance.
Using the data from the k = 10 estimations, we calculated the 99%
confidence bounds for each feature. These confidence bounds
were then used to examine (i) in how far each feature provides
a significant increase in the predictability of group membership
on the basis of the behavioral data. If the difference between the
features is significant, this is indicated by no overlap between
the calculated 99% confidence bounds. Of note, the applied
machine learning approach minimizes the risk of ending up
with false positive features: Whereas there is still a risk for
false positive features to survive feature selection and enter the
machine learning approach, the subsequent k-fold validation
procedure minimizes the risk of false positives being ultimately
selected as a predictive feature as it mixes and recombines the
sample many times, thus strongly decreasing the likelihood of
false positives having a strong and consistent effect. In order
to see that selected features were not selected by chance, we
ran permutation tests. The data were randomly divided into
two groups and SVM was employed for prediction the group
membership. The random division as well as using SVM was
continued 1000 times. Finally, the percentage of how many times
(out of 1000) the selected feature from the original data (with true
label) has higher accuracy than randomly assigned group label
was calculated.

Statistical Analysis
Behavioral and electrophysiological data were analyzed using
separate mixed-effects ANOVAs using the within-subject factor
“task” (low vs. high demand) and the between-subjects factor
“group” (high vs. low adaptability group). Greenhouse–Geisser
corrections were applied when necessary. Post hoc tests were
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FIGURE 2 | Performance ratio (Accuracy divided by RT) of the low and high
adaptability groups for the low and hard tasks. Error bars indicate standard
errors (∗∗p < 0.001). Both groups showed a larger performance ratio (i.e.,
better performance) in the easy task than in the hard task. In the easy task,
performance ratio was furthermore larger for the high adaptability group than
for the low adaptability group.

Bonferroni-corrected whenever necessary. Linear regression
analyses were run separately for each ERP with the adaptability
score. As not all of the values were normally distributed in
both groups, we conducted additional non-parametric post hoc
tests (Mann–Whitney U tests) whenever necessary. In the results
section, the reported mean values are followed by the standard
error of the mean (SEM) as a measure of variance.

RESULTS

Behavioral Data
The behavioral data are illustrated in Figure 2. The analyses for
RT and accuracy can be found in the Supplementary Material.

The analysis of the performance ratio (i.e., accuracy divided
by hit RT) revealed a main effect of task [F(1,225) = 8179.99;
p < 0.001; η2

p = 0.973], with better performance in the easy
task (0.212 ± 0.002) than in the hard task (0.14 ± 0.001).
When we ranked-order Ps by overall adaptability, there was
indeed a difference between the high and low adaptability
group and ‘high’ performers, [F(1,225) = 19.47; p < 0.001;
η2

p = 0.08], with better overall performance in the high
adaptability group (0.182 ± 0.002) than in the low adaptability
group (0.169 ± 0.002). Lastly, there was an interaction of
task∗group [F(1,225) = 391.81; p < 0.001; η2

p = 0.635]. Subsequent
post hoc t-tests showed that performance differed only in the easy
task [t(225) = −8.87, p < 0.001], where high adaptability group
(0.226± 0.023) performed better than the low adaptability group
(0.0197 ± 0.026). No such difference could be found in the hard
task [t(225) = 1.10, p = 0.299]. As not all of the values were
normally distributed in both groups, we additionally conducted
non-parametric post-hoc tests (Mann–Whitney U tests). They
confirmed the findings of the post hoc t-tests and also showed
significant group differences for the easy task (p < 0.001), but
not for the hard task condition (p = 0.368). Consequentially,

the difference between the easy task and the hard task was
larger for the high adaptability group (0.088 ± 0.011) than for
the low adaptability group [0.057 ± 0.013; t(225) = −19.79,
p < 0.001]. This was also confirmed by a non-parametric post hoc
test (Mann–Whitney U tests), which showed the performance
ratio differences between hard and easy task to differ significantly
between the groups.

In sum, the behavioral analysis showed that the median split
had produced two significantly different groups, as reflected by
the interaction of task and group.

Electrophysiological Data
The participants were divided into high and low performers
based on their behavioral data and applying the adaptability
score formula (see Formation of Cognitive Control Adaptability
Groups). In a next step, the EEG data was analyzed to determine
the underlying processing contributing to differences in the
adaptability toward varying cognitive control demand. According
to the literature, there are several potential contributors. The
results of the analyses are reported here according to their
occurrence along the action cascade.

The Role of Early Visual Attention (P1
and N1)
The P1 and N1 ERP are shown in Figures 3A,B, respectively.
The analysis of P1 amplitudes showed a significant main effect
of task [F(1,225) = 10.83; p < 0.001; η2

p = 0.046] with larger
amplitudes in the easy task (27.9 µV/m2

± 1.23) than in the
hard task (26.72 µV/m2

± 1.25). All other effects were non-
significant (all F≤ 2.64; all p≥ 0.106). A linear regression was run
between adaptability score and P1 amplitudes. A linear regression
between adaptability score and P1 amplitudes showed no linear
relationship for the P1 amplitudes of low and hard task and the
adaptability score [easy task: F(1,225) = 0.017, p = 0.896, hard
task: F(1,225) = 0.258, p = 0.612].

The analysis of N1 amplitudes revealed a significant main
effect of task [F(1,225) = 66.64; p < 0.001; η2

p = 0.229] with
larger amplitudes in the easy task (−25.03 µV/m2

± 1.34)
than in the hard task (−21.56 µV/m2

± 1.28). All other
effects were non-significant (all F ≤ 3.46; all p ≥ 0.076). As
for the N1 amplitudes, a linear regression between adaptability
score and N1 amplitudes showed that the N1 amplitudes
could not significantly predict the adaptability score [easy task:
F(1,225) = 0.180, p = 0.672, hard task: F(1,225) = 0.168,
p = 0.682].

The Role of Conflict (N2 and N450)
The stimulus-locked N2 and N450 are shown in Figure 3C.
The analysis of the N2 amplitudes yielded a significant main
effect of task [F(1,225) = 12.23; p = 0.001; η2

p = 0.055] with
larger amplitudes in the easy task (−9.19 µV/m2

± 0.95) than
in the hard task (−11.15 µV/m2

± 0.95). All other effects
were non-significant (all F ≤ 0.44; all p ≥ 0.506). Moreover, a
linear regression was performed between adaptability score and
N2 amplitudes. The analysis revealed that the N2 amplitudes
could neither significantly predict the adaptability score for
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FIGURE 3 | (A) Grand means and topographic plots of the P1 at electrode P7 and P8. Time point zero denotes the time point of the target stimulus onset, the light
gray boxes illustrate the ERP baseline from –300 to 0 ms (left) and time range each effect is averaged across (right). ERPs of the low adaptability group are denoted
by red color, while ERPs of the high adaptability group are denoted by blue color. The easy task is denoted in a lighter shade of the respective colors than the hard
task. For the P1, amplitudes of the hard task were larger compared to easy task. (B) Grand means of the N1 at electrode P7–P10. Time point zero denotes the time
point of the target stimulus onset, the light grey boxes illustrate the ERP baseline from –300 to 0 ms (left) and time range each effect is averaged across (right). ERPs
of the low adaptability group are denoted by red color, while ERPs of the high adaptability group are denoted by blue color. The easy task is denoted in a lighter
shade of the respective colors than the hard task. For the N1, amplitudes of the easy task were larger compared to hard task. (C) Grand means of the
stimulus-locked N2 and N450 at electrode Cz. The topographic plots are displayed for the N450, as the main effect of task was only visible in the topographic plots
in the N450 time window. Time point zero denotes the time point of the target stimulus onset; the light gray boxes illustrate the ERP baseline from –300 to 0 ms (left)
and time range the N2 effect (middle) and N450 effect (right) is averaged across. ERPs of the low adaptability group are denoted by red color, while ERPs of the high
adaptability group are denoted by blue color. The easy task is denoted in a lighter shade of the respective colors than the hard task. (D) Grand means and
topographic plots of the stimulus-locked P3 at electrode PO1 and PO2. Time point zero denotes the time point of the target stimulus onset, the light gray boxes
illustrate the ERP baseline from –300 to 0 ms (left) and time range each effect is averaged across (right). ERPs of the low adaptability group are denoted by red color,
while ERPs of the high adaptability group are denoted by blue color. The easy task is denoted in a lighter shade of the respective colors than the hard task.
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easy task [F(1,225) = 0.398, p = 0.529] nor for the hard task,
[F(1,225) = 0.209, p = 0.648].

The analysis of the N450 amplitudes yielded a significant
main effect of task [F(1,225) = 337.18; p < 0.001; η2

p = 0.600]
with larger amplitudes in the easy task (0.7 µV/m2

± 0.88)
than in the hard task (−12.51 µV/m2

± 0.8). All other effects
were non-significant (all F ≤ 1.99; all p ≥ 0.16). Of note,
the finding of larger task differences in the N450 than in the
N2 is well in line with the results we observed in a previous
publication using a variation of the task used for the current
paper (Stock et al., 2016c). Furthermore, a linear regression
between adaptability score and N450 amplitudes showed that the
N450 amplitudes significantly predicted the adaptability score
in the easy task [F(1,225) = 8.590, p = 0.004], which however,
accounted for only 3.2% of the explained variability in the N450
amplitudes. Yet, for the hard task, the linear regression showed no
significant prediction of the adaptability score [F(1,225) = 0.494,
p = 0.483].

The Role of Response-Selection Processes (P3)
The stimulus-locked fronto-central P3 is shown in the
Supplemental Material. The analysis of the fronto-central
P3 revealed a main effect of task [F(1,225) = 76.078,
p < 0.001; η2

p = 0.271] with higher amplitudes in the
easy task (6.19 µV/m2

± 0.64) compared to the hard task
(1.93 µV/m2

± 0.66). No other main or interaction effects
were significant (all F ≤ 2.907; p ≥ 0.090). A linear regression
between adaptability score and stimulus-locked fronto-central
P3 amplitudes also showed that the parietal P3 amplitudes did
not significantly predict the adaptability score in the easy task
[F(1,225) = 0.787, p = 0.376] or in the hard task [F(1,225) = 0.230,
p = 0.632].

The stimulus-locked parietal P3 is shown in Figure 3D. The
analysis of the stimulus-locked parietal P3 amplitudes showed no
significant main or interaction effects (all F ≤ 1.946; p ≥ 0.164).
Moreover, the linear regression run between adaptability score
and stimulus-locked parietal P3 amplitudes also showed that
stimulus-locked parietal P3 amplitudes did not significantly
predict the adaptability score in the easy task [F(1,225) = 0.006,
p = 0.938] or in the hard task [F(1,225) = 0.649, p = 0.421]. The
response-locked P3 ERP is shown in Figure 4A.

The analysis of the response-locked parietal P3 amplitudes
revealed a significant main effect of task [F(1,225) = 76.75;
p < 0.001; η2

p = 0.254] with larger amplitudes in the
easy task (21.04 µV/m2

± 0.95) than in the hard task
(14.66 µV/m2

± 0.85). There was no main effect of group
[F(1,225) = 0.06; p = 0.804], but an interaction of task∗group
[F(1,225) = 6.41; p = 0.012; η2

p = 0.028]. Subsequent post-hoc
t-tests revealed that both groups have larger amplitudes in the
easy task than in the hard task [low adaptability group: low
demand 19.91 µV/m2

± 1.24, high demand 15.38 µV/m2
± 1.17;

t(112) = 4.6, p < 0.001; high adaptability group: low demand
22.17 µV/m2

± 1.44; high demand 13.94 µV/m2
± 1.23;

t(112) = 7.69, p < 0.001]. Yet, the difference between hard
and easy task was larger in the high adaptability group
(8.23 µV/m2

± 1.07) than in the low adaptability group

[4.54 µV/m2
± 0.99; t(225) = 2.53; p = 0.012]. Additionally,

a non-parametric post hoc test (Mann–Whitney U test) was
performed, as not all of the values were normally distributed in
both groups. This confirmed the findings of the post hoc t-tests
and showed that the amplitude difference between the hard and
easy task was larger for the high adaptability group than for the
low adaptability group (p = 0.033). A linear regression was run
between the adaptability score and the response-locked parietal
P3 amplitudes. It revealed no statistically predictive value of
the response-locked P3 amplitudes on the adaptability score for
the easy task [F(1,225) = 2.276, p = 0.133] and the hard task
[F(1,225) = 1.743, p = 0.188].

Using sLORETA (sLORETA maps were corrected for multiple
comparisons using randomization test based on statistical non-
parametric mapping, SnPM), we examined which functional
neuroanatomical sources were associated with the task∗group
interaction during the time window where the response-locked
P3 amplitude was quantified (−35 ms to −25 ms before the
response). The sLORETA analyses comparing the task differences
between both groups suggested that this effect was associated
with larger activation differences between tasks in the cuneus
(BA 18), the insula (BA 13) and in the middle frontal gyrus (BA
9) for the high adaptability group than for the low adaptability
group.

In short, none of the ERP amplitudes, which had been
quantified in a stimulus-locked fashion (i.e., P1, N1, N2, and
P3) showed significant main or interaction effects of the group
factor (i.e., a group∗task interaction; all F ≤ 3.46; p ≥ 0.076). As
expected, the N450 showed a descriptive trend toward slightly
smaller amplitudes in the low demand condition of the high
adaptability group as compared to the in the low demand
condition of the low adaptability group. Yet, this effect failed
to reach significance. To substantiate the assumption that none
of the stimulus-locked ERP amplitudes showed significant main
or interaction effects of the group factor, Bayesian analyses
were conducted as suggested by Wagenmakers (2007) using
the template by Masson (2011). These analyses yield the value
of pBIC(H1| D), which is the probability of the alternative
hypothesis being true, based on the obtained data. According
to Raftery (1995), values below 0.5 are in favor of the null
hypothesis (i.e., indicate that the null hypothesis is more likely
to be true than the alternative hypothesis), values between 0.5
and 0.75 are interpreted as weak evidence, values between 0.75
and 0.95 are interpreted as positive evidence, values between
0.95 and 0.99 are interpreted as strong evidence, and values
above 0.99 are interpreted as very strong evidence in favor of
the alternative hypothesis. For the interaction group ∗ task we
obtained a pBIC (H1| D) = 0.199 for the P1 and a pBIC (H1|
D) = 0.245 for the N1. For the N2 the pBIC (H1| D) = 0.078
was found and for the N450 the pBIC (H1| D) = 0.152. Finally,
a pBIC (H1| D) = 0.149 was found for the stimulus-locked P3.
Altogether, these results provide strong and reliable evidence
for the rejection of the alternative hypothesis/are clearly in
favor of the null hypothesis. Yet, only the response-locked
P3 nicely reflected both task demand and group differences
as observed on the behavioral level. Specifically, the task
demand-induced amplitude difference (low > high) was larger
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FIGURE 4 | (A) Grand means and topographic plots of the response-locked P3 averaged at electrodes PO1, PO2 and Pz. Time point zero denotes the time point of
the response. The baseline interval was set from 300 to 400 ms post response; the light gray boxes illustrate the ERP baseline from –300 to 0 ms (right) and time
range each effect is averaged across (left). ERPs of the low adaptability group are denoted by red color, while ERPs of the high adaptability group are denoted by
blue color. The easy task is denoted in a lighter shade of the respective colors than the hard task. Response-locked P3 amplitudes were significantly larger in the

(Continued)
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FIGURE 4 | Continued
easy task than in the hard task. Additionally, the difference between hard and easy task was larger in the high adaptability group than in the low adaptability group.
sLORETA analyses revealed that the size differences in the task effect across groups [operationalized by the contrast of High adaptability group (easy task –hard
task) – Low adaptability group (easy task –hard task)], was based on activation differences in the middle frontal gyrus (MFG) (BA9), the insula (BA13) and the cuneus
(BA 18). The sLORETA color bar denotes the critical t-values. (B) Results from the classification analysis using the time domain ERP data. The mean predictability is
given depending on the number of features. The black curve in the figure shows the cumulative mean predictability. The error bars represent the 99% confidence
level bounds. As indicated by the red circle, the confidence bounds were not overlapping for the first and the second feature. The ERP curve of the first predictive
feature is shown. Here, the dashed vertical line in the response-locked ERP plot denotes the exact time point (35 ms after the response) of the first feature at
electrode P2. sLORETA analyses revealed that the size differences in the task effect across groups [operationalized by the contrast of High adaptability group (easy
task –hard task) – Low adaptability group (easy task –hard task)] at the time point of the predictive feature was due to activation differences in the anterior cingulate
gyrus (BA 24; BA 33). The sLORETA color bar denotes the critical t-values. ERPs of the low adaptability group are denoted by red color, while ERPs of the high
adaptability group are denoted by blue color. The easy task is denoted in a lighter shade of the respective colors than the hard task.

in the group that also showed larger behavioral task performance
differences.

Machine Learning Analysis
The results of the SVM analysis of our ERP data are shown
in Figure 4B. As outlined in the methods section, we used
the k-fold method (k = 10) to evaluate the predictability of
behavioral performance using CSD transformed ERP data. This
means that for each extracted feature there were 10 varying
estimations of the predictability of behavioral performance. Using
the data from the k = 10 estimations we calculated the 99%
confidence bounds for each feature. A significant difference is
indicated by no overlap between the calculated 99% confidence
bounds.

As different modulations in the adaptability toward varying
cognitive control demands were not found to be reflected in
modulations of stimulus-locked ERP data and these adaptability
differences were mainly driven by differences in the easy task,
we decided to only analyze and report machine learning results
from response-locked ERP data in the easy task (Table 1). It
may be argued that it is inconsistent to restrict a data-driven
approach to detect new, possibly relevant neurophysiological
features as outlined in the introduction. However, it is important
to consider that there is always a risk of false positive
results.

The first and best ERP feature was identified 35 ms after
the response at electrode P2. Importantly, the position of the
P2 electrode and the and ERP waveform identified as the most
predictive feature are very closely related to the response-related
P3 component. This first ERP feature led to a prediction accuracy
for group classification of ∼62.5%, which is significantly above
from chance level (50%) as indicated by the 99% confidence
bounds. Moreover, permutation test reveals that this feature
was not selected by chance, i.e., the accuracy in all of 1000
permutation tests were lower than real accuracy (62.5%). Adding
more features led to a numerical increase in prediction accuracy
(cf. Figure 4B), but this increase was not relevant, as the 99%
confidence bounds of the first feature largely overlapped with the
prediction accuracy obtained after adding the second feature. The
sLORETA contrast at 35 ms after the response (i.e., the time point
of the ERP feature which best predicted performance as defined
by group membership), was calculated using a single group
zero mean test (i.e., ERPlow demand = 0). The sLORETA analysis
revealed a main activation in the anterior cingulate gyrus (BA 24;

TABLE 1 | Summary of the extracted features showing feature number, electrode
site, time point in ms of the extracted feature after the response was made, the
mean predictability and the significance as provided from the t-tests used as a
filter method in the feature selection step and the corresponding p-value for
permutation test.

Feature
number

Electrode Time
point
(ms)

Mean
predictability

(%)

p-value % in
which the
prediction
is better
than all

randomly
assigned

labels

1 P2 35 62.52 0.006 100

2 FC3 797 66.89 0.003 100

3 TP8 320 68.17 0.002 100

4 F5 457 69.48 0.003 100

5 P2 20 69.61 0.003 100

6 C4 996 69.08 0.009 100

7 C5 −277 70.42 0.006 100

8 C4 922 71.37 0.010 100

9 C5 −281 70.52 0.006 100

10 F5 402 70.96 0.007 100

11 Pz 180 73.15 0.009 100

12 F5 410 72.87 0.009 100

13 C5 −273 73.66 0.008 100

14 Pz 184 74.16 0.008 100

15 C4 1000 74.57 0.007 100

16 FC3 574 74.12 0.010 100

17 PO2 320 75.39 0.008 100

18 CP5 −203 74.53 0.008 100

19 CP4 12 73.66 0.005 100

20 F5 574 73.21 0.003 100

BA 33). Notably, the identified feature at 35 ms after the response
is only slightly shifted behind the response-locked P3 amplitude
and also the source localization results are very coherent. This
validates the findings and makes it very unlikely that the effect
found for the response-locked P3 reflects a type 1 error.

DISCUSSION

The aim of this study was to identify the neural dynamics
related to metacontrol, i.e., the ability to strategically adapt
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to different cognitive control demands (Doya, 2008; Goschke
and Bolte, 2014; Hommel, 2015; Hommel and Colzato, 2017;
Hommel and Wiers, 2017). To identify how and why the level of
adaptation to varying cognitive control demands differs between
individuals, we formed two equally large groups on the basis of an
“adaptability score.” This score reflected how well an individual
could disengage cognitive control in the face of low control
demands. In order to identify the underlying neurophysiological
processes and neuronal sources of those differences, we combined
ERP recordings with source localization and machine learning
approaches.

Generally, individuals in the high adaptability group seemed
to outperform the low adaptability group, as reflected by an
overall higher behavioral performance score. This was however,
not based on superior performance in the high control demand
task, but instead based on better performance in case of low
control demands. While this finding might seem counterintuitive
at first, it makes a lot of sense when regarding metacontrol as
the ability to allocate control resources in a demand-dependent
manner, i.e., to selectively exert control only in situations
requiring this strategy (Goschke and Bolte, 2014; Hommel and
Wiers, 2017). This is well in line with the action control concept
by Hommel and Wiers (2017), who assumed that the metacontrol
ability is based on a system that manages to find the right
balance in the dynamic interplay between extreme ‘persistence’
and extreme ‘flexibility’ of information processing (Dreisbach
and Goschke, 2004; Cools and D’Esposito, 2010). In case of low
cognitive control demands (i.e., in the easy task), individuals
with better metacontrol abilities exert less ‘flexible’ cognitive
control and let more ‘persistent’ stimulus-driven automaticity
take over. Hommel and Wiers (2017) further assume that
selection criteria, such as energy consumption and efficiency,
reflect these possible shortages of currently available cognitive
resources.

As already stated in the introduction, behavior would be ill-
advised by a system that pursues goals in a top-down manner
irrespective of the given control requirements (Hommel and
Wiers, 2017). It would be much more beneficial and expedient
to adjust cognitive control or response selection processes
depending on situational requirements (induced via task rule
complexity), because both of those processes are known to be
capacity-limited (Meyer and Kieras, 1997; Engle and Kane, 2003;
Kane and Engle, 2003; Tombu and Jolicoeur, 2003; Lavie et al.,
2004; Marois and Ivanoff, 2005; Sigman and Dehaene, 2008;
Engle, 2010; Lavie, 2010; Yildiz et al., 2013; Yildiz and Beste,
2015). A strategic adjustment of these processes to task rule
complexity would allow to optimize the use of this limited
capacity as an important resource. Furthermore, and even
more importantly, a strategic reduction of top–down strategies
in situations with low control demands most likely allows the
participants to benefit from rather automated behavior and
response-selection strategies, which is not only less capacity
demanding, but also tends to produce faster and less error-
prone responses. As the behavioral data were well in line
with this assumption, we proceeded with the analyses of ERPs
that are known to reflect the control demand differences of
our experimental paradigm (Stock et al., 2016d) and might

therefore also differentiate individuals with high and low
adaptability/metacontrol.

We had expected to find the behavioral group differences to
be reflected by central measures of cognitive control and conflict,
i.e., the N2 and/or N450 (Larson et al., 2014). Specifically, we
had expected to find smaller (i.e., less negative) N450 amplitudes
during the low control demand task in individuals with a high
adaptability (i.e., metacontrol abilities) than in individuals with
low adaptability. The reasoning behind this hypothesis was
that if individuals with higher metacontrol are better able to
refrain from engaging top–down strategies in situations with
low control requirements, this should be reflected in smaller
N450 amplitudes, which had previously already shown to be
modulated by variations in control demands as induced by
task rule complexity (Stock et al., 2016d). But even though
both control ERPs showed the expected larger amplitudes in
the high demand condition (Botvinick et al., 2004; Folstein
and Van Petten, 2008; Larson et al., 2014; Stock et al., 2016c)
and there was slight descriptive tendency toward larger N450
amplitudes in the easy task of the high adaptability group as
compared to the low adaptability group (cf. Figure 3C), the
latter failed to reach significance. This effect may have failed
to reach significance due to relatively large intra-individual
variability, which could have potentially been increased by
the relatively temporal large distance from the locking point.
Interestingly, a linear regression established that only in the
easy task, the N450 amplitudes predicted the adaptability score,
which however, only explained very little variance (4.5%). Yet,
add-on Bayesian underpinned the fact that neither basic bottom-
up perceptual and attentional selection processes reflected by
P1 and N1 (Luck et al., 2000; Herrmann and Knight, 2001),
nor conflict monitoring processes reflected by the N2 or N450
(Folstein and Van Petten, 2008; Larson et al., 2014), stimulus-
driven frontal attention mechanisms during task processing
reflected by fronto-central P3 or stimulus-response mapping
processes reflected by the stimulus-locked parietal P3 could
explain the behavioral differences observed between our two
experimental groups. This was further underlined by multiple
linear regression analyses showing that the ability to strategically
adapt to different cognitive control demands (i.e., the adaptability
score) was not predicted by amplitude modulations in most
of the processes mentioned above. This suggests that these
stimulus-associated processes are unlikely to reflect meta-control
processes.

Instead, the behavioral group differences level were
paralleled by the modulation of parietal response-locked P3
ERP amplitudes. Specifically, we found these larger P3 amplitude
differences to parallel the larger behavioral task differences
observed in the high adaptability group. The parietal P3
component that we quantified has previously been found to
appear in both stimulus- and response-locked ERPs (Verleger
et al., 2005; Stock et al., 2016d), presumably because it represents
an intermediate process between stimulus evaluation and
responding in choice reaction tasks (Falkenstein et al., 1994a,b;
Verleger et al., 2005). It has furthermore repeatedly been
linked to action selection or mapping appropriate responses
onto perceived task-relevant stimuli (Verleger et al., 2005,
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2015; Twomey et al., 2015; Gohil et al., 2016; Petruo et al.,
2016; Stock et al., 2016a, 2017; Gohil et al., 2017). The fact
that response-locked P3 reflected the observed behavior, while
the stimulus-locked P3 showed no effects at all, suggests that
stimulus-associated information processing is unlikely to
account for the observed behavioral group differences, although
it needs to be mentioned that stimulus- and response-locked
ERPs like the P3 are not completely independent measures and
that both processes partly overlap (Ouyang et al., 2011, 2015b).
Yet, it seems much more likely that later response-selection
processes could orchestrate the dynamics in the ability to
efficiently adapt to varying cognitive control demands. This
interpretation seems to be well in line with previous findings
that the parietal P3 component reflects variations in cognitive
control demands (Verleger et al., 2005; Twomey et al., 2015;
Stock et al., 2016d), with lower demands producing larger P3
amplitudes (Stock et al., 2016d). In dual task situations (Polich,
2007) or during processes of early vision (Schubö et al., 2001),
this amplitude increase has repeatedly been suggested to reflect
the attentional resources left over by the primary task. Given
that we found larger task differences in the high adaptability
group, this provides further evidence for our hypotheses
that metacontrol is defined by the ability to allocate control
resources based on the actual demand for top–down control,
rather than always exerting control (Goschke and Bolte, 2014;
Hommel and Wiers, 2017). The fact that the high adaptability
group had slightly larger response-locked P3 amplitudes in
the low demand condition suggests that their attentional and
control resources were less strained than those of the low
adaptability group, probably because this group applied a rather
automatic and more expedient stimulus-response mapping
strategy. Likewise, the slightly smaller P3 amplitudes of the
high adaptability group in the high demand condition suggest
that this group may have invested more control resources
and thus suffered a greater decrement in the still available
residual control capacities than the low adaptability group.
Source localization analysis showed the group differences in
P3 task effects were associated with activation differences in
the middle frontal gyrus (MFG) (BA9) and the insula (BA13).
It has been suggested that the insula serves as an integral hub,
which is implicated in a plethora of different functions like
reinforcement learning, emotion control, and decision-making
(Gogolla, 2017) and plays a critical role in cognitive control
(Menon and Uddin, 2010). Even more importantly, both insular
cortex and the MFG have been shown to be especially engaged
during response selection stages of decision-making (Paulus
et al., 2005; Karch et al., 2010). In particular, the insula was
shown to be more active when subjects selected another response
relative to staying with the same choice made on the previous
trial (Karch et al., 2010) and the MFG was associated with
voluntary response adaptation (Paulus et al., 2005). Therefore,
the current findings and interpretation fits well into the current
literature on functions of the insula and the MFG during
response selection and control and suggests that those two
brain regions might play a key role in the identification of
control requirements and the subsequent allocation of control
resources.

In addition to those classical ERP analyses, we chose
to complement our methodological approach with machine
learning. The SVM analysis identified an EEG feature which
best classified whether a given participant belonged into the
high or low adaptability group with a prediction accuracy
of 63% (with a chance level of 50%). Future research using
this strategy might consider to apply SVM on temporally
decomposed data(Mückschel et al., 2017; Wolff et al., 2017),
applying an algorithm that reduces intra-individual variability
of the data (Ouyang et al., 2011, 2015a,b; Verleger et al., 2014)
and could therefore lead to increased classification accuracies.
Importantly, the ERP feature that best predicted the behavioral
group membership was identified temporally and topographically
close to the peak of the response-locked P3 amplitude in the
easy task. There are thus coherent findings from two different
analyses performed with the data. In line with a number of
studies, we found the response-locked P3 peak as well as the best
predictive feature to occur around the moment of responding
(Verleger et al., 2005, 2016; Saville et al., 2011; Stock et al.,
2016c). It is therefore likely that the identified feature also
reflects aspects of response selection processes. Interestingly,
source localization at the time point of the predictive P3
feature showed that the anterior cingulate cortex (ACC; BA
24; BA 33) was the largest generator of neuronal activity at
this specific time point. The reason why different sources were
detected by the standard ERP analysis and the SVM analysis
is that the ERP feature detected by the SVM was identified
at a later time point than the P3 peaks identified by the
ERP analysis. While some theories assume that activation in
the ACC is mostly useful for boosting weak processes in
order to establish top down control (Paus, 2001; Stuss et al.,
2005), a complementary conception by Shenhav et al. (2013,
2016) proposes that the role of the ACC during cognitive
control can be understood in terms of a single underlying
function: the allocation of control based on the evaluation
of the EVC. According to EVC, the ideal cognitive control
adaptation strategy would be to attribute high amounts of
cognitive control in situations, where high cognitive effort is
required and low amounts of cognitive control in situations,
which can be better processed in an automated fashion with
less cognitive effort. The EVC concept might therefore also
explain why activation modulation in the ACC was observed
at the time point that was most predictive for differences in
metacontrol, i.e., the ability to adapt the allocation of top–
down resources to different cognitive control demands. As a
central hub for response selection and computation of the
EVC, the ACC can probably be better modulated by subjects
who were able to efficiently allocate cognitive control (high
adaptability group) compared to those who rather struggle to
adapt to differences in control requirements (low adaptability
group). The ACC modulation, which was associated with
the modulation of the P3 ERP, may be interpreted as a
response selection process based on the evaluation of the EVC.
This integration process can either promote simple, fast, and
overlearned actions, which are more automatic, or complex, slow,
and novel actions, which are more controlled (Hommel and
Wiers, 2017; Beste et al., 2018). Thus, it can be argued that the
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ability to efficiently integrate the relevant information for the
response selection process and to strategically change the ‘style’
of the response selection (Hommel and Wiers, 2017) into
more automatic or more controlled mode is associated with
group differences in the adaptability toward varying cognitive
control demands. Since group differences were mainly driven by
performance differences in the easy task, it can furthermore be
concluded that individuals who are better at strategically adapting
to different cognitive control demands seem to especially benefit
from reducing the exerted cognitive control level to enable a
stronger automatization of their response selection processes
in situations where little cognitive control is needed. This allows
the conclusion that inter-individual differences in metacontrol
capacities might not necessarily emerge from differences in the
maximum of cognitive control that can be invested. Instead, the
most expedient type of metacontrol seems to allocate control in
a rather frugal way, which leaves more room for expedient and
less error prone automatic processing strategies that provide the
individual with more available/“free” residual cognitive resources.
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Verleger, R., Jaśkowski, P., and Wascher, E. (2005). Evidence for an integrative
role of P3b in linking reaction to perception. J. Psychophysiol. 19, 165–181.
doi: 10.1027/0269-8803.19.3.165

Verleger, R., Metzner, M. F., Ouyang, G., Śmigasiewicz, K., and Zhou, C.
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