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Prior research demonstrates that animals and humans share an approximate number
system (ANS), characterized by ratio dependence and that the precision of this system
increases substantially over human development. The goal of the present research was
to investigate the malleability of the ANS (as measured by Weber fraction) in adult sub-
jects in response to feedback and to explore the relationship between ANS acuity and
acuity on another magnitude comparison task. We tested each of 20 subjects over six 1-h
sessions. The main findings were that (a) Weber fractions rapidly decreased when trial-by-
trial feedback was introduced in the second session and remained stable over continued
training, (b) Weber fractions remained steady when trial-by-trial feedback was removed in
session 6, (c) Weber fractions from the number comparison task were positively correlated
with Weber fractions from a line length comparison task, (d) improvement in Weber frac-
tions in response to feedback for the number task did not transfer to the line length task,
(e) finally, the precision of the ANS was positively correlated with math, but not verbal,
standardized aptitude scores. Potential neural correlates of the perceptual information and
decision processes are considered, and predictions regarding the neural correlates of ANS
malleability are discussed.
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INTRODUCTION
Mathematics is a uniquely human domain because it requires
symbolic manipulation and an explicit understanding of the oper-
ations that allow calculation. However, in addition to a symbolic
number capacity, adult humans also have an approximate number
sense that allows us to estimate quantity without the use of symbols
or language. Unlike precise symbolic representations of individ-
ual numbers, the approximate number system (ANS) encodes
numerosities in a fuzzy fashion. A confluence of evidence suggests
that the ANS emerges early in infancy and is shared by non-human
animals (for reviews, see Dehaene, 1997; Feigenson et al., 2004).
One basic feature of the ANS is that it follows Weber’s law; the
discriminability of two numerosities varies as a function of the
ratio between them.

During the course of normal human development the ANS
becomes more precise. Convergent evidence from multiple behav-
ioral procedures demonstrates that while 6-month-old human
infants require a 1:2 ratio to discriminate large numerosities, by
9-month they are able to discriminate a 2:3 ratio (e.g., Lipton
and Spelke, 2004; Libertus and Brannon, 2010). Furthermore,
cross-sectional studies that model Weber fraction (w) with explicit
choice tasks indicate that the acuity of the ANS continues to
increase from age 3 into adolescence (Halberda and Feigenson,
2008; see Piazza and Izard, 2009 for meta-analysis). At each
age, however, and into adulthood there exists a large amount
of inter-individual variability in w. Not surprisingly, an easy

numerical discrimination for one person may be difficult for
another.

One dominant theory is that the ANS serves as a foun-
dation for symbolic mathematics (e.g., Dehaene, 1997; Wynn,
1998). Psychophysical markers such as the symbolic distance
effect indicate that mathematical symbols are mapped onto ana-
log magnitudes (Moyer and Landauer, 1967). Brain-imaging data
indicate that symbolic calculations often activate the same brain
areas involved in approximate estimation implying that the ANS is
recruited during calculation (Fias et al., 2003; Venkatraman et al.,
2005; Holloway et al., 2010). Only recently, however, has evidence
emerged that individual differences in w are correlated with sym-
bolic mathematical abilities (Halberda et al., 2008; Gilmore et al.,
2010; Lyons and Beilock, 2011). These studies show that children
and adults with higher ANS acuity (i.e., lower w) perform better
in basic arithmetic and on standardized math tests. Furthermore,
ANS acuity in preschoolers with no formal mathematics training
correlates with later symbolic math performance, implying that
ANS acuity may play a causal role in the development of higher
math skills (Mazzocco et al., 2011b). Other evidence for the rela-
tionship between symbolic mathematics and number sense comes
from atypically developing children. Developmental dyscalculia is
a specific learning deficit in mathematics, and there is evidence
that some dyscalculic children have severely impaired ANS acuity
(Piazza et al., 2010; Mazzocco et al., 2011a). In addition, attempts
to improve mathematical performance in dyscalculics that have
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centered on strengthening the connection between symbolic num-
ber representations and non-verbal numerosity representations
(arrays of dots) have met with some success (Wilson et al., 2006b;
Kucian et al., 2011).

The fact that symbolic math ability and the ANS are correlated
throughout childhood raises the exciting possibility that honing
the ANS could have lasting effects on symbolic mathematics. If so,
even before children learn the meaning of number words inter-
ventions that increase ANS acuity may produce increases in math
aptitude. The idea that ANS acuity might serve a foundational
role in developing mathematical achievement, however, cannot be
addressed without a better characterization of the ANS. For exam-
ple, how reliable are measures of ANS acuity and can ANS acuity
be improved with extended training?

Another important question is how the ANS relates to the per-
ception and discrimination of other magnitudes. Walsh (2003)
proposed a theory of magnitude (ATOM), which asserts that time,
space, and number are all processed by a common analog mag-
nitude system that depends on common parietal brain systems
(see also Meck and Church, 1983; Cantlon et al., 2009). A predic-
tion of ATOM is that individual variability in the ANS should be
systematically related to precision in other magnitude judgments
(e.g., temporal or size-based). A large literature addresses these
questions in humans and animals using interference paradigms,
transfer of learning tasks, and neuroimaging methods (for reviews,
see Hubbard et al., 2005; Bueti and Walsh, 2009). Positive evi-
dence from any of these sources could reflect a strong version of
ATOM whereby two or more magnitudes are represented by a sin-
gle common neural currency or a weaker version where different
magnitudes share some common cognitive algorithms such as a
comparison process (Cantlon et al., 2009).

We explored the malleability of ANS acuity by testing whether
a simple training procedure in which we provided extended train-
ing over six sessions would improve ANS acuity. We also tested
a prediction of ATOM by looking for correlations in Weber frac-
tions derived from the numerosity comparison and those derived
from a similar line length comparison task. In addition, our
training paradigm allowed us to test a prediction of the strong
version of ATOM by assessing whether improvements in the acu-
ity of the ANS would transfer to line length comparison. We
reasoned that if number and line length were represented using
the same underlying representation (strong hypothesis), that any
improvement in the number task would lead to an improvement
in the line length task. If, however, we saw an improvement
in ANS precision that did not transfer to the line length com-
parison we could conclude that the representations were not
entirely overlapping, and more specifically the magnitude rep-
resentations did not overlap on the level at which improvement
occurred.

MATERIALS AND METHODS
PARTICIPANTS
Participants were 20 adults (mean = 21.18 years, range 18.19–
30.15 years) recruited from the Duke University community.
Eleven of the 20 participants were female. One additional par-
ticipant was excluded because she did not receive feedback during
the second session due to experimenter error. All participants gave

written informed consent in accordance with a Duke IRB approved
protocol.

DESIGN
Each participant completed six sessions within 2 weeks. On session
1, participants performed the numerosity comparison task and
the line length comparison task and did not receive any trial-by-
trial feedback. On sessions 2–5, participants performed only the
numerosity task and received trial-by-trial feedback. On session
6, participants performed the numerosity and line length tasks
without trial-by-trial feedback. Each of the six sessions of the
numerosity task contained six 108 trial blocks for a total of 648
trials per session. The two line length sessions each contained
two 108 trial blocks for a total of 216 trials per session. In the
final session participants self-reported their verbal and math SAT
or GRE scores and these scores were later confirmed for 15/20
participants.

To motivate the participants to stay engaged in the task they
were compensated based on performance. Each participant earned
0.0125 USD per correct answer in the numerosity task and 0.0375
USD per correct answer in the line length task. These performance
bonuses were added to a baseline rate of 7.50 USD for sessions
1 and 6 and 5 USD for sessions 2–5. To motivate participants
to complete the study they were given an additional 50 USD for
completing all six sessions within a 2-week period.

TASKS
The numerosity comparison task
On each trial participants were presented with an array of inter-
mixed black and white dots on a gray background for 200 ms. Half
the participants were instructed to indicate whether there were
more black dots or white dots, and the other half were instructed
to indicate whether there were fewer black dots or white dots.
Participants responded by pressing a black or white button on
the keyboard, and the side of the response keys was counterbal-
anced across subjects. Although the stimuli were presented for
only 200 ms, participants were allowed as long as they needed
to respond and were encouraged to take their time and to be
as accurate as possible. In the feedback sessions, a green or red
screen lasting 1500 ms indicated a correct or incorrect choice
respectively. The feedback screen was followed by a gray prepara-
tory screen (1500 ms). In the no-feedback sessions, any response
resulted in a blue screen (1500 ms) followed by a gray preparatory
screen (1500 ms). Participants were given a break between each
108 trial block and were also allowed to pause the experiment at
any time.

The line length comparison task
The structure was similar to the numerosity task, however, subjects
were presented with a white and a black horizontal line and were
required to indicate which was longer (or for half the subjects
which was shorter) by pressing a black or white key. The line length
comparison task was never administered with feedback, and it was
only completed on sessions 1 and 6.

STIMULI AND APPARATUS
Each numerical stimulus consisted of an array of intermixed white
and black dots (Figure 1). We tested six ratios of dots: 1:2, 2:3,
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FIGURE 1 | Example stimuli from the numerical (left) and line length

(right) tasks. The numerical stimulus has 33 white dots and 36 black dots
and is an example of an 11:12 ratio. The black line in the line length stimulus
is smaller than the white line by a factor of 11:12.

3:4, 5:6, 7:8, and 11:12. Absolute numerosity was roughly equated
across the ratios, and the total number of dots within an array
varied from 20 to 75. To ensure that subjects used numerosity
and not surface area to complete the task on 1/3 of trials the total
surface area of the array with fewer dots was smaller than the
total surface area of the more numerous dots, on 1/3 of trials
area was equal, and on 1/3 total surface area of the fewer dots
was larger than the surface area of the more numerous dots.
Similarly, to prevent subjects from using the size of the indi-
vidual dots, on 1/3 of trials the average dot size of the fewer
dots was smaller than the average dot size of the more numer-
ous dots, and on 2/3 of trials the more numerous dots were
smaller. The dots were drawn within a circle with a radius of
300 pixels.

The line stimuli consisted of one black and one white horizon-
tal bar positioned at a constant vertical position (counterbalanced
for which color was on top), but jittered horizontally from trial to
trial (Figure 1). The same six ratios were used for line lengths
and numerosities. The length of the bars varied from 64 to
384 pixels.

All stimuli were generated offline using custom MATLAB
(MathWorks) scripts, and were presented using Psychophysics
Toolbox Version 3 for MATLAB. Stimuli were presented and
data collected on either a Dell Inspiron 530S or a Dell Optiplex
330. Participants made their response on a standard keyboard.
Small stickers were used to denote the “black” and “white”
response keys.

MODELING
For the purpose of modeling we assumed a linear internal rep-
resentation of number with scalar variability following Pica et al.
(2004) and Halberda et al. (2008). The error rate in our task is
given by

Error rate = 1

2
· erfc

⎛
⎝ n1 − n2√

2 · w ·
√

n2
1 + n2

2

⎞
⎠ (1)

Where n1 is the numerosity of the larger set, n2 is the numeros-
ity of the smaller set, w is the measure of variance in the
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FIGURE 2 | Data collected from a single participant showing

improvement in number acuity between session 1 (circles) and

session 6 (squares). Gray lines show model predictions for the best fit w
for session 1 (w = 0.37) and session 6 (w = 0.20). The improvement in w
was typical of our sample.

internal representation, and erfc is the complementary error
function. We generated global estimates of w for each participant
as well as session by session estimates of w for each participant
by fitting this model to our data (Pica et al., 2004). Figure 2
shows one participant’s accuracy across different ratios and the
model fit.

SURFACE AREA EFFECT INDEX
As described above we controlled for surface area by using three
randomly intermixed trial types. To assess the role of surface area
on performance we calculated a surface area effect index by taking
the absolute value of the difference between the accuracy on the tri-
als where the smaller number of dots had fewer pixels (congruent)
and the accuracy on the trials where the smaller number of dots
had more pixels (incongruent). We also calculated a non-rectified
surface area effect index by computing the difference between con-
gruent and incongruent trials, but not taking the absolute value.
This measure allowed us to assess whether the population as a
whole had a bias toward congruent or incongruent trials before
and after training.

TREATMENT OF OUTLIERS
Three of our participants (1, 5, and 16) returned w scores that
were greater than 3 standard deviations above the mean (1.49,
1.23, and 1.36 respectively) for one of the six number sessions.
On the other five sessions, these subjects’ w values were within the
same range as the other participants. We included these partici-
pants in our main analyses, but also reran the statistics excluding
these three subjects to confirm the robustness of our findings.
Unless otherwise noted, all tests reported as significant were
also significant without outliers at p < 0.05, and tests reported
as non-significant were also not significant without outliers at
p > 0.1.
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FIGURE 3 | Numerosity w scores calculated from session 6 plotted

against numerosity w scores calculated from session 1. The dashed line
shows equality. Participants below the equality line showed improvement
in ANS acuity between sessions 1 and 6. The solid gray line is the best fit to
the data and the equation shows the intercept and slope (r2 = 0.40,
p < 0.005).

RESULTS
There was strong ratio dependence in accuracy (b = −0.77,
p � 0.0001)1 and response time (b = 0.53, p � 0.0001) for the
numerosity comparison task. The mean w for the sample was 0.33
with a standard deviation of 0.15. Within session reliability was
computed by correlating split-halves of our six blocks and correct-
ing for test length using the Spearman–Brown formula. Reliability
was good, ranging from 0.83 to 0.94 over the six sessions. Our
multi-session training procedure allowed us to further examine
test–retest reliability across the 6 days of the study. Figure 3 shows
the strong positive correlation between w scores computed from
the first session and last session.

To determine if w scores improved (decreased) with training
we calculated w scores for each participant for each session. We
then fit a logarithmic regression model to individual w scores with
regressors for session number and participant (Figure 4A). The
model accurately predicted w scores (R2 = 0.72, p � 0.0001),
and we found that w scores improved with training (b = −0.047,
p < 0.005). However, the improvement in w scores occurred
within the second session (the first session with feedback) and
remained stable during the rest of training. Session 1 w scores
were significantly higher than session 2 w scores (paired t-test,
p < 0.005) and were also higher than session 6 w scores (paired
t-test, p < 0.01). A logarithmic regression model applied to the
session 2 through session 6 data showed no effect of session on
w (b = 0.008, p = 0.65) demonstrating that the improvement
in w was accomplished within the first session of trial-by-trial
feedback and did not continue with extended training. Figure 2
shows the accuracy data and model fit of a single participant

1There was no difference in w scores for subjects instructed to indicate the greater
versus the fewer number of dots (t-test, p = 0.62) thus all analyses are collapsed
across these two groups.

FIGURE 4 | (A) Mean w scores as a function of session number. Gray line
is the best fit regression line to log(w ) (b = −0.047, p < 0.005) accounting
for repeated measures. Note the rapid decrease in w between sessions 1
and 2 where trial-by-trial feedback was introduced. Acuity did not improve
further after session 2, but was sustained after feedback was removed on
session 6. (B) Mean of the median RT for correct responses as a function
of session number. Gray line is the best fit regression line to log(RT)
(b = −0.048, p � 0.0001) accounting for repeated measures. RT continued
to decrease with further training. Error bars indicate SEMs.

for sessions 1 and 6. The improvement in w was typical of our
sample.

To determine if response time decreased with training we
fit a logarithmic regression model with regressors for session
number and participant to the median correct RT calculated
for each subject for each session (Figure 4B). The model accu-
rately predicted RT (R2 = 0.83, p � 0.0001), and RT decreased
with training (b = −0.048, p � 0.0001). Unlike w, however,
RT continued to decrease from session 2 to 6 (b = −0.035,
p < 0.0001). RT rebounded slightly on session 6 when feedback
was removed. Nevertheless RT during session 6 was signifi-
cantly lower than on session 1 indicating that the improve-
ment was retained in the absence of feedback (paired t-test,
p < 0.005).
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To measure the effect of cumulative surface area on partic-
ipants’ numerical estimation over training a surface area effect
index was calculated by taking the absolute value of the differ-
ence between the accuracy on trials where the smaller number of
dots had fewer pixels (congruent trials) and the accuracy on trials
where the smaller number of dots had more pixels (incongru-
ent trials). A linear regression accounting for repeated measures
was then fit to the surface area index (R2 = 0.49, p � 0.0001).
The surface area effect index significantly decreased over sessions
(b = −0.02, p < 0.005; Figure 5), indicating that at least part of
the improvement in the numerosity task was due to a decrease in
reliance on surface area as a cue for number. There was, however,
variability across participants in the degree to which surface area
affected numerosity judgments and also in the direction of this
influence. During the first session most participants performed
better on area congruent than on area incongruent trials. The
mean non-rectified surface area effect index was significantly pos-
itive (mean = 0.24, SD = 0.27; t-test, p < 0.001), indicating
higher accuracy on congruent trials. However, by the last ses-
sion participants performed equally well on both types of trials
(mean = −0.07, SD = 0.22; t-test, p = 0.17). Surprisingly, when
outliers were removed from this analysis the non-rectified surface
area index was slightly negative indicating that subjects performed
better on incongruent trials by the last session (mean = −0.09,
SD = 0.16; t-test, p < 0.05).

On a third of trials the cumulative surface area of the white
dots and the black dots was equal. We looked at accuracy on this
subset of trials in order to ascertain whether the improvement in
w we observed was due solely to the decrease in bias caused by
surface area, or whether other factors might also be contributing
to improvement. We found that accuracy on area equal trials was
well fit by a linear regression (R2 = 0.67; p � 0.0001) and trended
toward a significant positive slope (b = 0.0043; p < 0.1; without
outliers p < 0.05). Closer examination of the data showed that the
effect was not linear over sessions, but that all the improvement
occurred between sessions 1 and 2. We ran a two-way ANOVA
with factors for session and participant to confirm the effect of
session on equal area accuracy [F(5,95) = 4.81; p < 0.001]. In post
hoc t-tests we found that accuracy on area equal trials increased
between sessions 1 and 6 (paired t-test, p < 0.005) and between
sessions 1 and 2 (paired t-test, p < 0.001), but not between ses-
sions 2 and 6 (paired t-test, p = 0.80). The rapid increase in
accuracy between sessions 1 and 2 demonstrates a comparable
time course to our findings for w and for the surface area effect
index.

Overall, line length w scores (mean = 0.07, SD = 0.02) were
much lower than number w scores (mean = 0.33, SD = 0.15)
indicating that the line length task was easier. Despite hav-
ing different absolute ranges, w for line length and numerosity
were positively correlated on session 1 (Figure 6A), r2 = 0.44,
p < 0.005) and on session 6 (r2 = 0.38, p < 0.005) consistent
with a weak version of ATOM. Line length comparison tests were
only given on the first and last session and subjects were never
given trial-by-trial feedback on this task. Thus, any improve-
ment from session 1 to session 6 on the line length task could be
attributed to training on the number task and would thus reflect
transfer across magnitudes as predicted by a strong version of
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FIGURE 5 | Mean surface area effect index as a function of session

number. The effect of surface area on accuracy decreased rapidly with the
introduction of trial-by-trial feedback, plateaued after session 2, but
remained low after feedback was removed on session 6. Gray line indicates
the linear best fit accounting for repeated measures. Error bars indicate
SEMs.

ATOM. However, a comparison of w scores from the first ses-
sion and the last session yielded no evidence of improvement in
line length acuity (one-tailed paired t-test: p = 0.283). We exam-
ined the relationship between change in acuity on the numerosity
task and change in acuity on the line length task in individual
participants, but found no correlation (Figure 6B), r2 = 0.00,
p = 0.99) indicating that subjects who improved on the num-
ber task were no more or less likely to have improved on the line
length task.

Accuracy on the line length task was very high on both the
first and last sessions (mean correct = 93.6% and 93.9% respec-
tively), which may have created a ceiling effect that obscured any
improvement on the line length task from session 1 to session
6. We addressed this concern by assessing change in accuracy
on only the most difficult 11:12 ratio line length comparison
(mean accuracy 80.1%, SD = 10.6% and 84.6%, SD = 10.4%
during sessions 1 and 6 respectively). Consistent with the original
analysis, we found no evidence of improvement in accuracy on
this subset of trials between sessions 1 and 6 (one-tailed paired
t-test: p = 0.12). This confirms that number training caused no
detectable improvement in line length acuity. Furthermore, there
was no correlation between improvement in w scores for the num-
ber task and change in accuracy on these most difficult line length
comparisons (r2 = 0.01, p = 0.68).

Previous reports have demonstrated that standardized math
scores correlate with numerical acuity in children (Halberda et al.,
2008; Gilmore et al., 2010; Mazzocco et al., 2011b). One recent
study also showed a positive correlation between w and men-
tal arithmetic in adults however the relationship was mediated
by ordinal symbol knowledge (Lyons and Beilock, 2011). Consis-
tent with these reports we found a negative correlation between
SAT/GRE score and w (Figure 7A, r2 = 0.28, p < 0.02) and no
correlation between verbal SAT/GRE score and w (Figure 7B,
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FIGURE 6 | (A) Numerosity w scores were positively correlated with line
length w scores on session 1 (r2 = 0.44, p < 0.005) and session 6
(r2 = 0.38, p < 0.005, data not shown). Gray line is the best fit to the data
and the equation shows the intercept and slope. (B) Change from session
1 to session 6 in numerosity w scores plotted against the change in line
length w scores over the same period. Numerosity w scores were not
correlated with any improvement in line length w scores (r2 = 0.00,
p = 0.99). Note that most participants (17/20) had a negative change in ANS
w indicating an improvement. Change in line length w, however, was
evenly distributed around 0 indicating no improvement in line length acuity
in the population. Data points to the left of the vertical dotted line indicate
an increase in line length comparison acuity whereas data points to the
right indicate a decrease in line length comparison acuity from session 1 to
session 6. Data points below the horizontal dotted line indicate an increase
in numerosity comparison acuity whereas data points above indicate a
decrease in numerosity comparison acuity from session 1 to session 6.

r2 = 0.08, p = 0.23). This negative correlation did not hold
when the three participants with single-session outlier data were
excluded (without outliers: r2 = 0.04, p = 0.47). However, when
w was recalculated for these three subjects excluding the sin-
gle session for which each subject exhibited an outlier w score
the negative correlation was significant with math SAT/GRE
scores (r2 = 0.27, p < 0.05), but not verbal scores (r2 = 0.08,
p = 0.22).
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FIGURE 7 | (A) Standardized mathematics test scores (GRE or SAT) were
negatively correlated with w (r2 = 0.28, p < 0.02). Gray line is the best fit
to the data and the equation shows the intercept and slope. (B) Verbal
scores were not significantly correlated with w (r2 = 0.08, p = 0.23).

DISCUSSION
MALLEABILITY OF ANS ACUITY
The primary question our research addressed was the malleabil-
ity of the Weber fraction in response to extended training. We
found rapid improvement in ANS acuity with the introduction
of trial-by-trial feedback and this improved performance was
maintained in a final session when feedback was omitted. Very
little improvement in ANS acuity occurred after the first session
in which trial-by-trial feedback was introduced (second actual
session) suggesting that ANS acuity may plateau and then be
insensitive to extended training. Response time, however, con-
tinued to decrease with further training on the task. It remains
possible that the four sessions of training with feedback that we
provided was not sufficient and that additional training would
have reduced the Weber fraction further even in these partici-
pants. It is also possible that extended training with feedback in
children who have not yet reached asymptotic performance in ANS
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acuity would be more effective and we plan to pursue this in future
research.

Why was the introduction of trial-by-trial feedback so powerful
in reducing the Weber fraction? One caveat is that our study did
not include a control group that did not get feedback. Therefore it
is possible that initial practice, and not trial-by-trial feedback was
the main factor in reducing w in the first session of the number
task. Future studies should explore this possibility. Another possi-
bility is that feedback allowed subjects to decrease reliance on total
stimulus surface area. The effect of surface area and numerosity
congruency was strong in the majority of subjects before trial-by-
trial feedback was introduced. Thus subjects tended to view arrays
with larger total surface area as more numerous. With training,
however, the effect of surface area decreased, and by the final
session participants no longer showed a surface area bias. The
decrease in the congruence effect, however, cannot fully explain
the observed decrease in w. On trials where the surface area of
the two arrays was equal, we still observed an increase in accuracy
after feedback was introduced, and, like the effect seen in w, this
improvement in accuracy persisted after feedback was removed.

Decreasing reliance on total surface area as a mechanism for
improving ANS acuity is consistent with theories of perceptual
learning. Goldstone (1998) identified attentional weighting and
differentiation as potential mechanisms for perceptual learning.
Changes in attentional weighting can allow participants to focus
on crucial information like numerosity while ignoring irrelevant
stimulus features like surface area. Differentiation allows previ-
ously indistinguishable aspects of stimuli to be perceived as distinct
and has been shown to apply to different perceptual dimensions
of the same stimulus. For example, according to the Munsell color
system colors vary along three orthogonal dimensions: chroma,
value, and hue. Burns and Shepp (1988) found that trained sub-
jects were significantly better at differentiating value and chroma
than untrained subjects. Similarly, subjects trained to categorize
color based on chroma but not value increased their acuity in
discriminating different chroma (Goldstone, 1994). These results
suggest that our participants may be learning to differentiate
the related dimensions of numerosity and surface area allowing
them to ignore the extraneous surface area cues and to selectively
improve number acuity.

Prior studies have examined the relationship between surface
area and perceived numerosity in adults and come to differ-
ent conclusions. Consistent with our findings, Hurewitz et al.
(2006), found that congruence between surface area and num-
ber improved accuracy whereas incongruence caused a decrement
in performance. Tokita and Ishiguchi (2010), however, found the
opposite effect, that larger items were perceived as less numerous.
Barth (2008) failed to find any effect of surface area congruence
in an ordinal numerosity task. As Tokita and Ishiguchi (2010)
demonstrated and we confirm here, trial-by-trial feedback rapidly
diminishes or abolishes surface area bias. It remains an open
question, however, exactly what stimulus or presentation factors
determine the direction or existence of surface area bias effects in
naïve subjects. One potentially important difference between our
study and the Tokita and Ishiguchi (2010) study was that we pre-
sented dot arrays simultaneously and spatially overlapped whereas
Tokita used sequential presentation.

It is interesting to note that studies with children suggest that
the ability to separate dimensions improves with age (Smith and
Evans, 1989; see Goldstone, 1998 for review). Thus children may
be more susceptible to the surface area numerosity congruence
effect than adults, and this effect may diminish with development
and increasing acuity of the ANS. A large literature addresses
the effect of surface area on number judgments across develop-
ment. However, there is no consensus on how these interactions
change with experience (e.g., Piaget,1965; Mix et al., 2002; Cantlon
et al., 2010).

THE ANS AND OTHER MAGNITUDE SYSTEMS
A second question our study addressed was the relationship
between ANS acuity and the precision of line length comparisons.
We found that performance on a line length task was positively
correlated with performance on the ANS task. The introduction
of feedback on the numerosity task, however, improved acuity
for the numerosity task but did not generalize to the line length
discrimination.

Walsh’s (Walsh, 2003; Bueti and Walsh, 2009) theory of magni-
tude (ATOM) asserts that dimensions such as time, number, and
space are processed by a common analog magnitude system and
depend on a common set of parietal brain systems. The association
between the spatial and numerical dimensions has been particu-
larly well established (for review, see Hubbard et al., 2005). Many
studies have demonstrated interference between numerical and
spatial information, the SNARC effect being the most well-known
(Dehaene et al., 1993). Parietal lesions causing hemi-spatial neglect
often cause congruent neglect in the mental number line, impli-
cating common parietal circuits in both spatial and numerical
cognition (Zorzi et al., 2002; Cappelletti et al., 2007). Disruption
of normal parietal function with rTMS causes deficits in com-
paring line lengths and numerosities (Dormal et al., 2011). Brain
imaging studies have also implicated overlapping areas of the pari-
etal cortex in both length and numerical comparison tasks (Fias
et al., 2003; Dormal and Pesenti, 2009).

Our finding that line length acuity correlated with ANS is con-
sistent with the theory that spatial and numerical comparisons
depend on shared cognitive mechanisms. However, the improve-
ment that emerged from the introduction of trial-by-trial feedback
did not transfer to the line length task. This finding is consistent
with a weaker version of ATOM in which magnitude comparisons
share some common basis but at least in adulthood are differenti-
ated. One possible explanation of this partial differentiation is that
a single common comparator system is utilized in all judgments
of relative magnitude regardless of dimension, but that each mag-
nitude is represented by a dimension specific subsystem. Thus,
although number and line length are represented along distinct
mental continua, comparisons of two numbers or line lengths
are mediated by a single common comparator. Under this frame-
work, the correlation between ANS acuity and line length acuity is
explained by the resolution of a common comparator. In contrast,
trial-by-trial feedback in the numerosity comparison task results
in improvements that are specific to numerosity representations
(e.g., increasing precision of the underlying representations or nar-
rowing in of attention to the numerosity dimension as opposed
to surface area). Future work might be able to disentangle the
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effects specific to a mental magnitude comparison and the pre-
cision of representations of a specific mental magnitude by, for
example, comparing the accuracy of a numerosity estimation task
(how many dots?) and a numerosity comparison task, like the
one we used. If the underlying representation of number nar-
rows due to training, then it should to transfer across different
number tasks.

An important caveat is that our control task had some signifi-
cant limitations. One limitation was that we were only able to test
one non-numerical magnitude judgment (i.e., line length), and we
did not assess a non-magnitude perceptual judgment. This pre-
vented us from determining whether the correlation between the
number and line length Weber fractions was due to global cogni-
tive influences such as attention or fatigue, or alternatively arose
from common magnitude processing mechanisms. Furthermore,
we equated the ratios for the numerical and line length stimuli
and this meant that the line length stimuli were significantly easier
to discriminate than the numerical stimuli. One reason for this
apparent disparity in difficulty may be that to solve the numer-
ical task participants had to ignore total surface area which was
carefully controlled, whereas in the line length task there was
no competing dimension. However, when we analyzed the most
difficult line length trials we found to improvement in accuracy
indicating that the lack of transfer was not due to a ceiling effect in
the line length task. Future studies should include additional con-
trol tasks and match difficulty and stimulus complexity to make
firmer conclusions about the import of the positive correlation we
observed between ANS and line length judgments.

RELATIONSHIP BETWEEN THE ANS AND SYMBOLIC MATH
A third question our findings address is the relationship between
ANS acuity and symbolic mathematics. Recent work has demon-
strated that ANS acuity is positively correlated with a variety of
mathematical abilities in children and adults (Halberda et al., 2008;
Gilmore et al., 2010; Lyons and Beilock, 2011; Mazzocco et al.,
2011a,b). These studies suggest the ANS may serve as a devel-
opmental building block upon which symbols are mapped and
that precision in ANS representations facilitates symbolic math-
ematics (e.g., Dehaene, 1997; Wynn, 1998; Gilmore et al., 2007;
Verguts and Fias, 2008; Mundy and Gilmore, 2009). A great deal
of work is still needed to probe the dynamics of this relation-
ship and to specify the mechanisms by which ANS acuity might
scaffold symbolic mathematics. Consistent with these prior recent
studies, our sample of adult participants exhibited a positive cor-
relation between ANS acuity and standardized math scores but
not verbal scores. Future work should explore the functional rela-
tionship between the ANS and mathematics by assessing whether
improving ANS acuity, perhaps earlier in development, bestows
any benefits for symbolic mathematics (e.g., Wilson et al., 2006a,b;
Kucian et al., 2011).

There are several possible explanations for why we did not
find a more robust relationship between standardized mathemat-
ics scores and w. We had to combine SAT scores with GRE scores,
since a few of our participants had not taken the SAT. Although the
tests are similar and graded on the same scale (200–800 points),
combining GREs and SATs certainly added noise to the measure.
In addition, our sample did not contain much variance in math

scores, and may have suffered from a ceiling effect. Only one par-
ticipant had a math score below 600, whereas fully half our sample
scored 750 or above. Thus future studies should recruit larger
samples from a more heterogeneous population.

ABSOLUTE VALUE AND RELIABILITY OF w
Global w scores for our sample fell between 0.18 and 0.76 with a
mean of 0.33 and a standard deviation of 0.15. This is higher than
most previous estimates for young adults, which cluster below
0.2 (for review and meta-analysis, see Piazza and Izard, 2009)
but was similar to the range of 0.22–1.5 measured by Gilmore
et al. (2011) in their non-symbolic comparison task. The disparate
ranges in these three studies are surprising given the similarity of
the estimation tasks.

One possible reason we observed higher w is that we did not
control the dot density of our stimuli. Our two stimuli were gener-
ated within a single circle 300 pixels in radius. As a result the total
extent of each stimulus was equal, but the density of the stimulus
was negatively correlated with numerosity. Previous research has
demonstrated that loosely spaced dots appear greater in number
than densely packed dots (Krueger, 1972; Ginsburg, 1976). If the
density of each set of dots was viewed independently (e.g., adding
black dots did not increase the perceived density of the white dots)
then this effect may have inflated estimates of our less numer-
ous stimuli, which would have appeared less densely packed and
therefore more numerous thus impairing discriminability. Lower
accuracy would have increased our estimate of w. This effect may
have been especially pronounced in our stimuli because they had
a relatively large degree of visual crowding. Further research into
the specific effects relative density and other low level stimulus
features on ANS acuity may help clarify differences in average w
in different experiments.

We also measured the reliability of w scores by comparing
split-halves of individual session data. Single session reliability
estimates were high and similar to estimates obtained in previous
reports (Maloney et al., 2010; Gilmore et al., 2011). Note that one
other report obtained low estimates of split-half reliability, how-
ever they used the distance effect rather than w as a measure of
ANS acuity (Sasanguie et al., 2011). Our repeated testing design
allowed us to assess reliability in w across six sessions over a 2-
week period. Despite the reduction in w from session 1 to session
6 there was strong positive correlation in these scores demon-
strating test–retest reliability over a 2-week period. These data
thus provide evidence of both stable and malleable components of
ANS acuity.

POTENTIAL SINGLE NEURON CORRELATES
Single cells in the monkey brain appear to encode quantity. The
firing rate of cells in or near the intraparietal sulcus in macaque
monkeys are systematically correlated with the numerosity of
dot arrays (Nieder and Miller, 2004; Roitman et al., 2007), the
numerosity of sequential actions (Tanji et al., 2002) or sequentially
presented stimuli (Nieder et al., 2006), and line length (Tudusciuc
and Nieder, 2007). Prefrontal cortical cells also encode numerosity
(Nieder et al., 2002) and more abstract magnitudes such as sym-
bol numerosity mappings (Diester and Nieder, 2007), and ordinal
rules (Bongard and Nieder, 2010).
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There are several different ways in which we can imagine sin-
gle cell number coding systems to yield improved performance
as a result of training. Neurons found in the IPS and PFC are
tuned to individual numerosities. Tuned number neurons fire
maximally for a particular numerosity and decrease firing in
response more distant numerosities. One possibility is that the
behavioral improvements we observed as a result of trial-by-trial
feedback are achieved by sharpening the tuning curves of these
neurons. As a result they would fire less for neighboring numerosi-
ties and be more selective for their preferred numerosity after
training. Alternatively, training and feedback may recruit more
individual neurons to the representation of number. This could
improve the precision of the population code without affecting
the width of the tuning curves of individual number selective
neurons.

Other neurons in lateral intraparietal area (LIP) have been
shown to encode numerosity monotonically, with separate popu-
lations either increasing or decreasing firing rate with the observed
numerosity (Roitman et al., 2007). Monotonic numerosity neu-
rons have been hypothesized to play the role of numerosity
accumulators in several models of numerical cognition (Meck and
Church, 1983; Dehaene and Changeux, 1993; Verguts and Fias,
2004). The accumulation layer in these models plays an inter-
mediary role between perception of the stimulus and the final
tuned representations of individual numerosities. Improved per-
formance as a result of training might emerge from a sharpening
of these accumulator-like neurons in LIP. After training, a given
difference in numerosity would generate a greater increase (or
decrease) in the firing rate in LIP neurons. An increase in the
steepness of these monotonic functions could increase discrim-
inability between numerosities and in turn lead to sharper tuning
functions in downstream areas, including other areas in the IPS
and in prefrontal cortex. Pearson et al. (2010) demonstrated that
LIP like monotonic functions are in principle sufficient for com-
pleting a numerosity bisection task. This raises the possibility that
different numerosity representations may be generated idiosyn-
cratically in response to particular task demands, and training and
education may play an important role in determining which types
of number representations become realized in the brain.

Tudusciuc and Nieder (2007) found both line length and
numerosity neurons in macaque intraparietal cortex. However,
they did not find neurons representing magnitude abstractly along

a common mental magnitude line. Line length and numerosity
were represented in separate neuronal populations. A small per-
centage of neurons represented both line length and numerosity,
but these neurons were tuned to different line length and numeros-
ity magnitudes: a neuron that coded for a short line length was
equally likely to code for a small or a large numerosity. Thus, in
monkeys it seems that line length and numerosity magnitudes do
not share a common encoding scheme on the single neuron level
in IPS. If one of the mechanisms of acuity improvement outlined
above selectively acted on the numerosity neurons in the IPS but
not the line length neurons, this could explain the failure of acu-
ity improvement to transfer from one magnitude dimension to
another.

CONCLUSION
Our study addressed the malleability of the ANS and the relation-
ship between the ANS and other judgments. We found that ANS
acuity showed rapid improvement with the introduction of trial-
by-trial feedback but that it was otherwise relatively impervious
to extended training in adults. The improvement in w in response
to feedback was at least partially due to a decrease in reliance on
surface area as a cue for numerosity, although other factors also
influenced improvement. Acuity in a line length discrimination
was positively correlated with ANS acuity, however, improvement
in the ANS in response to feedback did not transfer to improve-
ment in this spatial magnitude discrimination, providing further
evidence that magnitude judgments may have both shared and dis-
tinct components. Finally, even in our relatively small sample of
20 subjects, acuity of the ANS was positively correlated with stan-
dardized tests of mathematical but not verbal proficiency. These
findings raise important questions about the malleability of the
ANS over the lifespan and the relationship between the ANS and
uniquely human mathematical abilities.
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