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Background: This study aimed to develop a clinical-radiomics model using 
hyperattenuated imaging markers (HIM), characterized by hyperattenuation on 
head non-contrast computed tomography immediately after thrombectomy, 
to predict the risk of hemorrhagic transformation (HT) in patients undergoing 
endovascular mechanical thrombectomy (MT).

Methods: A total of 159 consecutive patients with HIM were screened 
immediately after MT for inclusion. The datasets were randomly divided into 
training and test cohorts at a ratio of 8:2. An optimal machine learning (ML) 
algorithm was used for model development. Subsequently, models for clinical, 
radiomics, and clinical-radiomics were developed. The performance of the 
models was measured using receiver operating characteristic (ROC) and 
decision curve analyses (DCA). The interpretability and predictor importance of 
the model were analyzed using Shapley additive explanations.

Results: Of the 159 patients, 100 (62.9%) exhibited HT. The support vector 
machine (SVM) was the optimal ML algorithm for constructing the models. In 
predicting HT, the areas under the curve (AUCs) of the clinical model were 0.918 
(95% confidence interval [CI] = 0.869–0.966) in the training cohort and 0.854 
(95% CI = 0.724–0.984) in the test cohort. The AUCs of the radiomics model 
were 0.869 (95% CI = 0.802–0.936) and 0.829 (95% CI = 0.668–0.990), while 
those of the clinical-radiomics model were 0.944 (95% CI = 0.905–0.984) and 
0.925 (95% CI = 0.832–1.000).

Conclusion: The suggested clinical-radiomics model based on HIM is a reliable 
method that can provide a risk evaluation of HT in individuals undergoing MT.
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1 Introduction

Endovascular mechanical thrombectomy (MT) is the 
recommended treatment for acute ischemic stroke (AIS) because it 
improves reperfusion rates and clinical outcomes (1). Despite 
advancements in treatment strategies, hemorrhagic transformation 
(HT) remains a significant determinant of patient prognosis, with over 
50% of patients experiencing unfavorable outcomes (2). Symptomatic 
intracerebral hemorrhage can lead to death in some patients (3). 
Furthermore, asymptomatic intracerebral hemorrhage and 
subarachnoid hemorrhage (SAH) contribute to adverse outcomes (4, 
5). Appropriate postoperative treatment can improve the prognosis. 
Therefore, early prediction of HT is crucial for adjusting treatment 
after intervention. It is particularly important to determine whether 
blood pressure control and drug therapy should be initiated to prevent 
early re-occlusion of blood vessels caused by endothelial injury.

The hyperattenuated imaging marker (HIM) detected immediately 
on non-contrast computed tomography (NCCT) after MT is the most 
accessible and earliest imaging marker for predicting postoperative 
complications (6, 7). HIM represents areas of hyperattenuation on post-
thrombectomy cranial NCCT scans, often including iodine contrast 
extravasation (ICE) and occasionally containing hemorrhage. 
Postoperatively, these extravasated contrast agents are gradually 
absorbed, while hemorrhage may either start or increase. Numerous 
studies have reported the postoperative presence of HIM in patients, 
ranging from 32.9 to 87.5% (8, 9). The presence of HIM indicates 
disruption of the blood–brain barrier and blood-cerebrospinal fluid 
barrier, which are closely related to bleeding, making it the most 
commonly used imaging marker for hemorrhage prediction after 
surgery (4, 7, 10, 11). Several studies have demonstrated that the presence 
of metallic hyperdensity signs and cortical involvement in HIM are more 
sensitive and specific for predicting HT (12, 13). However, there is 
currently no standardized predictive method with acceptable sensitivity 
and specificity that can accurately predict HT in all patients with HIM.

Radiomics, a technique that involves the extraction of numerous 
characteristics from medical images, is becoming increasingly popular 
for improving the diagnosis and management of ischemic stroke. 
However, previous studies using radiomic features based on HIM have 
primarily focused on detecting hemorrhage in the brain parenchyma, 
overlooking the inclusion of SAH (14, 15). In reality, both intracerebral 
hemorrhage and SAH can affect the subsequent use of anticoagulants. 
Accordingly, it is important to consider both types of hemorrhage 
when using radiomics for the prediction and treatment planning of 
patients with ischemic stroke.

Machine learning (ML) can be used to integrate radiomic features 
with high-risk clinical factors to develop a hemorrhage prediction 
model for stroke (16, 17). Consequently, this study aimed to use 
radiomic attributes derived from HIM in NCCT and clinical 
characteristics to develop a predictive model for both intracerebral 
hemorrhage and SAH in patients undergoing MT using ML algorithms.

2 Materials and methods

2.1 Ethical approval of the study protocol

Approval Number KY2023112 was granted by the Ethics 
Committee of the Fourth Affiliated Hospital, Zhejiang University 

College of Medicine. The committee exempted informed consent. All 
clinical studies followed the principles of the Declaration of Helsinki.

2.2 Patients and study design

A retrospective review was conducted on patients who 
experienced AIS due to blockage in the large blood vessels inside the 
skull and received endovascular MT between June 2016 and 
November 2021 at the Fourth Affiliated Hospital, Zhejiang University 
School of Medicine. The latest guidelines were followed at the time, 
and they included the indications and contraindications of MT and 
thrombolysis. The general clinical features, laboratory examinations, 
clinical presentations, and imaging data of the patients were collected 
within the past 90 days.

The inclusion criteria were as follows: (1) Patients scheduled for 
MT. (2) Patients who underwent head NCCT or magnetic resonance 
imaging (MRI) after MT; (3) initial postoperative head NCCT was 
conducted within 30 min after MT; (4) HIM, which is defined as an 
area of hyperattenuation visible in the brain parenchyma and 
subarachnoid space, was detected on the initial head NCCT following 
MT. The exclusion criteria included the following: (1) Patients for 
whom MT was aborted due to unfavorable vascular anatomy or who 
were switched to medical therapy; (2) NCCT follow-up time after MT 
of less than 19 h (18); (3) the judgment of HIM or hemorrhage was 
influenced by artifacts like metal or motion artifacts; (4) the use of 
iodinated contrast before preoperative CT affected the determination 
of HT. Figure 1 displays a flowchart illustrating the study participants.

2.3 Imaging

Within 30 min after thrombectomy, initial postoperative head 
NCCT was performed using a 64-row spiral CT scanner (Somatom 
Definition AS, Siemens Healthineers, Forchheim, Germany) and a 
62-row spiral scanner (Optima CT620, GE Medical Systems, 
Milwaukee, WI, US). The scanning parameters included an axial 
mode with a tube voltage of 120 kVp and a tube current of 250–300 
mAs. The scanning range was extended from the skull base to the 
cranial roof with a section thickness of 5 mm. Reconstruction was 
performed using the standard algorithm. Two neuroradiologists with 
over a decade of professional experience evaluated the imaging data 
randomly and were unaware of the clinical circumstances. Two 
evaluators discussed conflicting images to reach a consensus.

2.4 Reference standard

The HT was classified according to the Heidelberg Classification, 
adhering to the following criteria: 1. Hyperattenuation remained 
evident on the 24-h CT scan, and 2. Follow-up CT or MRI conducted 
within 90 days after surgery revealed hemorrhage within the range of 
infarction. The maximum Hounsfield unit (HUmax) was defined as 
the highest HU value within a specified Region of Interest (ROI), 
measuring 3 × 3 pixels. Two neuroradiologists (S.H. and Z.W.) with 
>5 years of experience independently evaluated the training and test 
groups. They were blinded to patient outcomes and assessed the 
groups separately. Any discrepancy was resolved by consensus.
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2.5 Data preprocessing

This study included 159 patients. Patients were randomly 
divided into a training cohort (127 patients) and a test cohort (32 
patients). Data on several baseline and preprocedural factors were 
collected, including age, gender, diabetes mellitus, coronary artery 
disease, atrial fibrillation, hypertension, smoking and drinking, 
thrombolysis, and baseline National Institute of Health Stroke 
Scale (NIHSS) score. These data were obtained by reviewing the 
patient’s medical records, procedure notes, and progress and 
follow-up notes. Two experienced neuroradiologists, who were 
unaware of the patient’s clinical information, determined the 
baseline Alberta Stroke Program Early CT Score (ASPECTS) in the 
anterior and posterior circulation, subarachnoid HIM (sHIM), and 
HUmax through discussion. Furthermore, data regarding the 
surgical procedure, including the type of stent, number of stent 
passes, stent placement, and modified Thrombolysis in Cerebral 
Infarction scores, were collected.

2.6 Radiomics features extraction

On each initial postoperative CT image, the ROI of the HIM was 
manually segmented along the HIM contour, incorporating both 
parenchyma and sulcus. This process was conducted using the 
ITK-SNAP software (version 3.8.01). Both radiologists were blinded 
to the clinical information and final outcomes.

To eliminate any potential variations in CT images obtained using 
different CT scanners, NCCT images were reconstructed using a voxel 
size of 1 × 1 × 1 mm3 and gray-scale discretization. Two radiologists 
independently segmented the images of every HIM and measured 
them using a method that ensured double anonymization. An 
intraclass correlation coefficient (ICC) ≥ 0.75 was considered robust.

1 http://www.itksnap.org/

A Pyradiomics in-house feature analysis program2 was used to 
extract radiomic features from HIM in NCCT. From the NCCT 
images, 1834 radiomics features were extracted. Various techniques 
were used to extract texture features, including first-order statistics, 
shape-based analysis, gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), neighboring gray-tone difference 
matrix (NGTDM), gray-level size zone matrix (GLSZM), and gray-
level dependence matrix (GLDM).

2.7 Finding the best ML algorithm to build 
models

All clinical data and robust radiomics features were combined to 
develop the combined models. A Mann–Whitney U test and feature 
screening were performed for all features. The features with a p-value 
<0.05 were included. Spearman’s rank correlation coefficient was 
calculated for the features exhibiting high repeatability to evaluate the 
association between features. If the correlation coefficient between 
any two characteristics >0.9, one of the characteristics would 
be preserved. To ensure a comprehensive depiction of the features, a 
greedy recursive deletion strategy was used for feature filtering. This 
process includes removing the characteristics with the highest 
duplication in the existing collection during each cycle. For signature 
construction, the discovery dataset was subjected to the least absolute 
shrinkage and selection operator (LASSO) regression model. By 
applying a regularization weight λ, LASSO reduces the regression 
coefficients to zero and assigns a value of zero to the coefficients of 
the irrelevant features. To determine the best λ, a 10-fold cross-
validation was applied, and the λ value that resulted in the lowest 
cross-validation error was selected using the minimum criteria. The 
included features with coefficients that were not zero were used to fit 
the regression model and were incorporated into the model. LASSO 

2 http://pyradiomics.readthedocs.io

FIGURE 1

The flowchart of the patient recruitment pathway. MT, mechanical thrombectomy; NCCT, non-contrast CT; HIM, Hyperattenuated Imaging Marker.
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regression modeling was performed using the Python scikit-
learn library.

Following the LASSO feature screening, the selected features were 
incorporated into the ML models. To develop the HT prediction 
model, the effects of seven ML algorithms [Support Vector Machine 
(SVM), Light Gradient Boosting Machine, k-nearest neighbor, 
random forest, AdaBoost, eXtreme Gradient Boosting, and Gradient 
Boosting] were compared before modeling. The optimal algorithm 
was identified through 5-fold cross-validation in the training cohort. 
The SVM model for ML was identified as having the greatest mean 
area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve in the test group (Table  1). Hence, the chosen 
characteristics were fed into the SVM algorithms to develop the risk 
model. To obtain the optimized subset of features, a cross-verification 
was conducted using a 5-fold method.

2.8 Building models

A radiomics model was developed for the training group using the 
most important radiomics characteristics that were ultimately chosen 
following the same procedure as that used for the combined model. 
Additionally, the radiomics model was validated in the test cohort. In 
the training cohort, the collected clinical characteristics were 
integrated into the LASSO regression model to identify the most 
significant characteristics, retaining only those with coefficients that 
were not zero. The SVM algorithm was then used to develop a clinical 
model by employing these characteristics. The efficiency of the model 
was evaluated using the test cohort. A flowchart of the radiomics 
model construction is shown in Figure 2.

The combined model was developed in the training cohort and 
was subsequently verified in the test cohort. The diagnostic efficacy of 
the combined model was evaluated using ROC curves. To assess the 

clinical applicability of the predictive models, a decision curve analysis 
(DCA) was conducted. Furthermore, the performance of these models 
was evaluated using Shapley Additive explanations (SHAP) analysis 
to determine the significance of each feature in predicting HT.

2.9 Statistics

The statistical package for the social sciences software (version 26.0, 
IBM) was used to perform statistical analyses. For continuous variables, 
the disparity was determined using either the Student’s t-test or the 
Mann–Whitney U test, depending on suitability. Continuous data are 
presented as mean ± standard deviation or median with interquartile 
range, depending on the distribution of the data. Differences in 
categorical variables were determined using either the Chi-square or 
Fisher’s exact test, depending on the circumstances. The significance 
threshold for all statistical tests was set at p < 0.05. Python software 
(version 3.11.13) was used to perform feature extraction and screening 
and to construct the models. The performance of the three models was 
evaluated using the AUC, 95% CI, accuracy, sensitivity, and specificity.

3 Results

3.1 Comparison of patient clinical 
characteristics

This study included 159 patients diagnosed with HIM, with 127 
and 32 patients assigned to training and test cohorts, respectively. 

3 https://www.python.org

TABLE 1 Performance of ML combined models.

Model Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1

SVM Train 0.89 0.944 0.9046–0.9837 0.938 0.809 0.893 0.884 0.893 0.938 0.915

SVM Test 0.875 0.925 0.8325–1.0000 0.9 0.833 0.9 0.833 0.9 0.9 0.9

KNN Train 0.858 0.912 0.8626–0.9619 0.863 0.851 0.908 0.784 0.908 0.863 0.885

KNN Test 0.844 0.842 0.6900–0.9934 0.95 0.727 0.826 0.889 0.826 0.95 0.884

Random-

Forest
Train 1 1 1.0000–1.0000 1 1 1 1 1 1 1

Random-

Forest
Test 0.719 0.815 0.6669–0.9623 0.55 1 1 0.571 1 0.55 0.71

XGBoost Train 1 1 1.0000–1.0000 1 1 1 1 1 1 1

XGBoost Test 0.75 0.717 0.5157–0.9176 0.8 0.667 0.8 0.667 0.8 0.8 0.8

LightGBM Train 0.843 0.921 0.8765–0.9647 0.875 0.787 0.875 0.787 0.875 0.875 0.875

LightGBM Test 0.844 0.846 0.7015–0.9902 0.9 0.75 0.857 0.818 0.857 0.9 0.878

Gradient-

Boosting
Train 0.953 0.994 0.9873–1.0000 0.925 1 1 0.887 1 0.925 0.961

Gradient-

Boosting
Test 0.75 0.708 0.5033–0.9133 0.85 0.778 0.773 0.7 0.773 0.85 0.81

AdaBoost Train 0.85 0.947 0.9132–0.9799 0.775 0.979 0.984 0.719 0.984 0.775 0.867

AdaBoost Test 0.75 0.815 0.6683–0.9609 0.75 0.75 0.833 0.643 0.833 0.75 0.789
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The initial attributes of patients in both the training and test groups 
are listed in Table 2. HT occurred in 100 of the 159 patients. The 
training and test cohorts differed significantly in thrombolysis 
(p = 0.027).

3.2 Establishment and performance of the 
radiomics model

A total of 1834 radiomic characteristics were obtained from the 
NCCT images after MT, with 1,681 characteristics (ICC ≥ 0.75) 
demonstrating acceptable consistency between observers. To develop 
the model, five features per patient were selected by excluding feature 
pairs with strong correlations.

In the training group, the radiomics model exhibited an AUC of 
0.869 (95% confidence interval [CI] = 0.802–0.936) with sensitivity 
and specificity rates of 0.925 and 0.681, respectively. The test group 
exhibited an AUC of 0.829 (95% CI = 0.668–0.990) and well-balanced 
sensitivity (0.800) and specificity (0.833) (Table 3 and Figure 3).

3.3 Performances of the clinical models

Nine clinical factors, including HUmax ≥90, anterior circulation, 
sHIM, ASPECTS, male sex, drinking, coronary artery disease, baseline 

NIHSS score, and pass number, were selected after implementing 
LASSO feature screening. These factors were used to develop the 
clinical model.

In the training cohort, the clinical model demonstrated an AUC 
of 0.918 (95% CI = 0.869–0.966), a sensitivity of 0.725, and a specificity 
of 0.979. Similarly, the clinical model exhibited an AUC of 0.854 (95% 
CI = 0.724–0.984) in the test cohort with a sensitivity of 0.650 and 
specificity of 1.0. These results are presented in Table 3 and Figure 3.

3.4 Performances of the combined model

The models were developed by combining all the clinical data and 
robust radiomics features. After excluding the feature pairs with 
strong correlations, 17 features per patient were selected for further 
analysis. These results are presented in Table 3 and Figure 3.

In the training cohort, the combined model exhibited an AUC 
of 0.944 (95% CI = 0.905–0.984), with sensitivity and specificity 
rates of 0.938 and 0.809, respectively; whereas the AUC was 0.925 
(95% CI = 0.832–1.000) in the test cohort, and the sensitivity and 
specificity were 0.900, and 0.833, respectively (Table  3 and 
Figure  3). The Delong test showed no significant differences 
between models: combined vs. radiomics (p = 0.172), combined vs. 
clinical (p = 0.316), and radiomics vs. clinical (p = 0.800). The 
DCA values of the three models for both the training and test 

FIGURE 2

The process of building the radiomics model. NCCT, non-contrast CT; ROI, region of interest; ICC, intraclass correlation coefficient; LASSO, least 
absolute shrinkage and selection operator; MSE, mean square error; ROC, receiver operating characteristic; DCA, decision curve analysis; SHAP, 
Shapley Additive explanations.
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cohorts are illustrated in Figure 3C. The DCA demonstrated that 
the combined model provided a significant clinical prediction 
advantage for the majority of threshold probabilities compared to 
the clinical and radiomics models.

3.5 Explanation and visualization of the 
combined model

After performing the prediction modeling of HT, the feature 
importance matrix plot was used to rank the most important variables. 
The plot revealed the influence of each factor on HT prediction. To 
demonstrate the influence of each characteristic on the model’s 
prediction, a summary chart of the SHAP values is depicted in 
Figure 4, illustrating the correlation between high or low SHAP values 
and the prediction model. The blue dots, which indicate lower values 
of logarithm_glrlm_ShortRunLowGrayLevelEmphasis, tend to 
be more concentrated in areas with a higher likelihood of HT. These 
results indicate that the SHAP values of this measurement exhibited 
an inverse relationship with the risk of HT occurrence. Contrarily, the 
risk of HT was high on the side, with a higher frequency of red dots 
indicating high Anterior_Circulation, Ibp_3D_m2_glszm_
SmallAreaEmphasis, sHIM, and men, implying a positive correlation 
between the SHAP value of this index and the risk of HT.

4 Discussion

Hemorrhagic transformation is a significant complication of MT 
in patients with AIS. Identifying patients at risk of developing HT is 
crucial for optimizing the management of stroke patients. We aimed 
to address this requirement by developing and evaluating interpretable 
ML models. The occurrence of HT after MT was predicted using 
baseline clinical information and imaging features based on HIM in 
these models. Our combined model, incorporating both clinical 
factors and radiomics features, demonstrated superior predictive 
performance. This model yielded an AUC of 0.944 in the training 
group and 0.925 in the test group. These results highlight the potential 
of our model to accurately predict the risk of post-MT HT in patients 
with AIS. The predictive capacity of the model was improved by 
combining clinical and radiomics characteristics, providing valuable 
information to optimize patient care and minimize the incidence of 
this severe complication.

The occurrence of HT is common after MT, with the most 
common type being intracerebral hemorrhage. Recent studies have 
demonstrated an increase in the number of reports of SAH as the 
indications for MT have expanded. In a study of anterior circulation 
MT, the incidence of SAH was 13.2%, and the incidence of 
intracerebral hemorrhage was 39.6%. SAH accounted for 1/4 of all 
hemorrhages (19). Intracerebral hemorrhage and SAH after 
thrombectomy mutually influence each other. Disruption of the 
blood–brain barrier or injury to the vascular wall in the brain 
parenchyma leads to SAH (4, 20), and vascular wall injury can also 
cause parenchymal damage (21, 22). Patients who develop SAH 
after thrombectomy have a poor prognosis, which is further 
exacerbated by the presence of intracerebral hemorrhage (23–25). 
SAH, like intracerebral hemorrhage, also affects timely 
postoperative treatment. However, multiple studies have separated 
them for analysis and have not included SAH as an outcome 
measure in predictive models (12, 26, 27). Optimal management 
and treatment strategies for patients with AIS can be  achieved 
through the precise and prompt prediction of hemorrhage after 
thrombectomy. Patients without hemorrhage should receive 
appropriate perfusion maintenance and prevention of vessel 
re-occlusion to salvage more brain tissue. Patients with hemorrhage 
should have their blood pressure lowered and antiplatelet 
aggregation drugs discontinued to prevent further bleeding. This 
study included both intracerebral hemorrhage and SAH as outcome 
measures and achieved satisfactory predictive results.

HIM-based radiomics has demonstrated the HT prediction 
potential. Chen et al. (14) conducted a study using radiomic features 
of HIM within 1 h after MT to determine the presence of hemorrhage, 
achieving an AUC of 0.826. Ma et al. (15) developed a model that 
combined radiomics features of intracerebral HIM within 24 h post-
surgery with clinical characteristics to predict HT. Their model 
demonstrated an AUC of 0.926 for intracerebral hemorrhage 
occurring 48 h after surgery. However, they used a broad definition of 
HIM and hemorrhage timing, which may have inadvertently excluded 
certain instances of HIM and hemorrhage that have been resolved.

Contrarily, our study followed stricter inclusion criteria that 
restricted the examination time of HIM to a maximum of 30 min. 
But the strict 30-min post-MT imaging window may limit 
generalizability. Future studies should broaden this timeframe to 
minimize potential bias. Moreover, unlike their study, we included 

TABLE 2 Characteristics of the training and test sets.

Feature name Train Test P-
value

Age, mean ± SD 67.22 ± 13.84 66.44 ± 15.59 0.781

Men, n(%) 81(63.78) 20(62.50) 0.894

Atrial fibrillation, n(%) 48(37.80) 9(28.13) 0.311

Hypertension, n(%) 72(56.69) 20(62.50) 0.555

Diabetes mellitus, n(%) 17(13.39) 4(12.50) 0.896

Coronary artery disease, n(%) 20(15.75) 8(25.00) 0.060

Drinking, n(%) 27(21.26) 8(25.00) 0.651

Smoking, n(%) 29(22.83) 9(28.13) 0.534

Thrombolysis, n(%) 48(37.80) 19(59.38) 0.027*

Baseline NIHSS, median (Q1, Q3) 16(12–20) 15(13–18) 0.893

Anterior circulation, n(%) 119(93.70) 30(93.75) 0.992

ASPECTS, median (Q1, Q3) 9(8–10) 9(8–10) 0.504

Humax ≥ 90, n(%) 35(25.55) 14(43.75) 0.077

sHIM, n(%) 46(36.22) 13(40.62) 0.647

mTICI 2b or 3, n(%) 113(88.98) 26(81.25) 0.242

Stent type, n(%) 0.486

  SOLITAR 71(55.91) 19(59.38)

  TREVO 25(19.69) 5(15,63)

  SOLITAR + TREVO 16(12.60) 4(12.50)

  others 15(11.81) 4(12.50)

Pass number, median (Q1, Q3) 2(1–3) 2(1–3) 0.958

Stent implantation, n(%) 25(19.69) 8(21.88) 0.784

*Represents P < 0.05; SD, standard deviation; HU, Hounsfield; NIHSS, National Institutes of 
Health Stroke Scale; Q1, first quartile; Q3, third quartile; ASPECTS, Alberta Stroke Program 
Early CT Score; mTICI, modified thrombolysis in cerebral infarction.
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SAH as an outcome measure, which is more applicable in clinical 
practice. Our clinical radiomics model demonstrated the best 
predictive performance, with AUCs of 0.944 and 0.925  in the 

training and test cohorts, respectively, confirming its superior 
predictive capability further, even though the Delong test did not 
reveal statistically significant differences between models.

TABLE 3 Performance of the three models.

Model Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1

Combined Train 0.890 0.944 0.9046–0.9837 0.938 0.809 0.893 0.884 0.893 0.938 0.915

Combined Test 0.875 0.925 0.8325–1.0000 0.9 0.833 0.9 0.833 0.9 0.9 0.9

Radiomics Train 0.835 0.869 0.8018–0.9365 0.925 0.681 0.831 0.842 0.831 0.925 0.876

Radiomics Test 0.812 0.829 0.6679–0.9905 0.8 0.833 0.889 0.714 0.889 0.8 0.842

Clinical Train 0.819 0.918 0.8686–0.9665 0.725 0.979 0.983 0.676 0.983 0.725 0.835

Clinical Test 0.781 0.854 0.7242–0.9841 0.65 1 1 0.632 1 0.65 0.788

FIGURE 3

Receiver operating characteristic (ROC) and DCA curves of the three models. (A) ROC curves for predicting HT in the training cohort. (B) The 
corresponding ROC curves for the test cohort. (C) DCA curves for the three models. The y-axis represents the net benefit, and the x-axis represents 
the threshold probability. The blue line, green line, and orange line represent the expected net benefit of predicting HT using the combined model, 
clinical model, and radiomics model, respectively. ROC, receiver operating characteristic; DCA, decision curve analysis; HT, hemorrhagic 
transformation.

FIGURE 4

The rank of importance for each feature in the combined model for HT prediction. The SHAP summary plot illustrates the distribution of patient 
features, arranged by importance, with the most critical feature at the top and the least important at the bottom. The color legend on the right side 
represents the influence of feature values on the outcome, with red indicating high values and blue indicating low values. Positive SHAp values (right 
on the x-axis) suggest a higher probability of HT, while negative values (left on the x-axis) indicate the opposite. SHAP, Shapley Additive exPlanations; 
sHIM, subarachnoid hyperattenuated imaging markers; ASPECTS, Alberta Stroke Program Early CT Score.
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Support vector machine, a widely utilized ML algorithm, is 
frequently used for tasks involving recognition and classification. The 
SVM has become a prominent algorithm for supervised learning and 
is widely used in the fields of pattern recognition and ML. The 
algorithm uses a linear decision boundary known as a hyperplane to 
identify the optimal hyperplane that maximizes the gap distance 
between two categories (28). Furthermore, SVM can address 
non-linear classification problems by transforming data into a space 
with more dimensions through diverse kernel functions. In previous 
studies, SVM has been successfully applied in neuroimaging to predict 
SAH and prognosis after treatment (16, 29). This study involved the 
development of seven different predictive models for HT, with the 
SVM model exhibiting superior performance. Moreover, we  used 
SHAP, a game-theory-based method, to visually represent the impact 
of individual features in the combined model for prognostic 
forecasting. Our SHAP analysis identified several radiomic features 
with clinical relevance (30). Among the positively correlated features, 
elevated SmallAreaEmphasis values suggest densely clustered small-
sized hyperdense foci within HIM regions. These micro-foci likely 
represent early microhemorrhages or ICE, and their aggregation 
indicates exacerbated blood–brain barrier disruption, which may 
predispose patients to HT following reperfusion therapy. Elongation 
exhibited a positive correlation with hemorrhage risk. HIM with an 
elongated shape predominantly localized to cortical regions may 
reflect the high metabolic demand of cortical tissue, which can amplify 
ischemia–reperfusion injury (8). Conversely, negatively correlated 
features revealed protective imaging patterns. Reduced 
DifferenceVariance signifies a homogenized grayscale distribution 
within HIM, suggesting potential alignment with infarct core regions 
characterized by severe blood–brain barrier damage, thereby elevating 
hemorrhage susceptibility (31). The negative correlations observed for 
ShortRunLowGrayLevelEmphasis and ShortRunEmphasis indicate 
diminished low-density areas and a lack of short-run texture 
structures within HIM. This further aligns with studies suggesting that 
lesions dominated by homogeneous hyperdensity are more prone to 
hemorrhagic complications (12).

The top nine predictive indicators in the combined model 
included clinical factors such as anterior circulation, sHIM, male 
gender, ASPECTS score, and HUmax ≥90. Morhard et  al. (32) 
conducted a study comparing the incidence of HIM in patients with 
anterior and posterior circulation stroke using dual-energy CT. The 
results revealed that the incidence of HIM was significantly higher in 
patients with anterior circulation stroke than in those with posterior 
circulation stroke, leading to an increased rate of HT. This difference 
can be  attributed to the relatively small volume of the posterior 
circulation area and limited resolution of the posterior fossa CT 
caused by beam-hardening artifacts. Manual ROI delineation may 
miss subtle HIM regions. Future work should prioritize automated 
segmentation tools to improve consistency. Kim et al. (33) discovered 
that the infarcted core was larger in the sHIM group, indicating a poor 
collateral circulation status, thereby leading to the expansion of the 
progressive infarcted core and an increased risk of HT (34). Besides, 
sHIM could result from arterial injury caused by the procedure, 
indicating the presence of significant intracranial hemorrhage. This 
finding aligns with those of the present study. The risk of HT after MT 
was comparable between men and women. However, in Asian 
populations, there is a stronger association between male gender and 
HT (35–37). Further evidence is required to confirm these 

observations. Numerous studies have demonstrated that a low 
preoperative ASPECTS may indicate severe damage to the blood–
brain barrier due to ischemia (7, 38–41). This damage increases the 
risk of HT after MT. Additionally, the maximum CT value, especially 
when the threshold is set at 90 HU, indicates impairment of the 
blood–brain barrier and acts as a reliable indicator of the risk of HT 
(7, 8, 12, 42).

Our study has several limitations that should be addressed. First, the 
retrospective nature of the study, its single-center design, and its relatively 
small sample size may have introduced selection bias and overestimation 
of our findings. We are actively collaborating with external institutions to 
conduct prospective multicenter validation. Additionally, we  plan to 
implement local prospective internal validation in ongoing studies. Until 
such external corroboration is achieved, clinical application of the model 
requires cautious interpretation, and its generalizability remains to 
be further verified. Second, the manual segmentation process for lesions 
in our study was time-consuming and complex, especially for lesions with 
indistinct boundaries. Consequently, future research endeavors should 
prioritize the improvement of automatic segmentation technology to 
achieve a satisfactory level of reliability and reproducibility. Third, the 
small sample size and the imbalance between the two groups in our study 
may have affected the statistical power and generalizability of the results. 
Larger sample sizes and improved balance between the groups should 
be  considered in future studies. Fourth, our approach relies on 
conventional radiomics characteristics. The prediction ability of the 
model can be  improved by incorporating a deep-learning approach. 
Finally, interpreting the radiomics features used in our study presents a 
formidable challenge to understanding their fundamental biological 
significance. To improve our understanding of their biological 
significance, future research should focus on investigating the association 
between the histological attributes of thrombi and radiomics features.

5 Conclusion

This study involved the development of a model that integrates 
radiomics characteristics obtained from NCCT images of HIM with 
clinical characteristics to evaluate the risk of HT in patients who have 
undergone MT. This reliable model can assist frontline doctors in 
identifying patients with a significantly increased risk of HT and 
provide support during clinical decision-making.
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