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Hierarchical clustering is a useful data-driven approach to classify complex data and has

been used to analyze resting-state functional magnetic resonance imaging (fMRI) data

and derive functional networks of the human brain at very large scale, such as the entire

visual or sensory-motor cortex. In this study, we developed a voxel-wise, whole-brain

hierarchical clustering framework to perform multi-stage analysis of group-averaged

resting-state fMRI data in different levels of detail. With the framework we analyzed

particularly the somatosensory motor and visual systems in fine details and constructed

the corresponding sub-dendrograms, which corroborate consistently with the known

modular organizations from previous clinical and experimental studies. The framework

provides a useful tool for data-driven analysis of resting-state fMRI data to gain insight into

the hierarchical organization and degree of functional modulation among the sub-units.

Keywords: hierarchical clustering, resting-state networks, intra-network connectivity, somatosensory network,

visual network, resting-state fMRI

INTRODUCTION

Different clustering techniques have been used for exploratory analysis of resting-state functional
magnetic resonance imaging (fMRI) data aimed to group together functionally similar voxels or
regions of interests (ROIs) and identify functionally connected brain networks. These include,
among others, fuzzy C-means (Baumgartner et al., 1997; Hilgetag et al., 2000), spectral clustering
(Snyder et al., 1997; Mattingley et al., 1998), K-means clustering (Fogassi et al., 2005), hierarchical
clustering (Cordes et al., 2002; Foxe et al., 2002; Menon and Uddin, 2010; Wang and Li, 2013),
consensus clustering (Moretti and Muñoz, 2013), and constrained clustering (Snyder et al., 1997;
Foxe et al., 2002). Hierarchical clustering analysis (HCA) has not been used as fluently as other
clustering methods in the analysis of resting-state fMRI data probably due to its poor scalability,
high complexity and sensitivity to noise outliers. However, HCA is completely deterministic and
can stratify inherently the data into a hierarchical structure (Zhou et al., 2006; Marrelec et al.,
2008; Gómez-Laberge et al., 2011; Boly et al., 2012). Although the structure nature of resting-state
functional networks (RFNs) is still a matter of debate (Sporns, 2014), the notion that both structure
and function connection networks exhibit a hierarchical organization of distinct brain modules
that communicate through connector hubs is supported by a massive body of evidence ranging
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from cellular circuit of neuron connections to large-scale brain
networks (Hilgetag et al., 2000; Zhou et al., 2006; Cohen et al.,
2008; Ferrarini et al., 2009; Park and Friston, 2013; Zhen et al.,
2013; Russo et al., 2014). Hence, extraction and characterization
of such a hierarchical organization is an important issue in the
study of brain function networks.

In spite of the successful application of HCA in extracting
RFNs (Liu et al., 2012; Wang and Li, 2013; Alho et al., 2014), the
results are strongly affected by the specified number of network
clusters, which is not known a priori. Almost all of the previous
clustering studies of resting-state fMRI attempt to parcel the data
into a predefined number of clusters so that the clusters have high
intra-cluster similarity and low inter-cluster similarity according
to a chosen distance metric. Therefore, the outcome depends
significantly on the choice of distance metric and the predefined
number of clusters. In HCA, the cutting depth of dendrogram
directly defines the number of produced clusters. Typically, over
10 RFNs are extracted from the group-averaged resting-state
fMRI data (Cavanna and Trimble, 2006; Bellec et al., 2010;
Wang and Li, 2013) in reference to the result from independent
component analysis (ICA) studies (Damoiseaux et al., 2006;
Smith et al., 2009), However, ICA result itself is also plagued
with the issue of unknown number of independent components
(Meunier et al., 2010; Bullmore and Sporns, 2012).

Due to lack of “ground truth” for the number of RFNs,
clustering studies of resting-state fMRI data have to deal with
the optimization of the number of clusters and assessment
of clustering quality. Cluster validity index provides a tool to
evaluate the performance of clustering algorithm. Many different
cluster validity indexes have been proposed in the literature, e.g.,
Milligan and Cooper (Milligan and Cooper, 1985) presented a
comparison of 30 HCA validity indexes. In general, these indices
can be classified as internal and external indexes, the former
are usually based on information intrinsic to the data, while the
latter are based on prior knowledge about the data. The optimal
number of clusters can be determined by identifying the “knee
point” (where the validity index exhibits a sharp change) among
the validity index values as a function of different numbers
of clusters. This procedure can fail in practice, because there
might not exist any “knee points” or the existence of multiple.
Therefore, knowing how to define a robust clustering criterion is
critical and requires a good understanding of the data.

The main purpose of this study is to use cluster size
as validity criteria for the investigation of the intra-network
hierarchical organization of functional networks based on group-
averaged resting-state fMRI data. Our approach is based on
multi-stage dissection of the full connectivity dendrogram
derived using the time course of individual voxel (Wang
and Li, 2013). We employed an average-linking agglomerative
hierarchical clustering algorithm to generate the full correlation-
coefficient dendrogram for gray matter in the brain with
over 13 × 103 nodes. We developed a framework that
can be used to retrieve the entire linkage tree, dissect
it at any desired level and track a given mother node
and its associated children clusters in any two consecutive
cuts of the dendrogram. Based on stop criteria derived
from the internal characteristics of the produced clusters,

such as cluster size, weakest linkage, and inconsistency
coefficient (IC), we devised an iterative procedure to extract
the potential functional networks and sub-networks within
a given functional network. Particularly, we investigated the
somatosensory motor (SSM) and visual systems in fine details
and constructed their sub-dendrograms according to the tracked
hierarchical association and distance metrics among the sub-
units.

MATERIALS AND METHODS

Ethics Statement
The Central Ethical Review Board in Stockholm region approved
this study permission including the recruiting ad and consent
form used to provide information and obtain consent. All
participants provided informed consent by voluntary signature.

Data Acquisition
Resting-state fMRI measurements were conducted for a total
of 84 normal adult subjects (male = 40, 46, age = 21–84)
using a 3T whole-body clinical MRI scanner (TIM Trio, Siemens
Healthcare, Erlangen, Germany). A single-shot 2D gradient-
recalled echo echo-planar imaging sequence was used with the
following acquisition parameters: 32 transverse slices (3.6mm
thickness), TR/TE = 2000/35ms, FOV = 220mm, matrix size =
64 × 64, flip angle = 90◦, 300 dynamic timeframes, IPAT =

2. A 32-channel phased-array head coil was used for the signal
reception. Foam paddings were used to for every subject reduce
the head motions.

Preprocessing
The resting-state fMRI datasets underwent the same
preprocessing procedure, which were performed with AFNI
(http://afni.nimh.nih.gov/afni) and FSL (http://www.fmrib.
ox.ac.uk/fsl) programs with a bash wrapper shell. The first 10
time frames in each data set were removed to ensure signal
steady state. After temporal de-spiking, six-parameter rigid
body image registration was performed for motion correction.
The average volume for each motion-corrected time series was
used to generate a brain mask to minimize the inclusion of the
extra-cerebral tissues. Spatial normalization to the standard
Talairach template was performed using a 12-parameter affine
transformation and mutual-information cost function. The data
was then resampled to isotropic resolution using a Gaussian
kernel with FWHM = 4mm. Nuisance signal removal was
achieved by voxel-wise regression using the 14 regressors based
on the motion correction parameters, average signal of the
ventricles and their 1st order derivatives. To avoid creating
excessive negative functional connectivity no regression of white
matter signal was included. After baseline trend removal up to
the third order polynomial, effective band-pass filtering was
performed using low-pass filtering at 0.08Hz. Local Gaussian
smoothing up to FWHM = 6mm was performed using an
eroded gray matter mask to reduce unnecessary partial volume
effect from CSF and white matter. The actual FWHM of the
smoothed data was 6.2 ± 2mm as estimated by using the AFNI
program, 3dFWHM.
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Hierarchical Clustering to Extract RFNs
Clustering was restricted to voxels inside the gray-matter using a
gray-matter masked derived from FSL gray-matter tissue priors
(http://www.fmrib.ox.ac.uk/fsl). For each subject, the Pearson’s
cross correlation (CC) distances were calculated voxel-wise for
all datasets. The correlation distances were then evaluated with
a threshold ≤0.7 corresponding to a correlation coefficient
threshold CC ≥ 0.3 (Cordes et al., 2002). After thresholding,
∼1.1% of the correlation coefficients remained. Cordes et al.
(2002) used previously the same CC threshold of 0.3 for voxel-
based hierarchical clustering and the same threshold was opted
here for the individual dataset. We systematically changed the
CC threshold and found that increasing the threshold above 0.3
resulted in the loss of robustness of the algorithm. A threshold
of CC ≥ 0.4 resulted in only about 0.1% of the values remained.
After thresholding, all values above the threshold were set to
an arbitrary large value. The cross correlation matrices for all
subjects were then averaged together voxel-wise. The averaged
distance matrix was then computed, which was used to perform
hierarchical clustering through an average-linking agglomerative
clustering algorithm as the basis for the framework (Wang and
Li, 2013).

A brief description of the algorithm is summarized as follows:
Given a set of N voxels to be clustered, and a corresponding
N × N distance matrix: (1) Assign each voxel to a cluster,
resulting in N clusters, with each cluster containing just one
voxel. The distances between the clusters are the distances among
the voxels; (2) Find the closest pair of clusters; (3) Merge the
closest pair of clusters, resulting in one cluster less in total; (4)
Repeat 2–3 until only a single cluster remains. Step 3 can be
performed in a variety of ways, referred to as linkage methods.
The type of linkage in a hierarchical clustering algorithm refers
to how the algorithm determines distance between newly formed
clusters to all other voxels and clusters. Single-linkage takes
the shortest distance between new clusters against the rest
of the data, maximum-linkage takes the longest distance, and
average-linkage takes the average. In our application, voxels
within a cluster corresponding to a functional connectivity
network should be highly correlated to each other. Hence,
single-linkage is not desirable in this application. Maximum-
linkage forces the algorithm to solely determine clusters with all
voxels having high correlations to each other without exceptions.
Average-linkage relaxes somewhat the intra-cluster connectivity
requirements compared to maximum-linkage by taking the
average distance. Hence, average-linkage was opted to take into
account of the potential noise residues. We have previously
described the algorithm in more details elsewhere (Wang and Li,
2013).

The algorithm produces a binary tree, known as a
dendrogram, presenting the hierarchical organization of
the individual elements as leafs according the pre-defined
distance measure. k number of clusters can be retrieved by
cutting the k-1 longest links in the dendrogram. Since the
number of meaningful clusters is unknown a priori and is
affected by the noise level of the resting-state fMRI data, it is
difficult to use the number of clusters as the termination criteria.
Through tests on different cutting depths of the dendrogram, we

developed an iterative scheme with termination criteria based
on cluster size (S) to extract RFNs. A cluster larger than 5000
voxels in size (S ≥ 5000) is considered too large to be a single
RFNs, because the whole-brain gray matter mask that was used
has 13,312 voxels and analysis of the ICA results showed that
clusters with more than 5000 voxels are usually too large to
be considered as a single coherent RFN and should be refined
further. Therefore, we choose 5000 as the upper limit for a cluster
to be considered as an independent RFN. Analyses of the resulted
clusters at different cutting levels showed that many of clusters
are small clusters with <50 voxels (Wang and Li, 2013) and are
not associated with any known RFNs. Therefore, we choose 50
as the lower limit for clusters to be considered as potential RFNs.
In order to identify potential RFNs, Clusters with adequate voxel
size (50≤ S≤ 5000) were carefully examined by comparing their
spatial distribution patterns with previously published RFNs in
the literatures.

Preliminary analyses of the whole dendrogram indicated that
we couldn’t extract all known RFNs by a single cut. Therefore,
we implemented the following iterative procedure. In the first
iteration the cluster count for whole-brain dendrogram (k1), was
set to 64, because using higher cluster counts, such as kI = 128,
did not split the largest cluster instead of giving rise to further
division of the smaller clusters. Following the first iteration,
clusters above 5000 voxels in size (S) were then dissected with
a reduced cluster count by a factor of 2 to avoid generating
spurious amounts of small clusters, considering the fact that
the largest cluster was about half in size compared with the
total number of nodes in the whole-brain. In order to identify
potential RFNs, the empirical cluster size criteria (50 ≤ S ≤

5000) discussed above was adopted to filter away small clusters
(Wang and Li, 2013). The remaining prospective clusters were
then carefully examined by comparing their spatial distribution
patterns with ICA results and previously published RFNs in the
literature (Wang and Li, 2013). Among the identified potential
RFN clusters, we selected the RFNs corresponding to the SSM
and visual systems for further analysis with the method described
below. The basic information for the extracted SSM and visual
RFNs is replicated and summarized in Table 1.

TABLE 1 | Summary of the SSM and visual RFNs as extracted by

voxel-wise hierarchical clustering of the mean cross-correlation confident

matrix derived from the resting-state fMRI data of 86 normal adult

subjects.

RFN SSM Visual

Size (Voxels) 1540 1619

CCmin 0.19 0.18

CCavg 0.27 0.29

CCmax 0.35 0.36

ICMEAN 3.10 ± 0.17 3.25 ± 0.34

Divisible nodes 20 19

Sub-networks 14 15

The dissection was terminated at the inconsistency coefficient of 2.65, which corresponds

to the first crossing point of the inconsistency coefficient curves for the SSM and visual

RFNs.
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Hierarchical Modular Decomposition of the
SSM and Visual RFNs
One of the outputs from the framework is the whole dendrogram
as a simple ASCII file that contains a list of nodes, their
linking distance; connections to their children clusters; and the
size of children clusters. With the node list and the associated
information, any given node, cluster, or sub-tree can be efficiently
retrieved. Our framework contains a module that can be used
to identify and visualize the split children clusters from any
given mother node. For a given RFN (a sub-dendrogram), the
module can be used to iterate through the list of nodes ordered in
descending heights and systematically dissect through all nodes
in the network. For a cut at node k > 0, we compare the
clusters with the results from the previous cut at node k−1 to
identify which cluster is split. We define an extracted cluster
as a significant cluster, if its size and minimum inter-voxel
correlation coefficient among the voxels within the cluster are
sufficiently large to guarantee that the inter-voxel correlation
is statistically significant with a family-wise error rate (FWER)
p ≤ 0.01. Whenever a significant cluster is split into two
significant clusters, the mother node is denoted as a dissociable
node and its children clusters are labeled for inspection and
further analysis. The above process is repeated again for each
significant child cluster. In principle, the iteration process can
continue down to any desirable level of fine details. To facilitate
the comparison between the results from the SSM and visual
systems, we choose the cluster count corresponding to the first
intersect point of the inconsistency coefficient (IC) curves. The
IC value for each non-leaf node in a hierarchical cluster tree is
evaluated as the difference in height between the current link
and the average height of other links at the two levels adjacent
to it normalized by their standard deviation. IC is a measure of
separation between the two clusters whose merge is represented
by the node in question, compared to the separation between
sub-clusters merged within those clusters. The higher the IC
value, the less similar the sub-clusters connected by the link.
As shown in Figure 1, the IC curves intersect at IC = 2.65 and
the corresponding cut level is 80, which is a manageable size
both for cluster characterization and visualization. For each RFN,
the extracted functional connectivity sub-networks together with
their node heights were then used to construct the intra-network
sub-dendrogram.

Statistical Assessment of the Clustering
Results
As described above, for each resting-state fMRI dataset, we
computed voxel-wise the Pearson’s cross-correlation coefficients
(CC) and thresholded at CC ≥ 0.3 (corresponding to a distance
threshold ≤0.7). To assess the statistical significance of the
inter-subject averaged CC matrix, we performed voxel-wise one-
sampled t-test for the thresholded CC data (N = 84 subjects) to
test the null hypothesis that the inter-subject averaged CC at a
given voxel is not significantly different from 0. We computed
also the voxel-wise skewness and kurtosis for the inter-subject
averaged CC matrix. Examinations of the skewness and kurtosis
vs. the mean CC values show that the −1.01<skewness<-1.0

and 1.0<kurtosis<1.02 when the averaged CC≥ 0.18, indicating
that the mean CC can be reasonably approximated as a normal
distribution. Figure 2 depicts the scatter plot of the voxel-wise
t-scores vs. the mean CC values.

Using the lower boundary of this scattered plot, we obtained
the upper limit of the voxel-wise p-value corresponding to
the minimum CC. We used the AFNI program, AlphaSim, to
estimate the minimum cluster size to guarantee a FWER, p <

0.01 for a given voxel-wise p-value. We employed the following
input parameters for the AlphaSim-based simulations: the brain
mask, the upper limit of voxel-wise p-value corresponding to the
minimum CC, FWHM = 6.2mm, and simulation iterations =
106. FWHM = 6.2mm was the estimated average by applying
the AFNI program, 3dFWHMx, to the final smoothed fMRI
data, which was quite close to FWHM = 6mm used in the
final smoothing procedure described above. Figure 3 shows the
derived criterion of cluster size as a function of the minimum
CC to achieve a FWER, p < 0.01 relevant for assessing the HCA
clustering result of the average CC matrix of the entire dataset.
To gain insight into the reproducibility of the HCA results of
averaged resting-state fMRI data, we split the entire dataset into
two subsets with the same number of samples in a pseudorandom
fashion and performed similar statistical assessment as for the full
dataset.

RESULTS

Sub-dendrogram of the SSM Network
The Sub-networks for the SSM RFN were dissected down to
80 nodes (cut level k = 79). Among the 80 nodes, 19
sub-networks amongst 20 dissociable nodes were identified
(Tables 1, 2) to be statistically significant (p < 0.01 and
s ≥ 12) and functionally distinct. The intra-network hierarchy
of the extracted sub-networks and their neuroanatomical
locations are depicted in Figure 4. As shown, the extracted
sub-networks for the SSM network include the following four
groups of bilateral sub-networks: insula-auditory sub-networks
(Figure 4, clusters 1–3), paracentral lobule, and cingulate motor
cortex sub-networks (Figure 4, clusters 4, 5), sub-networks for
facial expression control (Figure 4, clusters 11–13), and sub-
networks for hand movement control (Figure 4, clusters 6,
7, 9, and 10). Furthermore, there exist also two groups of
unilateral sub-networks: the right parietal sub-network group
(Figure 4, clusters 15, 16) and the left insular-STG (superior
temporal gyrus) sub-network group (Figure 4, clusters 17–
19). An overview of these sub-network groups in relation to
the central sulcus is outlined in Figure 5 as a 2D-projection
in the Talairach coordinates. This intra-network organization
of intrinsic functional connectivity derived from spontaneous
activity of the brain at rest reflects consistently the functional and
neural anatomic connectivity topography of the SSM network.
SSM system in the human brain consists of S1, M1, and some
pre/post- central gyrus areas divided into dorsal and ventral
subgroups in addition to the parietal operculum and the auditory
cortex (Power et al., 2011).

As shown in Figures 4, 5, the extracted sub-networks of SSM
system are not exclusively localized to either side of the central
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FIGURE 1 | Inconsistency coefficients at full depth for all nodes in the SSM and visual RFNs.

FIGURE 2 | One-sampled t-test score as a function of the

cross-correlation coefficients of the resting-state fMRI time courses

between voxels inside the brain. The average results for 84 normal adult

volunteers are displayed.

sulcus rather its division is along the ventral-dorsal direction.
This sub-division roughly separates the facial motor control from
those for the rest of the body, as illustrated by the results of
stimulus-evoked responses (Penfield and Boldrey, 1937; Mayka
et al., 2006).

Another finding is that the cophenetic distance, defined as
the threshold height at which the two sub-network groups join
together, between two sub-network groups is not determined
by the anatomical spatial distance rather than the level of
functional conjunction between the involved brain sub-networks.
For example, the cophenetic distance between auditory (Figure 4,

FIGURE 3 | The minimum cluster size to guarantee a FWER, p ≤ 0.01 as

a function of the minimum CC value of the cluster. Clusters with cluster

size and minimum CC values above the curve are therefore, statistically

significance with FWER, p ≤ 0.01 as assessed by Monte Carlo simulation with

AlphaSim.

clusters 1–3) and paracentral lobule (Figure 4 cluster 4) sub-
network groups is 0.72, which is closer than that between
auditory and facial-expression control (Figure 4, clusters 11–13)
sub-network groups (0.74) or between auditory and hand control
(Figure 4 clusters 6, 7, 9, and 10) sub-network groups (0.76).

The unilateral sub-network group in the right hemisphere
(Figure 4, clusters 15, 16) involves two anterior regions of
the parietal lobe: Precuneus and inferior parietal, which have
closely related functions for visual-spatial abilities and motor
coordination strategies (Snyder et al., 1997; Mattingley et al.,
1998; Margulies et al., 2010). The unilateral sub-network group
in the left hemisphere (Figure 4, clusters 17–18) is the most
loosely connected components in SSM network. It consists of
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TABLE 2 | Summary of the significant sub-networks extracted from the

SSM RFN.

Cluster Size Height Cortical location Focal point

1 25 0.66 Left insula; BA13 (−47, −14, 12)

2 99 0.66 Left Superior Temporal Gyrus

(STG); BA41

(−53, −24, 8)

3 99 0.69 Right STG; BA42 (46, −20, 12)

4 370 0.69 Paracentral lobule; BA31;

Cingulate−motor

(0, −20, 51)

5 34 0.69 Left postcentral gyrus; BA3 (−20, −32, 60)

Right postcentral gyrus; BA3 (22, −28, 60)

6 40 0.69 Right Inferior parietal lobule;

BA40

(38, −33, 46)

7 55 0.69 Right pre− postostcentral Gyrus;

BA3−4

(37, −23, 50)

8 36 0.71 Left Superior Parietal Lobule;

BA7

(−22, −44, 57)

9 67 0.71 Left pre− postcentral Gyrus;

BA3−4

(−38, −28, 49)

10 63 0.71 Left Inferior parietal lobule; BA40 (−41, −37, 45)

11 150 0.71 Left precentral gyrus; BA4 (−48, −12, 36)

Right precentral gyrus; BA4 (53, −9, 27)

12 36 0.71 Left postcentral Gyrus; BA2 (−52, −19, 31)

13 32 0.72 Right postcentral Gyrus; BA2 (47, −18, 36)

14 37 0.72 Left STG; BA41 (−39, −30, 16)

15 55 0.77 Right Inferior parietal lobule;

BA40

(21, −49, 56)

16 33 0.77 Right Precuneus; BA7 (29, −51, 49)

17 22 0.78 Left STG BA22, Precentral

gyrus; BA6

(−50, −6, 6)

18 54 0.78 Left Insula; BA13 (−40, −6, −2)

19 29 0.79 Left STG; BA22; Insula; BA13 (−43, −21, 5)

The sub-networks are labeled in ascending order according to their heights in the

hierarchical sub-dendrogram. The closest matching Brodmann area (BA) for reach cluster

is also included in the cortical location labeling.

lateral premotor cortex (cluster 17), anterior insula (cluster
18), and caudal auditory cortex (cluster 19). This sub-network
group plays an important role in the sensorimotor integration to
mediate the categorization of incoming speech sounds through
reciprocal auditory-to-motor and motor-to-auditory projections
(Schroeder et al., 2001; Foxe et al., 2002; Alho et al., 2014).

Sub-dendrogram of the Visual RFN
Figure 6 shows the hierarchical clustering results for the visual
RFN at cutting level k = 79. Among the 80 nodes, 15 sub-
networks amongst 14 dissociable nodes were identified (Tables 1,
3) to be statistically significant (p < 0.01 and S ≥ 12) and
functional distinct. The intra-network hierarchical organization
of the extracted sub-networks depicts five groups of bilateral sub-
networks: primary visual cortex sub-network (Figure 6, cluster
1), ventral medial sub-network (Figure 6, cluster 2), dorsal sub-
networks (Figure 6, clusters 3–5), ventral inferior-occipital sub-
networks (Figure 6, clusters 6–9), and ventral posterior-temporal
sub-networks (Figure 6, clusters 10–15).

Central to the visual network is the primary visual area sub-
network (Figure 5, cluster 1). The location of cluster 1 overlaps

with the anatomical location of the primary visual cortex V1 and
dorsal visual association area V2d. These visual areas are strongly
correlated with each other, as it is known that V2 receives strong
feed-forward from V1 and sends feedback to V1 (Gazzaniga
et al., 2002). The sub-network with the least cophenetic distance
to the primary visual cortex is the ventral medial visual sub-
network (Figure 6, cluster 2). The anatomical location of this
cluster (Table 3, cluster 2) is consistent with the retinotopical
locations of the ventral medial visual area, located within the
posterior parahippocampal cortex (PHC) extending along the
collateral sulcus and flanked by the lingual gyrus (Arcaro et al.,
2009; Wang et al., 2015). This sub-network is known to respond
more strongly to scenes than objects or faces (Arcaro et al., 2009).

Overall, the sub-dendrogram of the visual RFN reflects
the known functional sub-division of the visual system
summarized as the two-stream hypothesis that the ventral stream
and the dorsal stream have distinct functional sub-divisions
(Ungerleider, 1982). The dorsal visual areas are specific for the
detection of motion, locating objects in space, and processing
visual information used to guide movements (Goodale and
Milner, 1992), whereas the ventral visual association areas are
associated with form recognition and object representation
(Vartanian and Skov, 2014). As shown in Figure 6, the cophenetic
distance between the dorsal visual areas (Figure 6, clusters 3–
5) and V1 (Figure 1, cluster 1) is 0.65, whereas the cophenetic
distance between the ventral visual areas (Figure 6, clusters 6–
15) and V1 is 0.72. Therefore, the primary visual cortex is more
closely associated with the dorsal visual stream than that with the
ventral visual stream.

The bilateral clusters 3 and 4 correspond to visual association
areas V3a andV3b, respectively, both in terms of their anatomical
locations and their lateral sub-divisions (Wang et al., 2015). V3a
and V3b border the inferior parietal sulcus visual area (IPS0/1;
Tootell et al., 1998; Press et al., 2001). This is consistent with
our observation that clusters 3 and 4 are adjacent to the bilateral
cluster 5, which corresponds to parietal visual areas IPS0. The
cophenetic distance between the primary visual sub-network
(Figure 6, cluster 1) and visual areas IPS0/1 (Figure 6, cluster
5) is 0.65, whereas the cophenetic distance between IPS0/1 and
the visual association areas V3a and V3b (Figure 6, clusters 3,
4) is 0.69. This implies that IPS0/1 is more closely associated
to the primary visual cortex than visual association areas V3a
and V3b. This conforms the view that the parietal visual areas
responsible for detection of motion, is comparatively faster
relative to the ventral-temporal areas responsible for recognition
and identification (Norman, 2002).

The ventral-stream visual association areas can be sub-divided
into two sub-network groups according to the hierarchical
functional sub-dendrogram: Inferior-occipital visual areas
(Figure 6, clusters 6–9) and posterior-temporal visual areas
(Figure 6, clusters 10–15). As shown in Figure 5, the inferior-
occipital ventral visual areas are more closely associated to
V1 with a mean cophenetic distance of 0.68, compared to the
posterior-temporal ventral visual areas (Figure 6, clusters 10–15)
with a mean cophenetic distance of 0.75. The anatomical location
of cluster 6 overlaps with ventral visual area V2v and ventral
visual area V3v (Wang et al., 2015). The clusters 7–9 forms
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FIGURE 4 | The intra-network hierarchical organization of the sub-networks extracted from the SSM RFN. The lines in the sub-dendrogram are drawn in

proportion to the distance measure of the nodes (left). The sub-networks are labeled in ascending order according to their distances in the sub-dendrogram. Each

sub-network is color coded to depict the neuroanatomical location in the Talairach template. The top panel shows the color-coded sub-networks imposed on the

smoothed white matter surface. The middle and bottom panels show the medial and lateral views of the inflated hemispheres, respectively.

FIGURE 5 | An overview of SSM sub-network groups in relation to the

fontal edge of the central sulcus as a 2D-projection in the Talairach

coordinate system. The colors indicate the different sub-network groups and

the lines were drawn to guide the eyes.

bilateral clusters corresponding to ventral-temporal areas of
human visual area V4 (hV4) and ventral- occipital visual area
(VO1). Comparing with previously determined probabilistic
maps of visual topography, we found that the boundaries
of cluster 6 with clusters 7–9 are consistent with the known
boundaries between hV4/VO1 and V3v (Sereno et al., 1995;

DeYoe et al., 1996; Engel et al., 1997; Wade et al., 2002; Brewer
et al., 2005). The clusters 10 and 11 correspond to the left and
right middle-temporal visual area (MT)/V5 (Kolster et al., 2010),
respectively. The bilateral cluster 12 corresponds well to the
lateral occipital area 1 (LO1; Wang et al., 2015). The clusters
13–15 have the largest cophenetic distances to V1 in the visual
network and correspond to the medial superior temporal area
(MST; Wang et al., 2015).

Variability of the HCA Results Based on
Averaged Resting-state fMRI Data
Figures 7, 8 show the scattered plots of the voxel-wise t-score
as a function of the voxel-wise CC of the average CC matrices
for the two split sub-datasets, respectively. These scattered plots
depict similar trend as for that of the entire dataset shown in
Figure 2. The differences between the two datasets can be more
clearly observed in the histograms of their average CC matrices
and the corresponding criterion curves of the minimum cluster
size shown in Figures 9, 10, respectively. It is clear that the
derived HCA results are very sensitive to the CC variation in the
interval 0.02<CC< 0.12 where the cluster size criterion exhibits
substantial difference between the two split sub-datasets.

DISCUSSION

Voxel-wise Hierarchical Clustering of
Resting-state fMRI Data
The agglomerative hierarchical clustering algorithm used in this
study works by grouping the voxels one-by-one on the basis of
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FIGURE 6 | Intra-network hierarchical organization of the sub-networks extracted from the visual system. The lines in the dendrogram are drawn in

proportion to the distance measure of the nodes (left). The sub-networks are labeled in ascending order according to their distances in the sub-dendrogram. Each

sub-network is color coded to depict the neuroanatomical location in the Talairach template. The top panel shows the color-coded sub-networks imposed on the

smoothed white matter surface. The middle and bottom panels show the medial and lateral views of the inflated hemispheres, respectively.

the nearest distance measure defined by the pairwise correlation
coefficient between the voxel data points. It can inherently
stratify the image data into hierarchical structures of different
scales, such as RFNs and sub-networks within a given RFN.
We have previously used HCA to analyze whole-brain resting-
state fMRI data voxel-by-voxel and obtained large-scale RFN
results that are comparable with what were obtained from ICA
studies (Wang and Li, 2013). One of the main issues in using
HCA of resting-state fMRI data to extract large-scale RFNs is
the prerequisite to specify the number of clusters produced by
the algorithm. Neither the number of RFNs present in the data
nor the noise characteristics are known a priori when applying
the algorithm to a given resting-state fMRI dataset. In other
words, we need to establish the cutting depth of the dendrogram.
After testing the framework with the group-averaged resting-
state fMRI data using different number of clusters and iterations
to investigate how the choice of clustering parameters affect the
outcomes, we proposed a multiple-iteration clustering scheme in
combination with a cluster-size based criterion as the decision
rules to extract potential RFNs (Wang and Li, 2013). It should
be noted that the matching between HCA and ICA results is
far from perfect, because these are two different data-driven
techniques. The advantages of hierarchical clustering include
data-driven characteristics and no specific assumption. ICA is
also data-driven but makes strong assumptions about the data
and underlying sources. The comparison was provided as a
discussion to facilitate the readers to interpret the clustering
results within the purview of previous RSN findings from ICA,

but it was our expectation that clustering results must match
precisely with prior RSNs.

In this study, we further explored the potential of voxel-
based hierarchical clustering of resting-state fMRI data and
extended the previously developed framework to extract sub-
networks within SSM and visual RFNs. As discussed above,
the intra-network hierarchical organizations of the intrinsic
functional connectivity derived from spontaneous activity of
the brain at rest reflect consistently the known functional
modular organizations of the corresponding neural networks. It
is apparent that the level of details that can be achieved using
the voxel-wise HCA framework spans from the large-scale RFNs
down to a single voxel defined the fMRI spatial resolution. For
simplicity of comparison in this study, we chose the 1st crossing
point of their IC curves as the clustering stop condition.With this
choice we have also taken into consideration of that the number
of clusters should be within a manageable magnitude.

There are limitations in the implementation suggested here.
Firstly, a threshold of 2.65 for the IC curves corresponding to the
first crossing point is arguably somewhat arbitrary. As shown in
Figure 1, the IC curves do not reach a plateau until IC < 2.0,
which corresponds to a cluster count over 200. This indicates
that we can obtain substantially more clusters with considerable
differences in correlation distance by lowering the threshold to
IC > 2.0. However, further lowering the threshold gives rise
to mostly smaller clusters, which are split-offs from the small
clusters. It is difficult to give putative functional assignments to
these split-offs. As shown inTables 2, 3, most clusters extracted at
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TABLE 3 | Summary of the significant sub-networks extracted from the

visual network.

Cluster Size Height Cortical location Focal point

1 546 0.64 Cuneus; Lingual Gyrus; (3, −74, 1)

Striate and extrastriate Cortex;

BA18, 30

2 62 0.64 Left Lingual/Parahippocampal

Gyrus;

(16, −49, −4)

Right Lingual/Parahippocampal

Gyrus; BA19

(−15, −53, −4)

3 37 0.65 Left Superior

Cuneus/Precuneus;

(18 −81, 25)

Right Superior

Cuneus/Precuneus; BA18

(−18 −82, 24)

4 87 0.65 Left Middle Occipital Gyrus; (−27, −83, 16)

Right Middle Occipital Gyrus;

BA19

(30, −77, 22)

5 86 0.66 Left Cuneus; (14, −74, 29)

Right Cuneus; BA18, 7, and 31 (−11, −78, 29)

6 150 0.67 Right Declive; Fusiform Gyrus;

BA19

(4, −74, −20)

7 36 0.67 Left Declive: Fusiform Gyrus;

BA19

(−32, −66, −22)

8 48 0.69 Left Fusiform Gyrus; BA19 (−23, −75, −14)

9 47 0.69 Right Fusiform Gyrus; BA19 (26, −74, −12)

10 33 0.71 Left Inferior Temporal Gyrus;

BA19

(−41, −72, −1)

11 41 0.71 Right Inferior Temporal Gyrus;

BA37

(45, −67, −2)

12 64 0.76 Left Middle Occipital Gyrus; (32, −83, −1)

Right Middle Occipital Gyrus;

BA18

(−34, −82, 0)

13 45 0.77 Right Middle Temporal Gyrus;

BA39

(40, −73, 19)

14 59 0.77 Right Middle Temporal Gyrus;

BA37

(48, −61, 7)

15 33 0.80 Left Middle Temporal Gyrus;

BA37

(−40, −73, 12)

The sub-networks are labeled in ascending order according to their heights in the

hierarchical sub-dendrogram. The closest matching Brodmann area (BA) for each cluster

is also included in the cortical location labeling.

the threshold of 2.65 have already become relatively small except
for the core clusters (cluster 4 in SSM and cluster 1 in visual RFN).
It is more productive to dissect selectively the largest cluster with
an additional iteration. Secondly, the criterion for cluster size and
weakest linkage (minimum mean CC) were not automatically
combined with the IC threshold instead they were manually
implemented in a stepwise fashion. Thirdly, the scope in
exploring the relationship between cluster size and other cluster
validity indices is so far quite limited. This aspect is particularly
important when empirical knowledge for deriving cluster size
criterion is unavailable, such as in the analysis of single subject
data. Preliminary result indicates that the relationship between
cluster size and the number of normalized connections is
potentially useful for developing robust quality criterion (Wang
and Li, 2013). Exploring the relationship between the cluster size
and other commonly used cluster validity indices, such as, IC and

FIGURE 7 | A scattered plot of the one-sampled t-test score as a

function of the cross-correlation coefficients of the resting-state fMRI

time courses between voxels inside the brain. The average results of 42

subjects (set 1) which were pseudo-randomly selected from the acquired

whole dataset.

FIGURE 8 | A scattered plot of the one-sampled t-test score as a

function of the cross-correlation coefficients of the resting-state fMRI

time courses between voxels inside the brain. The average results of 42

subjects (set 2) which were remaining half after excluding set 1.

root square mean of standard deviation can also be informative.
In single subject-based clustering, several studies have reported
that spatial reproducibility is a promising quality measure for
resting-state fMRI data (Zhou et al., 2006; Chan et al., 2008;
Ferrarini et al., 2009; Bellec et al., 2010; Alho et al., 2014; Russo
et al., 2014; Mejia et al., 2015).

The implemented hierarchical clustering scheme is,
nevertheless, a principled means in which certain internal
characteristics of the data, such as cluster size, IC, and weakest
linkage, functioned as a validity metric for selecting the clustering
results. The obtained sub-dendrograms for the SSM and visual
system corroborate remarkably well with the known modular
organizations from previous clinical and experimental studies.
On the other hand, not only the core sub-networks (cluster
4 for SSM and cluster 1 for the visual RFN) are sufficiently
large to warrant further iterations, it is also very interesting to
investigate further their functional and structural subdivisions.
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FIGURE 9 | The histograms of the averaged CC values for

sub-datasets 1 and 2 as obtained by computing the number of voxels

possessing CC values defined by an equally spaced bin interval of

0.006. The CC values are the inter-subject average among 42 subjects after a

CC ≥ 0.3 threshold at the individual level.

FIGURE 10 | The empirical cluster size criterion as a function of the

minimum cluster CC values for datasets 1 and 2, respectively. As

assessed by Monte Carlo simulation with AlphaSim, the minimum cluster size

guarantees a FWER, p ≤ 0.0.

Result from preliminary testing (not shown) indicates indeed
that an additional HCA iteration applied directly to these
clusters can produce interesting subdivisions that can lead better
understanding of the functional organizations within these
sub-networks.

Hierarchical Modular Organization of
Functional Connectivity
The hierarchical modularity of brain functional network has been
suggested to exist on multiple topological scales: Within each
module there are a set of sub-modules, and within each sub-
module a set of sub-sub-modules, etc. (Hilgetag et al., 2000; Zhou
et al., 2006; Cohen et al., 2008; Ferrarini et al., 2009; Park and
Friston, 2013; Zhen et al., 2013; Russo et al., 2014). At a given
topological scale, a module is often made up of densely inter-
connected, anatomically and/or functionally related cortical
regions, while inter-modular connections tend to be relatively
long-distance and sparse. Although the detailed organization

of brain networks across all scales is currently not yet fully
experimentally accessible, there is a rapidly growing arsenal
of data analytic tools, including the voxel-based hierarchical
clustering developed in this study, that have been tested to
analyze complex dendrograms of brain structural and functional
networks.

At the large-scale and global levels, our understanding
of brain connectivity topology relies mainly on the analysis
of anatomical and functional connections measured by non-
invasive brain imaging (Hilgetag et al., 2000; Zhou et al.,
2006; Cohen et al., 2008; Ferrarini et al., 2009; Park and
Friston, 2013; Zhen et al., 2013; Russo et al., 2014). Both
clustering (Golland et al., 2008; Wang and Li, 2013) and ICA
of brain imaging data (Wang and Li, 2015) are particularly
important data-driven approaches to study brain network
organization. Accumulating results from clustering and ICA
studies demonstrate that the cerebral cortex can be divided
into the extrinsic and intrinsic systems at the global scale
(Golland et al., 2008). The former comprises the sensory–
motor cortex and is associated with the external environment.
The later overlaps substantially with the default mode network
and is likely associated with inner-oriented processing. The
development of voxel-based hierarchical clustering of brain
imaging data provides not only a complementary approach
to ICA for the analysis of brain networks at large-scale
level, it allows also the study of sub-dendrograms of a
given network or even sub-network as demonstrated by
the results from this study. It can be used to explore
the sub-units of a brain network down to the level of
voxel of a few millimeters limited ultimately by the spatial
resolution of the in vivo brain imaging data acquisition
techniques.

Not only empirical data confirm the hierarchical modular
organization at different scales (Hilgetag et al., 2000; Park
and Friston, 2013), but also theoretical considerations favor
the assumed hierarchical modular topology of brain networks
(Meunier et al., 2010; Bullmore and Sporns, 2012; Moretti
and Muñoz, 2013; Park and Friston, 2013). It has been
hypothesized that hierarchical modular organization of the
brain is evolutionary advantageous, contributing to adaptive
aspects of anatomical and functional brain connectivity. It
enables the efficient processing of information, supports complex
brain functions, and fits particularly for diverse dynamics and
divergent functionalities within a fixed structure.

In this report we limited our exploration within the intra-
network sub-dendrograms of the SSM and visual RFNs at
rather crude scale. In the future we will explore for using
the developed HCA framework to study the following topics:
(1) extract sub-dendrograms for other RFNs such as the
default-mode network; (2) refine sub-dendrograms of the
large clusters of the SSM and visual RNFs based on resting-
state fMRI data at higher spatial resolution. We believe it is
feasible to use voxel-based hierarchical clustering of resting-
state fMRI data for detailed retinotopical and somatosensory
mappings; (3) study the variations in sub-dendrograms,
particularly in subjects with neurological and neuropsychiatric
diseases.
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Variability of the HCA Results
The most direct method to study the variability of the HCA
results is to compare the extracted dendrograms. However, it
is not trivial to compare two dendrograms with excluded small
clusters and leaf nodes. Since the employed HCA algorithm
is completely deterministic, the extracted dendrogram results
for the average resting-state fMRI data is, therefore, fully
determined by the average CC matrix and applied validity
criterion, which are also based on the CC matrix. It is apparent
that the reproducibility of the HCA result is determined
by the reproducibility of the CC matrix, which is affected
by inter-individual differences in human brain function. The
analysis of the variation in CC matrix discussed above provide
an alternative approach to assess the variability of HCA
result.

Any factor that can impact intra- or inter-individual
variability of resting-state fMRI measurements can significantly
influence the reproducibility of the average CC matrix. For
example, age as a demographic factor, has recently has been
demonstrated to have a significant influence on the test-
retest reliabilities of functional connectivity (Song et al., 2012).
Physiological noise originating from respiration and cardiac
processes, impact resting-state fMRI signal, and are potentially
detrimental to the reliability of the CC matrix (Murphy et al.,
2013; Andellini et al., 2015). Involuntary head motion exhibits
large inter-individual variability and can also have a large
influence on the reliability of the CC matrix (Zuo et al., 2013).
Furthermore, the dynamic nature of the resting-state functional
connectivity implicates that variability of the CC matrix is not
only inevitable but also unpredictable (Chiang et al., 2015). More
detailed discussion on the physiological confounding factors
influence the reliability of resting-state fMRI measurements have
been discussed in recent reviews (Murphy et al., 2013; Andellini
et al., 2015). Their impacts on the test-retest reliability of the
CC matrix and derive HCA results require further systematic

investigations, which is apparently beyond the scope of the
current study.

CONCLUSION

Using the SSM and visual RFNs as examples, we have
demonstrated that the developed HCA framework is a useful
tool for analyzing resting-state fMRI data voxel-by-voxel. Not
only can it be used to extract the modular organizations of brain
functional networks at the scale of large systems (Wang and Li,
2013), such as the entire SSM and visual systems, but also can it
be used to derive the sub-dendrogram of a given RFN and dissect
it at different level of details. The constructed sub-dendrogram
for each RFN reveals the intrinsic functional connectivity among
all sub-units within a RFN. For the two investigated RFNs
(SSM and visual systems), the derived sub-dendrograms reflect
consistently the known functional topographic mapping results.
It should be possible to use the HCA framework for constructing
sub-dendrograms of other RFNs and explore for potential but
currently unknown functional junctions among the sub-units.
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