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Walking on two legs is inherently unstable. Still, we humans perform remarkable well

at it, mostly without falling. To gain more understanding of the role of the brain

in controlling gait stability we measured brain activity using electro-encephalography

(EEG) during stabilized and normal walking. Subjects walked on a treadmill in two

conditions, each lasting 10min; normal, and while being laterally stabilized by elastic

cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well

as 64-channel EEGwere recorded. To assess gait stability the local divergence exponent,

step width, and trunk range of motion were calculated from the kinematic data. We

used independent component (IC) analysis to remove movement, EMG, and eyeblink

artifacts from the EEG, after which dynamic imaging of coherent sources beamformers

were determined to identify cortical sources that showed a significant difference between

conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower

local divergence exponents. Beamforming analysis of the beta band activity revealed

significant sources in bilateral pre-motor cortices. Projection of sensor data on these

sources showed a significant difference only in the left premotor area, with higher beta

power during stabilized walking, specifically around push-off, although only significant

around contralateral push-off. It appears that even during steady gait the cortex is

involved in the control of stability.
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INTRODUCTION

That humans excel in intellectual capacities is common sense, but we also outperform large parts of
the animal kingdom with our motor repertoire. As such, we perform bipedal gait with remarkable
ease (Alexander, 2004) although bipedal gait is inherently unstable and requires continuous and
highly sophisticated adjustments (Kuo, 1999), which causes both toddlers and elderly to struggle.

Gait stability comprises at least three aspects (Bruijn et al., 2013): proactive, reactive, and
steady-state gait stability. According to dual-task studies, the latter already involves cortical control
(Woollacott and Shumway-Cook, 2002), at least to some extent. Bruijn et al. (2014) sought to
associate neuro-anatomy, quantified as DTI-based structural integrity, with different measures of
gait stability. In elderly, they found significant correlations between the structural integrity of the
left anterior-thalamic radiation and cortico-spinal tract and the medio-lateral margin of safety of
the body’s center-of-mass relative to the lateral border of the foot, which were age-independent.
Arguably, balance in the medio-lateral direction is controlled during gait by higher cortical

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00593
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2015.00593&domain=pdf&date_stamp=2015-10-27
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:s.m.bruijn@gmail.com
http://dx.doi.org/10.3389/fnhum.2015.00593
http://journal.frontiersin.org/article/10.3389/fnhum.2015.00593/abstract
http://loop.frontiersin.org/people/121491/overview
http://loop.frontiersin.org/people/129838/overview
http://loop.frontiersin.org/people/17417/overview


Bruijn et al. Cortical contributions to human gait stability

centers, first and foremost in the left hemisphere (Sipp et al., 2013;
Bruijn et al., 2014).

Functional magnetic resonance imaging (fMRI) or related
techniques have been frequently employed to unravel neural
correlates of gait control (Fukuyama et al., 1997; Jahn et al.,
2004, 2008; Hanakawa, 2006; Bakker et al., 2007; Wang et al.,
2008; Snijders et al., 2011). Unfortunately, fMRI acquisition
does not allow subjects to move, let alone to walk, and studies
remain restricted to imagined gait. Near infrared spectroscopy
(NIRS), by contrast, does allow for assessing cortical activity
while walking (Harada et al., 2009). However, NIRS has a fairly
limited spatial and temporal resolution, which limits detailed
search for neural correlates of dynamic gait stability. Despite
their shortcomings, both fMRI and NIRS studies suggest that
(imagined) gait is accompanied by activity in an extended
network of brain areas, including subcortical (Jahn et al., 2004,
2008) and cortical structures (Fukuyama et al., 1997; Miyai et al.,
2001; Dobkin et al., 2004; Hanakawa, 2006; Bakker et al., 2007;
Wang et al., 2008; Harada et al., 2009; Snijders et al., 2011).

Overall, the roles that brain areas and their connectivity play
in controlling gait stability remains largely unclear. Identifying
such a role mandates measurement of brain activity at high
temporal resolution, and concurrent assessment of gait stability.
In order to associate the corresponding process(es), the demands
for control of gait stability should be altered (either by stabilizing
gait, or by destabilizing gait), so that changes in brain activity can
be related to changes in control of gait stability.

Recently, high-density electro-encephalography (EEG) was
presented as an alternative method to study cortical function
during gait (Gwin et al., 2010, 2011; De Sanctis et al., 2012,
2014; Debener et al., 2012; Severens et al., 2012; Wagner et al.,
2012, 2014; Sipp et al., 2013; Seeber et al., 2014; Malcolm et al.,
2015). This application of EEG is remarkable, as traditionally,
movement artifacts had been considered a prime confounder.
Among others Gwin et al. (2010) and Severens et al. (2012)
showed how to overcome this limitation, by exploiting recent
advances in data processing. Of particular interest for the role
of the cortex in stabilizing human gait is the study of Sipp et al.
(2013), which revealed that walking on a balance beam may lead
to significantly reduced power in the beta frequency band in left
and right sensory motor cortex, as well as an increase in theta
power in or near anterior cingulate, anterior parietal, superior
dorsolateral-prefrontal, and medial sensorimotor cortex. This is
an indication of the involvement of these areas in the cortical
control of gait stability. However, the study of Sipp et al. (2013)
was performed at very slow walking speeds, potentially limiting
generalization to real-life walking. Recent studies (Castermans
et al., 2014; Kline et al., 2015) suggest that lower frequency bands
may be heavily contaminated with movement artifacts, and it
may be that the extra movement caused by walking on a balance
beam led to the reported increase in theta activity. On the other
hand, theta band activity has also been shown to be involved in
standing balance (Hülsdünker et al., 2015).

In the current study, we investigated the role of cortical
activity in gait stability by measuring EEG during gait, while
simultaneously measuring kinematics to assess gait stability. To
manipulate stability demands, we opted to stabilize subjects by

means of elastic bands (Donelan et al., 2004; Ijmker et al., 2013).
In this so-called stabilized walking condition, control of medio-
lateral motion is aided by the force field generated by the springs
(Kuo, 1999; Bauby and Kuo, 2000; O’Connor and Kuo, 2009).

We hypothesized that stabilized walking would lead to an
increase in beta activity in left and right sensorimotor areas.

We further expected that modulations in beta power over the
gait cycle would reflect phase dependent variations of stability
over the gait cycle (Ihlen et al., 2012). For instance, it has been
shown that the weight transfer phase (i.e., the phase between
heelstrike of one leg and toe-off of the other leg) is critical for
gait stability (Ihlen et al., 2012). Thus, during normal gait, we
expected decreased beta activity during unstable phases (transfer
phases, mid-swing), and increased activity during more stable
phases. Moreover, we expect that phases that are specifically
important for gait stability in the mediolateral plane would show
the largest differences in beta power between conditions.

METHODS

Subjects
Ten healthy subjects [7 males, age 31.4 ± 6.6 years (mean ±

sd), length 1.79 ± 0.09 m, weight 67.1 ± 9.6 kg] recruited
by word of mouth within the Faculty of Human Movement
Sciences participated in the experiment. All subjects signed an
informed consent form before participation. The protocol had
been approved by the ethics committee of the Faculty of Human
Movement Sciences, VU University Amsterdam, Amsterdam,
The Netherlands.

Subject Preparation
Subjects wore a 64-electrode EEG cap (TMSi, Twente, The
Netherlands). Electrode-skin contact was improved with gel
(SonoGel, Bad Camberg, Germany) to guarantee impedance
below 20 kOhm. EEG montage agreed with the 10–20 standard.
We used an average common reference. In order to aid post-
hoc removal of muscle activity in the EEG, two pairs of bipolar
EMGAg/AgCl electrodes (Ambu blue sensor N, Ambu, Ballerup,
Denmark) were placed bilaterally on the M. Trapezius pars
descendens. EEG and EMG were recorded using a TMSI Refa
64-channel amplifier (TMSI, Twente, The Netherlands) and
digitized at a rate of 2048 samples/s.

To ensure safety, subjects were outfitted with a safety harness.
To measure 3D trunk kinematics, cluster-markers containing
three infrared light-emitting diodes were attached to the thorax
(at the level of Th6) and both feet around the heels. Kinematic
data were recorded using an Optotrak 3020 system (Northern
Digital, Waterloo, On, Canada), which was placed behind the
treadmill, and signals were digitized at a rate of 100 samples/s.

To test our data cleaning procedures, we included two
conditions during which we applied electrical stimulation of the
medial nerve (while sitting, and while walking, see procedures).
Appropriate data cleaning should not lead to reduction in
amplitude of the SEPs during both conditions. Hence, we
mounted stimulation electrodes over the left medial nerve (at
the level of the wrist). The stimulus duration was 200µs and
stimulus rate varied randomly between 2 and 3 pulses/s; intensity
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of the stimulation was fixed to be just above perception threshold
determined prior to recording.

The entire experiment was performed on an instrumented
split-belt treadmill (Forcelink, Culemborg, The Netherlands),
with which ground reaction forces were recorded and digitized at
a rate of 1024 samples/s. These ground reaction forces were used
to calculate the center of pressure (CoP) position, fromwhich gait
events were extracted (see below).

Subjects were instructed to move their head as little as possible
during the entire experiment, and to look straight ahead to a
fixation cross that was placed about 5m in front of them at
eye-level.

Procedures
The experiment consisted of five conditions; two baseline
conditions, and three treadmill conditions.

The two baseline conditions consisted of (1) sitting, eyes open
for 1min, and (2) sitting, eyes open, while the subject received a
total of 1000 stimuli to the medial nerve (in about 7min).

During each of the three treadmill conditions, subjects walked
at 1m/s for 10min.

In the first treadmill condition, subjects walked normally
without further manipulation. In the second treadmill condition,
subjects were outfitted with a custom-made frame around the
pelvis. This framewas tethered to the outside world via two elastic
cords, attached to two carts that allowed fore-aft movement
(see Figure 1, Donelan et al., 2004; Ijmker et al., 2013). This
set-up stabilized medio-lateral movement without constraining
the anterio-posterior direction. In the third treadmill condition,
subjects walked while receiving the same stimulation they had
received while sitting.

Data Analysis
Gait Parameters
Heelstrikes and toe-offs were automatically detected from
reversal points in the CoP following Roerdink et al. (2008).

In brief, a heel strike was defined as the point at which the
CoP starts to move forward, toe-off was the point at which
the CoP starts to move backward, and left and right could
be determined by the CoP position in the ML-direction. The
extracted heel strikes and toe offs were verified, and whenever
missed by the algorithm, reversal points were added manually,
and false positive reversal points were deleted. We used the
CoP data (instead of kinematics) for this aim because it was
sampled at a higher rate, and thus, was more suitable to
temporally align with the EEG. Standard kinematic parameters
(step width, step length) were determined from the AP and
ML distances between the foot markers at heel strike times. To
quantify changes in dynamic stability due to stabilization we
also calculated the range of medio-lateral trunk movement, as
well as the local divergence exponent of trunk movement. The
latter was calculated from the medio-lateral trunk cluster velocity
(Rosenstein et al., 1993; Rispens et al., 2014). An equal number of
strides was used for both conditions (n = 300), and these 300
strides were time normalized to 300 × 100 samples (retaining
temporal variability). Next, state-spaces were reconstructed with
embedding dimension five, and a time delay of 10 samples. The
local divergence exponent was determined from the divergence
curve from 0 to 0.5 stride, expressed as log(divergence)/stride
(Stenum et al., 2014).

EEG

Data cleaning
All EEG data processing was performed using the Fieldtrip
toolbox (http://fieldtrip.fcdonders.nl/, Oostenveld et al., 2011).
EEG and EMG data were high-pass (2nd order bi-directional
3Hz Butterworth filter), and band-stop filtered (1st order bi-
directional at 50, 100, 150, and 250Hz, to remove line-noise)
and down-sampled to 512 samples/s. EMGdata were additionally
high-pass filtered at 20Hz (1st order bi-directional Butterworth).
After filtering, data were visually inspected, and episodes and

FIGURE 1 | (A) Set-up used to stabilize the subjects. Note that subjects were only restricted in medio-lateral direction, as carts could freely move on rails in

anterio-posterior direction, and vertical movements have little effect on the length of the springs. (B) Characteristics of the springs used (Red lines), and the force field

generated by the spring used. Springs were pretensioned, so that in the initial position, the springs left and right exerted about 150 N. For estimation of the force field,

a regression was fitted to the whole displacement curve of the spring, ignoring slight differences between lengthening and shortening that occurred as a consequence

of damping of the spring.
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channels with large artifacts were discarded (0–3 channels, on
average 1.1 channel removed per subject).

Subsequently, EEG and EMG data for each condition of each
subject were subjected to independent component (IC) analysis
(Bell and Sejnowski, 1995; Gwin et al., 2010, 2011). The resulting
ICs were classified as (1) muscle artifacts when components
had a mean power in the 50–100Hz frequency band larger
than that in the beta and/or alpha bands, and components’
loading mainly in EMG channels; (2) eye-blink artifacts when
the median frequency was low (below 3Hz) and the topological
map corresponded to eye components (one component per
trial); (3) movement artifacts when components had a frequency
spectrum at harmonics of the movement (Castermans et al.,
2014; Kline et al., 2015); or (4) EEG components (see Table 1

for overview). Only the EEG components were retained, and
projected back onto the sensors. With these “artifact-free” signals
we interpolated the previously discarded improper channels
using the average of their close-by neighbors weighted by
distance.

Effects of cleaning data
To assess the effects of data cleaning, we compared the SEP
conditions (during both sitting and walking) in both cleaned
and un-cleaned data using a conventional event-related approach
(note that for this test the data were not down-sampled).We used
a baseline of 10ms, and plotted scalp maps for the response from
35 to 45ms after stimulation (P40, Desmedt et al., 1983). The
average response of C4 for this time-period was also extracted
and used to determine whether condition (walking or sitting) or
cleaning significantly affected the evoked response.

Spectral analysis at sensor level
We performed a spectral analysis at sensor level to identify
a frequency band that showed differences between conditions,
and would thus be a proper target for beamforming. Hilbert
amplitudes at frequency bands from 5 to 40Hz (steps of
1Hz, filter bandwidth of 2Hz) were determined. These time-
frequency representations of the data had the same length as
the original data which allowed for using conventional shape
preserving splines to time-normalizing them to gait events.
From left heel contact → right heel contact was (re-) sampled
to 256 samples (i.e., half a second, close to stride time),
and from, right heel strike → left heel strike was sampled
to 256 samples. Subsequently, the average over gait cycles
[normal walking 81–457 (mean 352) cycles, stabilized walking
83–450 (mean 364 cycles)] was taken yielding mean power

spectra of a gait cycle. Results were further normalized by
the sum of the Hilbert amplitude over time and frequency.
That is, power spectra were determined as mean over time
of the normalized time-frequency representations of Hilbert
amplitudes1.

EEG source analysis
Given the results of sensor level analysis, we performed
dynamic imaging of coherent sources (DICS; Gross et al.,
2001) beamforming in the lower beta band (18Hz, with a
bandwidth of 2Hz), creating a common filter based on the
sensor-level coherences of combined walking and sitting2 data
for every subject. We thenmapped sensor-level power from these
conditions via this spatial filter onto source level.

We used a four-element boundary-element forward model of
a template MRI (Oostenveld et al., 2003) with a 5mm spaced
source grid. For some subjects (n = 6), the source analysis yielded
activity in unlikely sources (e.g., related to muscle locations)
because of which several posterior and/or temporal channels had
to be excluded from analysis (overall, 0–7, mean 2.3 channels
per subject were removed, based on visual inspection of the
power spectra). The estimates of source power obtained for
both (sitting and walking) conditions were compared using a
paired t-test clustering procedure (Maris and Oostenveld, 2007)
to identify sources with significant changes in power between
conditions.

We searched for the highest t-value within these clusters and
considered this the primary source. The highest remaining t-
value that was not closer than 4 cm from the primary source
was determined and considered the secondary source. This
4 cm was based on the fact that our source localization was
performed without individual registration of electrode positions,
and without co-registering individual MRIs, which let us expect a
fair amount of uncertainty in the location of anatomical sources.
We estimated that the error might be in the order of 2 cm.

Next, we projected sensor data to source space. For each
subject, and source, we looked for the voxel that showed
maximum power difference between the two conditions (sitting

1Strictly speaking this definition does not provide a “power” as we used themodulo

of the band-pass filtered analytic signal, i.e., the time and frequency dependent

Hilbert amplitude without squaring it.
2We also performed this procedure for walking vs. stabilized walking, but this

yielded invalid results (see Supplementary Figure 1), most likely due to the small

differences between these conditions, combined with the high noise levels. We also

performed the procedure for stabilized walking vs. sitting, which yielded similar

results as walking vs. sitting see Supplementary Figure 2, whichmade us confident

that the sources we found are active during both walking and stabilized walking.

TABLE 1 | Amount of independent components removed because they were eye-blink, muscle, or movement artifacts.

Sit Sit+Sepp Walking+Sepp Walking Stabilized walking

Eyeblink components 1.0 [1.0–1.0] 1.0 [1.0–1.0] 1.1[1.0–2.0] 1.0 [1.0–1.0] 1.0 [1.0–1.0]

Muscle components 9.5 [2.0–22.0] 10.0 [0.0–25.0] 11.5 [2.0–24.0] 12.5[3.0–24.0] 9.7 [2.0–26.0]

Movement components 0.0 [0.0–0.0] 0.0 [0.0–0.0] 5.7 [1.0–13.0] 5.6 [0.0–10.0] 7.9 [1.0–13.0]

Components remained 52.4 [40.0–60.0] 51.9 [37.0–62.0] 44.6 [30.0–59.0] 43.8 [33.0–58.0] 44.3[30.0–58.0]

Values represent mean and [range].
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vs. walking) and was within a distance of 2 cm from the (group-
defined) peak-t-value of that source. The DICS filters of these
locations were used to project the sensor data of normal and
stabilized walking to the sources.

Spectral analysis of source activity
On the extracted source level activity, we performed a time-
frequency analysis using the same method as previously applied
for the sensor level analysis.

Statistical Analysis
Differences in behavioral measures (stride time, stride width,
trunk excursion, local divergence exponent) were tested using
paired t-tests. Differences in SEP amplitude were calculated using
a 2 (condition, walk vs. sit) by 2 (cleaning, uncleaned vs. cleaned)
repeated measures ANOVA. Difference in source level-power
spectra between conditions were tested using a wavelet-based
functional ANOVA (McKay et al., 2013). In short, the normalized
power spectra were subjected to a wavelet transform (3rd order
Coiflet wavelet, with periodic extension), and ANOVAs were
performed on the individual wavelet coefficients. To correct for
multiple comparisons, we used a Scheffe post-hoc test. Wavelet
coefficients that were significantly different between conditions
were projected back to obtain the spectral difference. Whenever a
significant difference in the power spectrum between conditions
was found, the time-evolution of power over the gait cycle
was tested between conditions using a similar wavelet based
functional ANOVA. The Matlab statistics toolbox was used for
all statistical analysis; p < 0.05 was considered significant.

RESULTS

Effects of External Stabilization on Gait
Parameters
All gait parameters are displayed in Figure 2. Stabilized walking
did not change stride time, but led to a significant decrease in step

FIGURE 3 | SEP analysis. Similar SEP responses and accompanying scalp

maps (from 35 to 45ms post stimulus, indicated by vertical lines) were present

during both sitting (blue lines) and walking (red lines), and our ICA cleaning

procedure changed SEP amplitude only little (solid lines; cleaned), while clearly

improving the scalp map. See Supplementary Figures 1–4 for source

localization of SEP activity.

FIGURE 2 | Gait parameters. During stabilized walking, subjects walked with similar step length (A), but had clearly reduced step width (B), medio-lateral trunk

excursion (C), and local divergence exponents (D), all indicative of increased stability. Bars represent mean values, error bars represent standard errors.
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FIGURE 4 | Results of sensor level spectral analysis. First row shows normalized power spectra of electrodes over the premotor area, second row shows

difference in power spectra between conditions, in which values below zero represent higher power in the stabilized condition. Third and fourth row shows spectra

over posterior electrodes for comparison. Shaded regions represent standard errors.

width and trunk excursion and a significant increase in stability
(i.e., lower λs).

SEP—Effects of Cleaning and Gait
The results for the SEP analysis are depicted in Figure 3. Scalp
maps largely agreed between sitting and walking conditions,
although stimulation during walking elicited somewhat lower
responses3 . Data processing led to improvements in the quality
of the scalp maps almost without changing amplitude, which
suggests the validity of our data preprocessing. There were no
significant effects of either condition (walking vs. sitting, p =

0.09), cleaning (p = 0.22) or interaction of these factors (p =

0.38).

3We also performed source localization of this evoked response using a

multiple signal classification procedure. Results for this can be found in

Supplementary Figures 3–6, and are similar to the results shown here, the cleaned

data had more focal sources.

Effects of External Stabilization on Brain
Activity
Sensor Level Analysis
Spectral analysis of the cleaned sensor data suggested differences
between normal and stabilized walking in the lower beta band
(around 18Hz), as expected from previous studies (Wagner et al.,
2012; Sipp et al., 2013). These differences, however, were not
significant (Figure 4). Clear modulations in power were visible
across the power spectrum (Figure 5). However, there were no
significant differences between conditions (Figure 6).

Beamforming
DICS beamforming yielded a cluster of significant t-values
around bilateral pre-motor areas (Figure 7). Our criterion of
separation of sources let to a total of two sources (Table 2), one
in the left and one in the right premotor cortex. More sources
were obtained but peak t-values dropped below 5 after the first
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FIGURE 5 | Normalized ERSP for the same electrodes as in Figure 4. First and third row are for normal walking, second and fourth for stabilized walking.

two sources and mean t-values within a cluster with a radius
of 2 cm around the peak dropped below 3 (Table 2 top row;
Supplementary Figure 7).

Source Level Analysis
Figure 8 shows the log-transformed Hilbert amplitude-spectra
derived from the signals projected on the left and right premotor
areas. For the left premotor area, wavelet based functional
ANOVA indicated increased amplitudes in the beta band (around
17Hz) during stabilized walking. Considering the modulation
of the Hilbert amplitude in this frequency band over the gait
cycle (Figure 9, for modulation of non-significant right side,
see Supplementary Figure 8), a depression in beta power was
observed during single support (i.e., around 30 and 80% of the
gait cycle) in both normal and stabilized walking. Significant
differences in modulation between conditions were present only
around left heel strike (i.e., at the end and beginning of the
gait cycle), where beta power during stabilized walking was
significantly higher. A similar increase in beta power in the

stabilized condition with respect to the normal walking condition
appeared to be present around right heel strike, but this effect was
not significant.

DISCUSSION

We used a well-established stabilization paradigm (Donelan
et al., 2004; Ijmker et al., 2013) to study how cortical areas
are involved in controlling gait stability. Our behavioral results
confirm previous studies. To our best knowledge, however, we
are the first to show that also local divergence exponents decrease
during stabilized walking. Thereby we show that not only trunk
movements and step width decrease, but that stability does
increase, as expected from the manipulation. As hypothesized,
there was an increased beta activity during stabilized walking,
and differences in modulations of beta power over the gait cycle
between stabilized and normal walking.

Analyzing EEG during gait requires substantial data
processing, and a recent study showed that EEG data recorded
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FIGURE 6 | Difference in normalized time-frequency analysis between normal and stabilized walking for the same electrodes as in Figures 4, 5, values

below zero represent higher power in the stabilized condition. Note that differences are not statistically significant.

FIGURE 7 | DICS beamformer results for the contrast walking vs. sitting at 18Hz. Red color intensity indicates t-values at |t|> 4.5, blue color indicates the

probability map for the left and right premotor areas. Note that the radiological convention was used (i.e., left is displayed right).

during gait that are not sufficiently cleaned contain spectral
content that is similar to that of head acceleration (Castermans
et al., 2014). We removed independent components with

a frequency spectrum reminiscent of movement artifacts
(Castermans et al., 2014; Kline et al., 2015) even if that drastically
reduced the amount of independent components (although not
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as drastic as in some other studies, cf. Wagner et al., 2012; Sipp
et al., 2013; Kline et al., 2014). Analysis of the SEP conditions
showed that scalp maps of SEPs improved, with minor effects

TABLE 2 | Mean and individual locations (CTF coordinates) of sources for

the contrast walking vs. sitting.

Source 1: Source 2:

tmean = −4.2; tmin = −6.3 tmean = −3.5; tmin = −5.3

X Y Z X Y Z

Average Subject −17 35 61 28 15 66

1 −7 40 61 33 30 56

2 −2 35 51 43 15 56

3 −7 40 61 13 25 66

4 −27 35 46 13 5 71

5 −17 25 66 23 10 71

6 −12 45 46 28 15 66

7 −7 40 61 33 30 56

8 −2 30 51 23 30 56

9 −22 45 51 23 0 76

10 −22 45 51 23 5 71

Mean sources were defined as the maximum t-value, and a sphere of 2 cm surrounding it,

and distinct sources could not be overlapping. Displayed for means sources are location,

peak t-value and mean t-value within the source. Individual sources were found within the

volume of significant t-values. For each subject, the maximum power difference between

normal walking and sitting conditions within this significant volume was determined.

on amplitude, suggesting data cleaning was adequate, and not
too aggressive. Still, we cannot prove that our results do not
contain any movement artifacts. While several other studies
(Gwin et al., 2011; Wagner et al., 2012; Sipp et al., 2013; Lau
et al., 2014) used ICA not only for artifact rejection, but also
as a source localization method (by fitting a dipole to a scalp
map corresponding to an IC), we opted for more conventional
beamformer methods. To the best of our knowledge, only a
single study (Seeber et al., 2014) investigated EEG during gait
in a similar way but employed sLORETA, with subject-specific
MRIs. The advantage of using DICS beamformers over ICA
dipole fitting is that it directly accounts for source activity in
distinct frequency bands, in our case beta band activity.

The changes in SEP caused by both cleaning and condition
were not significant. Interestingly, walking reduced the
amplitude of the SEP, although not significantly so. This would
suggest that sensory information from the wrist is suppressed,
potentially because of the need to attend to other sensory
information related to walking (Rushton et al., 1981). This,
however, remains rather speculative because (1) this finding
was non-significant, and (2) we did not randomize the order

of walking and sitting SEP conditions, i.e., we cannot exclude
potential ordering effects and/or structural changes in impedance
due to drying electrode gel.

In general, motor control is accompanied by a depression
in beta power (Pfurtscheller et al., 1996). Our results of an

FIGURE 8 | Normalized power spectra (estimated via Hilbert transform) of (A) left and (B) right premotor areas during normal (blue) and stabilized (red)

walking. Lower panels (C,D) represent differences between conditions, with values below zero representing higher power in the stabilized condition. Red lines in the

lower panels are the inverse wavelet transform of the significant wavelets, thus indicating the statistically significant differences in power between conditions. Shaded

areas represent standard errors.
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FIGURE 9 | (A) Normalized power over the gait cycle (estimated via Hilbert

transform) of left premotor area (at 17Hz) during normal (blue) and stabilized

(red) walking. Panel (B) displays the difference between conditions, with values

below zero representing higher power in the stabilized condition. Shaded

areas represent standard errors.

increased beta power during stabilized walking thus suggest
decreased control. They are in line with the findings of Sipp
et al. (2013), who reported increased beta power when walking
normally as compared to walking on a balance beam. They also
agree with the findings of Wagner et al. (2012), who reported
an increased beta power in robot-assisted gait when compared
to normal gait. Since the demands for propulsion and/or body
weight support do not differ between walking with and without
stabilization, it seems reasonable to assume that the increase in
beta activity is directly related to a reduced demand to stabilize
gait. However, a potential confounder may be the somatosensory
input, which was different during the stabilization condition, as
subjects wore an extra harness during the stabilized condition.
Still, it is unlikely that this affected our results, as one would
expect this to cause differences in the sensory cortex, rather than
the premotor cortex.

We manipulated stability and observed changed in brain
activity, thereby showing an association between the requirement
to stabilize gait in ML direction and low beta activity in the
premotor cortex. We believe that this does provide a proper
indicator for—but not definitive proof of—the hypothesis that
this brain activity reflects control of mediolateral stability by
the premotor cortex. In order to establish the causality in the
association, experimental manipulation of brain activity (for

instance by means of transcranial direct current stimulation,
tDCS), would be an obvious next step. While we are unaware of
any studies performing tDCS during or prior to gait to influence
gait stability, several groups have shown that postural control can
be improved using tDCS (Sohn et al., 2013; Verheyden et al.,
2013; Saeys et al., 2014).

We are not the first to report beta modulations during the
gait cycle (Severens et al., 2012; Wagner et al., 2012; Seeber
et al., 2014). We add to previous findings by reporting an overall
increased beta power during stabilized walking, which suggest
that beta power is related to gait stability. Variation in beta power
over the gait cycle may be related to variation in the need for
stabilizing control over the gait cycle. There is some evidence,
indeed, that distinct phases in the gait cycle have a different
stability. For example, when performing a simple reaction time
task during gait, responses are slower during single support than
during double support, suggestive of an increased “cognitive
load” during single support (Lajoie et al., 1993). This is in line
with our finding that in both our conditions beta power was
lowest during single support, but cannot explain the differences
in beta modulation between conditions, which occurred mostly
during double support (i.e., ipsilateral heel strike, contralateral
push-off).

Reducing the magnitude of the base of support (as during
single support) may cause gait to be less stable (requiring more
motor control) during single support. However, one should not
forget that gait is dynamic rather than static, and that during
single support the center of mass is not within the base of
support, nor should it be. Why may single support require
extra motor control? One likely option is that during single
support, the placement of the swing foot is planned. Several
studies have shown that either trunk or body center of mass state
duringmid-stance predicts foot placement in the subsequent step
(Hurt et al., 2010; Rankin et al., 2014; Wang and Srinivasan,
2014). During single support, information about the state of
the body probably needs to be integrated, to form a motor
command to place the swing leg in the right position to maintain
stability.

Although we did find a lower beta power during single
support, the major differences between conditions occurred
during double support, the phase in which contralateral push-
off occurs. Here, stabilized walking showed a significantly higher
beta power, implying less motor control. This would be in line
with the findings of Ihlen et al. (2012) who reported that gait
is unstable during weight transfer. Moreover, in a recent study,
Kim and Collins (2015) showed that a “once-per-step” control
of an ankle-foot prosthesis during push-off, reduced the effort
associated with medio-lateral stability control during walking,
and similar findings have been reported in model studies (Kim
and Collins, 2013; Fu et al., 2014). All in all, these findings suggest
an important role for a well-controlled push-off to maintain a
stable gait pattern, and our findings suggest that there may be
cortical involvement in such control.

Although beamforming initially resulted in sources in left
and right premotor areas, subsequent analysis of the data as
projected on these sources only showed significant differences
for the left premotor area. Recent studies also suggest an
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important role for the left hemisphere. For instance, Bruijn
et al. (2014) found that white matter microstructural integrity
in left cortico-spinal tract and anterior thalamic radiation was
correlated to measures of foot placement, and Sipp et al.
(2013) showed that the left sensorimotor cortex was the first
area to respond to a loss of balance while walking on a
balance beam. These findings seem to converge on a specialized
role for the left hemisphere in the control in gait stability.
As of yet, however, supporting evidence from lesion based
studies (for instance after stroke) is largely absent, and it
might be interesting to further investigate whether patients
who suffered a stroke in the left hemisphere suffer more from
stability problems than those who suffered a stroke in the right
hemisphere.

In conclusion, during stabilization of gait by elastic bands, we
found increased beta band activity in the left premotor cortex,
suggesting that this area is involved in maintaining steady state
gait stability. The modulation of this activity appears in line with
the idea that medio-lateral foot placement is at least in part
determined during push-off, although more work is needed to
confirm this hypothesis.
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Supplementary Figure 1 | DICS beamformer results for the contrast
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Supplementary Figure 2 | DICS beamformer results for the contrast

stabilized walking vs. sitting at 18Hz. Color intensity indicates t-values. Figure

is tresholded at |t|> 4.5.

Supplementary Figure 3 | Source localization (MUSIC) results for the SEP

condition during sitting, without cleaning.

Supplementary Figure 4 | Source localization (MUSIC) results for the SEP

condition during walking, without cleaning.

Supplementary Figure 5 | Source localization (MUSIC) results for the SEP

condition during sitting, after cleaning.

Supplementary Figure 6 | Source localization (MUSIC) results for the SEP

condition during walking, after cleaning.

Supplementary Figure 7 | Individual sources. The green and blue circle

represent the group peak t-values, the stars represent the individual subject

sources used for analysis.

Supplementary Figure 8 | Figure 9 with results for right premotor area at

17Hz also plotted.
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