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Traffic safety essentially depends on the drivers’ alertness and vigilance, especially
in monotonous or demanding driving situations. Brain oscillatory EEG activity offers
insight into a drivers’ mental state and has therefore attracted much attention in the
past. However, EEG measures do not only vary with internal factors like attentional
engagement and vigilance but might also interact with external factors like time on
task, task demands, or the degree to which a traffic situation is predictable. In order
to identify EEG parameters for cognitive mechanisms involved in tasks of high and
low controllability, the present study investigated the interaction of time on task, task
load, and cognitive controllability in simulated driving scenarios, using an either re-active
or pro-active driving task. Participants performed a lane-keeping task, half of them
compensating varying levels of crosswind (re-active task), and the other half driving
along a winding road (pro-active task). Both driving tasks were adjusted with respect to
difficulty. The analysis of oscillatory EEG parameters showed an increase in total power
(1–30 Hz) with time on task, with decreasing task load, and in the re-active compared
to the pro-active task. Furthermore, the relative power in Alpha band increased with
decreasing task load and time on task, while relative Theta power showed the opposite
pattern. Moreover, relative Alpha power was also higher in the re-active, than pro-active,
driving situation, an effect that even increased with time on task. The results demonstrate
that the controllability of a driving situation has a similar effect on oscillatory EEG activity
like time on task and task load.
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INTRODUCTION

Sleepiness and fatigue have been identified as the reason behind 10%–40% of fatal crashes and
highway accidents caused by car or truck drivers (Horne and Reyner, 1999; Philip, 2005). Sleep
related factors, circadian rhythms and driving duration may play a role for drivers’ fatigue as well
as boredom and monotony when long term rides are considered (Otmani et al., 2005; Philip, 2005;
Papadelis et al., 2007). May and Baldwin (2009) proposed that both active and passive factors can
generate a cognitive decline with time on task. Not only longer lasting cognitively demanding
activity may lead to more error prone behavior, but also monotonous surroundings may
evoke hypo-vigilance (Larue et al., 2011, a state that may be phenomenologically comparable to the
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former one. Thus, vigilance and attentional engagement vary not
only with time on task but also with the driving situation (Larue
et al., 2011; Wascher et al., 2016).

One core factor that determines attentional engagement is the
degree to which a situation is under control of the actor. Human
behavior can be driven by two sources in a general sense: an
action can be: (a) the answer to an outer stimulation as a ‘‘re-
action’’, or (b) generated by an inner source pro-actively as an
intentional act (Braver, 2012; Garcia et al., 2017). In real life,
no action ever will be exclusively either re-active or pro-active.
The weighting of these two elements reflects controllability of
a situation, in particular when a task is complex (Garcia et al.,
2017). A proactive allocation of attentional resources may boost
performance but is costly. The likelihood of its deployment
therefore depends on the size of the expected increase of the
outcome compared to reactive action-control, as well as on the
validity of the stimulus indicating the need for control (Braver,
2012).When you are driving a car, the same steering actionmight
be required when you take a curve or when you realize that
your car is displaced by the sudden onset of crosswind. While
the former action can be planned in advance, responding to
crosswind is highly determined by the unintended motion path
of the car and therefore purely re-active. However, also without
crosswind, turn driving can be more or less re-active when a
bend changes its radius unexpectedly or when the velocity is not
adapted to visibility (e.g., with fog).

In general, the pro-active allocation of cognitive control
is directed forwards. It intentionally adapts to an upcoming
event (Garcia et al., 2017). In experimental studies, it has been
shown that stimulus processing is accelerated and response
selection requirements are markedly reduced (Waszak et al.,
2005) primarily due to preparatory activity, initiated by the
posterior medial frontal cortex (Oliveira et al., 2014). The ability
to prepare for an action, however, is not only a matter of the
situation but also strongly determined by individual resources.
In a driving task, advances of action planning were demonstrated
comparing poor and good navigators (Ou et al., 2012). Inefficient
preparation of poor navigators led to increased need to re-act in
a decision situation. Cognitive control resources that are needed
for such decisions are prone to be reduced by external factors
such as mental fatigue, stress, or increasing age. For example,
when vigilance is lowered due to long term or monotonous
driving, cognitive control has been reported to be substantially
lowered (Boksem et al., 2005; Bonnefond et al., 2011). Human
intentional control in a given situation thus highly depends on
the demands of a task and the specific resources available (Garcia
et al., 2017).

Psychophysiological studies that intend to estimate the
drivers’ state by means of the EEG are well established (Borghini
et al., 2014; Ahn et al., 2016). They promise an objective measure
of e.g., drivers’ fatigue and have even been proposed as a
potential countermeasure promoting accident avoidance (Lal
and Craig, 2001). Different measures like power, properties of
Alpha spindles (Schmidt et al., 2009; Simon et al., 2011) or
connectivity in various frequency bands (Kong et al., 2015), phase
locking among others in the gamma band (Kong et al., 2012)
or combinations of these parameters have been proposed as

indicators of a driver’s mental state. In order to develop online
tracking systems, temporally highly resolving analyses have been
provided (Liang et al., 2005; Lin et al., 2005; Papadelis et al.,
2007; AlZu’bi et al., 2014). Most recently, the availability of
cheap and simple to be applied EEG systems might constitute an
opportunity to transfer these methods to real life scenarios (Picot
et al., 2013; AlZu’bi et al., 2014; Nugraha et al., 2016).

Some of the measures mentioned above, however,
additionally vary with cognitive demands. Alpha power
decreases with the allocation of attention (Herrmann and
Knight, 2001) and with increasing working memory demands
(Klimesch, 2012). This leads to the assumption that high
Alpha power may be related to attentional withdrawal or task
disengagement (Wascher et al., 2014, 2016) that becomes
predominant when boring tasks have to be performed
(Borghini et al., 2014). In other words, Alpha power may
reflect mind-wandering when perceptual demands are
reduced, e.g., during a monotonous driving situation (Lin
et al., 2016). This assumption is further supported by
the observation, that the effect of an increase in Alpha
power with time on task cannot be observed when task
demands are high (Fairclough and Venables, 2006), because
participants remain involved in a given task when it is
challenging.

Ongoing frontal midline Theta power was found to increase
with increasing task demands (Jensen and Tesche, 2002; Onton
et al., 2005). It could be shown that a high pre-stimulus Theta
power is related to a successful encoding in memory task (Scholz
et al., 2017). As frontal Theta activity has been associated with
various aspects of executive functioning, it has been proposed as a
general marker for cognitive control (Cavanagh and Frank, 2014;
Cavanagh and Shackman, 2015). Theta power also increases
with time on task (Wascher et al., 2014). As this increase even
occurs when the task is demanding (Fairclough and Venables,
2006), it is thus likely that ongoing theta reflects the effort
to keep performance high (Wascher et al., 2014; Arnau et al.,
2017).

These measures have been also applied to investigate pro-
and reactive driving behavior, however, not in distinct scenarios,
but rather to characterize different driving styles. In two studies
it has been shown that reactive driving behavior goes along
with increased steering variability and enhanced alpha power at
posterior sites (Garcia et al., 2017; Karthaus et al., 2018).

In order to test pro- and reactive driving and its interaction
with time on task (and thereby possible mental fatigue), we
created two driving scenarios in which either strategy was
predominantly required for good performance. Participants
either drove along a straight road and experienced displacements
of their car by varying crosswind (re-active), while another
group of participants drove along a winded road (pro-active).
EEG was measured while driving, and the oscillatory power in
general and specifically in Alpha and Theta frequency bands over
frontal and posterior brain areas were analyzed. It was expected
that the ability to pro-actively control the driving path leads to
increased task engagement and consequently to a decrease of
Alpha activity. Theta activity should not vary across tasks as long
as task demands are comparable.
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MATERIALS AND METHODS

Participants
A total of 30 healthy participants took part in the experiment,
with 14 of them performing the re-active (7 female, mean
age 25.1 years) and 16 the pro-active (8 female, mean age
24.1 years) driving task. All participants were active car drivers,
driving at least twice a week during the last three years. They
received 10 e per hour for participation in the experiment.
None of the participants reported any neurological or psychiatric
disorder. All reported normal hearing and normal or corrected
to normal vision. They provided informed written consent prior
to entering the experiment. The study was approved by the local
ethics committee of the Leibniz Research Centre for Working
Environment and Human Factors.

Task and Procedure
Both tasks were set up in a static driving simulator (ST Sim; ST
Software B.V. Groningen, Netherlands).

In the re-active driving condition, participants drove on
a straight two-lane road. Lane keeping was distracted by a
systematically varying sinusoid lateral force resulting from
different road slopes. This force simulated periods of crosswind
that continuously shifted the vehicle to the left and right,
according to a complex signal of eight different superimposed
and phase-delayed sine waves (1/25.6, 1/17, 1/12.8, 1/10.2, 1/8.6,
1/7.2, 1/6.4 and 1/5.6 Hz). In the pro-active task, participants
drove on a one-lane road with curves of varying radii. Both
scenarios were set up in monotonous grassland without any
additional visual distraction. Driving speed was held constant
at 31 mph. Participants were instructed to keep the vehicle on
the track (respectively driving lane in the re-active condition) as
accurately as possible.

The strength of the crosswind and the radii of the curves
varied across segments (duration 2 min each) randomly between
three task load levels (low, middle, high), in which the amplitude
of crosswind (respectively radii) were modulated. The high task
load condition was adjusted in pilot experiments to amplitudes
that allowed participants to keep the car on the track for about
95% of the time. The low task load condition was in both tasks to
go along a straight road without distraction. In the middle task
load condition the amplitude of the cross wind and the curve
radii were exactly in the middle between these two conditions.

Before each task load segment started, a short transfer-interval
(duration 1 s) was introduced to smooth the transfer between
adjacent segments and avoid abrupt changes. Three different task
load segments in randomized order were combined to triplets.
The first triplet (6 min overall) served as practice period, in
which the participants became familiar with the experimental
task. This triplet was followed by nine experimental triplets that
were separated into three blocks (with three triplets each) for
data analyses. Thus, the experimental block lasted for 54 min,
without any break or interruption. While driving a sequence of
short tones was presented continuously (sound level 70 dB(A),
duration 100 ms, stimulus-onset asynchrony 1000 ms) that
should be ignored by the participants. Tone stimuli were initially

invented in this series of experiments in order to investigate
the Mismatch Negativity (MMN; e.g., Näätänen et al., 2007) as
an indicator of mental resources. MMN turned out to be not
reliably modulated by experimental manipulations in the present
experiment, so we skipped it for the sake of clarity. Given their
uniform and periodic character, it appears unlikely that these
stimuli systematically changed the oscillatory response or lead
to differences in oscillatory response between the experimental
conditions.

Data Recording
For EEG recording 64 scalp electrodes placed according to the
International 10–10 system and a ‘‘BioSemi active 2’’ system
(BioSemi, Netherlands, USA) were used (sampling rate 2048 Hz,
bandwidth DC—140 Hz, electrode impedance below 10 kΩ).
Six additional electrodes positioned around both eyes were used
for electrooculography to measure horizontal and vertical eye
positions. Two additional electrodes were placed on the left and
right mastoids.

Data Analysis
For the processing of the behavioral and EEG data, MATLAB
2016b (The MathWorks Inc., Natick, MA, USA) with the open
source toolbox EEGLab (Delorme and Makeig, 2004) was used.
Statistical analyses were done using RStudio 1.0.136 (RStudio,
Inc., Boston, MA, USA) with R 3.3.2 (R Core Team, 2016). The
figures have been created using Veusz1.

Behavioral Data
Time off track, as the main index for individual accuracy, was
defined as the percentage of time, the car left the right driving
lane (re-active driving) or the track (pro-active driving). Steering
variability, indicating workload (Verwey and Veltman, 1996),
was defined as mean number of turns of the steering wheel
within one second segments. Finally, steering velocity, served as
an indicator for motor activity. It was extracted from the first
derivate of the recording of steering position. It should be noted
that these parameters diverge from those reported in previous
studies in which only crosswind was investigated (e.g., Wascher
et al., 2016). These modifications are based on the fact that
driving lane variability cannot be applied to turn driving, because
pro-active strategies like cutting the corner would lead to an
erroneous reduction of performance measures. Time off track
appeared to be the only measure of behavioral performance that
was applicable to both tasks.

All parameters were entered into a mixed-design ANOVA
with the between-subject factor TASK (2; re-active, pro-active)
and the within-subject factors TASK LOAD (3; low, medium,
high) and TIME ON TASK (3; Blocks 1, 2, 3).

EEG Data
Broken channels were detected based on kurtosis and probability
criteria in data bandpass filtered from 0.1 Hz to 35 Hz
and excluded from further analysis. Before performing
an Independent Component Analysis (ICA), the data was

1https://veusz.github.io/
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down-sampled to 256 Hz and band-pass filtered again from
1 Hz to 30 Hz in order to obtain more stable Independent
Component (IC) solutions. The data was then segmented
into 1 s long epochs around the onset of the tones. Artifacted
segments were then detected and rejected automatically.
From the remaining segments, a random sample comprising
30 min of data were drawn and used as basis for the ICA. The
resulting ICs were than written back into the 2048 Hz sampled
data. ICs representing artifacts were detected and rejected
using the ADJUST algorithm (Mognon et al., 2011). Again,
artifacted segments were rejected automatically (rejection rate
21.3% on average, number of segments for analyses between
1876 and 2941). Finally, previously rejected channels were
interpolated. For the analyses of frequency spectra, FFTs were
calculated on the extracted segments. Because of a substantial
shift (higher power across a wide range of frequencies in the
re-active task) that was visible in the raw spectra when pro-
and re-active driving were compared (see Figure 1), a two-step
analysis was chosen. Firstly, to address the different levels
in general power, total power between 1 Hz and 30 Hz was
calculated. Thereafter, the mean power was extracted for the
Theta (4–7.5 Hz) and the Alpha band (8–12 Hz) and both
were normalized on the total power as measured at the same
electrodes. The range for each frequency band was selected
based on visual inspection of the overall spectrograms (see
also Figure 1). In order to minimize spectral overlaps, the
width of the window for theta activity was slightly reduced
compared to a preceding study (Wascher et al., 2016). Relative
power (percentage of total power) was entered into analyses.
All analyses were performed separately on the average values of
two electrode quadruples defined along the midline (anterior:
F1, Fz, F2, FCz; posterior: PO3, POz, Pz, PO4). The electrode
groups were selected to cover the main areas where Alpha
and Theta effects of mental fatigue and task load have been

FIGURE 1 | Spectral distribution as measured at posterior electrodes. An
overall shift towards higher power is visible in re-active (gray lines) compared
to pro-active (black lines) driving. The different lines within tasks reflect
different levels of task load.

reported so far (see Wascher et al., 2014). Additionally, analyses
of absolute power are given for better comparison to previous
studies. Total power, percentages of total power in the Theta
and Alpha band and absolute power values were entered
into mixed-design ANOVAs with the between-subject factor
TASK (2; re-active, pro-active) and the within-subject factors
TASK LOAD (3; low, medium, high), and TIME ON TASK
(3; Blocks 1, 2, 3).

FIGURE 2 | Behavioral parameters (mean values and standard errors of
means). Tasks were adjusted for demands based on the percentage of time
off track. This led to increased steering variability in the re-active task for the
subjects needed to correct their line more often and to increased steering
speed in the pro-active task.
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RESULTS

Behavioral Data
Time off track was comparable across TASKs, F(1,28) = 0.01,
p = 0.913, η2p < 0.01 (Figure 2). It increased with TASK LOAD,
F(2,56) = 9.31, p = 0.003, η2p = 0.25, and with TIME ON TASK,
F(2,56) = 7.44, p = 0.005, η2p = 0.21. None of the interactions
reached significance.

Steering variability was larger for re-active driving,
F(1,28) = 26.04, p < 0.001, η2p = 0.48, and with increasing
TASK LOAD, F(2,56) = 243.91, p < 0.001, η2p = 0.90 (Figure 2).
Additionally, an interaction of task by TIME ON TASK was
found, F(2,56) = 12.03, p < 0.001, η2p = 0.30, that was due
a decrease of steering variability with TIME ON TASK for
re-active driving, F(2,28) = 10.01, p = 0.001, η2p = 0.42, but
rather an increase for pro-active driving later in the experiment,
F(2,28) = 3.87, p = 0.053, η2p = 0.22.

Steering velocity, on the other hand was larger for pro-active
driving, F(1,28) = 152.42, p < 0.001, η2p = 0.84 (Figure 2).
It increased with TASK LOAD, F(2,56) = 1374.24, p < 0.001,
η2p = 0.98, and with TIME ON TASK, F(2,56) = 7.94, p = 0.004,
η2p = 0.22. Additionally, steering velocity showed interactions
of TASK by TASK LOAD, F(2,56) = 456.59, p < 0.001,

η2p = 0.94, and TASK by TIME ON TASK. In both task, steering
velocity increased with TASK LOAD (re-active: F(2,28) = 714.02,
p < 0.001, η2p = 0.98; pro-active: F(2,28) = 935.26, p < 0.001,
η2p = 0.99) which was inherent in the task design. The increase
of steering velocity with TIME ON TASK, was less pronounced
for re-active driving, F(2,28) = 2.93, p = 0.070, η2p = 0.17, compared
to pro-active driving, F(2,28) = 6.72, p = 0.013, η2p = 0.32.

EEG Data
Total power decreased with increasing TASK LOAD for both
frontal (F(2,56) = 16.64, p < 0.001, η2p = 0.37) and posterior
(F(2,56) = 10.46, p = 0.001, η2p = 0.27) sides (Figure 3). The
increase with TIME ON TASK was significant for frontal
(F(2,56) = 6.16, p = 0.009, η2p = 0.18), but only marginal for
posterior (F(2,56) = 3.39, p = 0.053, η2p = 0.11) sides. Moreover,
there was a marginal effect of TASK on posterior total power
(F(1,28) = 3.12, p = 0.088, η2p = 0.10), being larger in the re-active,
than pro-active, driving task.

The analysis of the relative power values (Figure 3) indicated
that the relative Theta power was lower with lower TASK
LOAD (frontal: F(2,56) = 35.05, p < 0.001, η2p = 0.56; posterior:
F(2,56) = 23.34, p < 0.001, η2p = 0.45), and decreased with TIME
ONTASK (frontal: F(2,56) = 13.43, p< 0.001, η2p = 0.32; posterior:

FIGURE 3 | Mean values (with standard errors of mean) for total power and relative power in the Alpha and Theta band for frontal and posterior electrodes.
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F(2,56) = 3.64, p = 0.045, η2p = 0.12). Moreover, for the posterior
electrode side, there was a slight interaction of TASK by TASK
LOAD, F(2,56) = 3.19, p = 0.067, η2p = 0.10, suggesting that the
decrease of relative Theta power with decreasing task load was
more pronounced in the pro-active, than re-active, driving task.

Absolute Theta power increased with lower TASK LOAD
(frontal: F(2,56) = 5.43, p = 0.022, η2p = 0.16; posterior: load
F(2,56) = 5.11, p = 0.026, η2p = 0.15) and tended to do so at least
frontally with TIME ON TASK (frontal: F(2,56) = 2.92, p = 0.091,
η2p = 0.09; posterior: F(2,56) = 1.94, p = 0.168, η2p = 0.06). Posterior
Theta additionally tended to be increased in the re-active task
(F(1,28) = 3.57, p = 0.069, η2p = 0.11).

The relative Alpha power demonstrated an opposite pattern.
It decreased with increasing TASK LOAD (frontal: F(2,56) = 33.24,
p < 0.001, η2p = 0.54; posterior: F(2,56) = 11.05, p = 0.001,
η2p = 0.28), and increased with TIME ON TASK (frontal:
F(2,56) = 4.86, p = 0.020, η2p = 0.15; posterior: F(2,56) = 6.40,
p = 0.009, η2p = 0.19). Moreover, the frontal relative Alpha power
was higher in the re-active task compared to the pro-active task,
F(1,28) = 5.60, p = 0.025, η2p = 0.17. The difference in Alpha power
even increased, according to an interaction of TASK by TIME
ON TASK, F(2,56) = 4.47, p = 0.026, η2p = 0.14. Also, there was
a slight interaction of TASK by TASK LOAD, F(2,56) = 3.38,
p = 0.059, η2p = 0.11, indicating that the decrease of frontal
relative Alpha power with increasing TASK LOAD was more
pronounced in the pro-active, than re-active, driving task. No
effects of TASK were found for relative Alpha power for the
posterior site, all p > 0.10, η2p < 0.08.

Absolute Alpha power increased with decreasing TASK
LOAD (frontal: F(2,56) = 12.65, p < 0.001, η2p = 0.31; posterior:
F(2,56) = 6.14, p = 0.015, η2p = 0.18), and with TIME ON
TASK (frontal: F(2,56) = 3.61, p = 0.054, η2p = 0.11, posterior:
F(2,56) = 2.59, p = 0.105, η2p = 0.08).

To sum up, there were quite general effects on the total power
of oscillatory activity (which increased with time on task and
decreased with increasing task load). While absolute power in
both frequency bands showed more or less the same pattern,
specific effects were found for the relative power in Alpha and
Theta bands. In particular, an effect of the task performed was
observed, with the frontal relative Alpha power being lower for
pro-active compared to re-active driving.

DISCUSSION

The main aim of the present study was to uncover the role of
intentional control for enduring monotonous driving tasks by
means of psychophysiological parameters reflecting a drivers’
mental states.

EEG parameters, in particular oscillatory activity, have a
long tradition in user state examination. It was reported
repeatedly that the spectrum of the EEG slows down with
long term task performance, in other words that low frequency
bands such as Alpha or Theta increase in power. Assuming
a close relationship between power in low frequency bands
and mental fatigue, Lal and Craig (2001) even proposed
that EEG measure may serve as measure for detecting a
driver’s fatigue, hence preventing accidents. However, the main

problem with this approach is that all these measures vary
not only with mental fatigue, but also depend on other
cognitive parameters such as task load (Wascher et al., 2016),
working memory demands, or attention (for a review see
Klimesch, 2012). Intentional control is an additional candidate
to affect task engagement and therefore to interact with mental
fatigue.

In the present study, participants either had to go along a
straight road with varying crosswind (re-active) or to drive a
winding road (pro-active). The two tasks were adjusted with
respect to difficulty in a way that comparable performance was
on average achieved in both tasks. To obtain this goal, stronger
turns had to be driven in the pro-active task, because they were
predictable and therefore easier to be handled. Consequently,
and as intended, no significant differences in time off track
were observed. There were, however, differences in steering
variability, which is assumed to be an index of task load
(Verwey and Veltman, 1996; Ahlstrom et al., 2012), suggesting
that task load might be higher in re-active driving, despite
the adjustments of task demands. Most of this effect can be
assigned to correction behavior that should be widely reduced
when steering behavior can be anticipated. Interestingly, steering
variability increased with time on task in pro-active driving
and decreased in re-active driving. Both effects went along with
decreasing driving performance and indicate that participants
reduced engagement into the task. Re-active corrections were
reduced and potentially reduced pro-active planning of the
driving task led to an increased need to correct the steering angle.
Steering velocity, on the other hand, was larger in pro-active
driving, reflecting higher motor activity in cornering, especially
when taking narrow bends.

The effects of task load, time on task and task condition
were mirrored in oscillatory EEG parameters. First of all, we
replicated our previous findings of increasing Alpha and Theta
power with decreasing task load and time on task (see Wascher
et al., 2016). The same pattern, however, was obtained for total
power, indicating this to be a global effect on lower frequency
bands, which has been previously reported to be related to
mental fatigue (see e.g., Lal and Craig, 2001). The strong
modulation with task load, however, indicates that it might be
also related to boredom and attentional withdrawal that the
driver experienced when the driving situation is less demanding
and long-lasting. In addition, driving along a straight road with
crosswind compensation might have been more boring (and
consequently more prone to attentional withdrawal) than turn
taking on a winding road, probably related to a slightly larger
global power in the re-active, than pro-active, task condition.
However, effects in total power may as well be due to a bias
across the two samples tested here. It is noteworthy that all other
effects found for total power accord to results reported for the
lower frequency bands with mental fatigue and task load. Thus,
high variability in this measure is not likely the cause of this
potential bias.

Due to the fact that the task effect in total power may have
camouflaged specific effects in the selected frequency bands, we
focused on the relative power in Alpha and Theta bands. Support
for this approach comes from the observation that absolute
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power in both investigated frequency bands varied very similarly
to this rather general measure.

The relative Alpha activity corresponds to the total EEG
power and absolute Alpha power, being increased with lower
task load and increasing time on task for both frontal and
posterior areas. In addition, the relative frontal Alpha power
showed differences in task conditions, and was larger in the re-
active, than pro-active, scenario. Higher Alpha activity has been
related to a mental state of attentional disengagement (Baldwin
et al., 2017). Thus, the task effect on this measure suggests that
re-active behavior of crosswind compensation may have temped
the drivers to withdraw attentional resources, while taking bends
may have resulted in a more focused driving activity. The
interaction of task and time on task indicated an even increasing
relative frontal Alpha power in the re-active task, while relative
Alpha power remained at a constant low level throughout the
pro-active driving task. Also this finding would be in accordance
of Alpha activity in terms of attentional engagement.

In contrast to relative Alpha activity, relative Theta did not
follow this overall pattern. It increased with high task load,
which might reflect an increase in the need for cognitive control
in the more demanding driving situations (see also Cavanagh
and Frank, 2014). In the same sense, the decrease in relative
Theta power with time on task could be due to learning,
resulting in a decreasing amount of cognitive resources needed to
manage these driving situations. Most interestingly, Theta power
appeared to drop in the pro-active task with low task load. In
this condition actually, participants went along a straight road
without anticipating any distraction. These results apparently
contradict previous studies that reported increasing Theta power
with time on task (Lal and Craig, 2000, 2002; Craig et al., 2012;
Wascher et al., 2014, 2016). However, it should be noted that
those studies reported absolute power in the Theta band that
might be strongly influenced by total power which constantly
increases also in the data presented here. This might also explain
why the scalp topography of fatigue effects remain fairly stable
across frequency bands (see Craig et al., 2012) and does not depict
specific effects. In contrast to absolute power, relative power

emphasizes effects that go along with changes in the dominance
of frequency bands across the spectrogram (Klimesch, 1999).
Relative power was employed here on a first sight to overcome
the task effect in the comparisons, however, turned out to
probable emphasize distinct modulation within single frequency
bands. On the other hand, relative power has to be interpreted
with caution. Large changes in one frequency band (here Alpha),
can cause relative power to decrease in other frequency bands
(Theta). This might have modulated effects on relative theta but
cannot account for the entire data pattern.

In summary, the present study shows that EEG activity in
the low frequency bands is not only modulated by time on
task or cognitive demands, but also by the controllability of a
task. Both the total power of the EEG and the relative power in
the Alpha band increase with time on task, the ease of a route
section and low controllability of the driving situation (i.e., in the
re-active task). All these results are in accordance with attentional
withdrawal as a central risk factor in monotonous tasks. Relative
Theta power is the only measure reported here which pattern did
not follow this general effects. Both, the increase with higher task
load and the decrease with time on task are in accordance with
an interpretation of Theta activity in terms of cognitive demands.
This argument can be strengthened by the fact that relative theta
shows particularly low values in the pro-active sections with low
task load. This is the only condition in which it is predictable that
no action is needed.
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