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Background: Ischemic stroke (IS) is a significant global health issue, causing 
high rates of morbidity, mortality, and disability. Since conventional Diagnosis 
methods for IS have several shortcomings. It is critical to create new Diagnosis 
models in order to enhance existing Diagnosis approaches.

Methods: We utilized gene expression data from the Gene Expression Omnibus 
(GEO) databases GSE16561 and GSE22255 to identify differentially expressed 
genes (DEGs) associated with IS. DEGs analysis using the Limma package, as 
well as GO and KEGG enrichment analyses, were performed. Furthermore, PPI 
networks were constructed using DEGs from the String database, and Random 
Forest models were utilized to screen key DEGs. Additionally, an artificial neural 
network model was developed for IS classification. Use the GSE58294 dataset 
to evaluate the effectiveness of the scoring model on healthy controls and 
ischemic stroke samples. The effectiveness of the scoring model was evaluated 
through AUC analysis, and CIBERSORT analysis was conducted to estimate the 
immune landscape and explore the correlation between gene expression and 
immune cell infiltration.

Results: A total of 26 significant DEGs associated with IS were identified. Metascape 
analysis revealed enriched biological processes and pathways related to IS. 10 key 
DEGs (ARG1, DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, HLA-DQB1) were 
selected using Random Forest and artificial neural network models. The area under 
the ROC curve (AUC) for the IS classification model was found to be near 1, indicating 
its high accuracy. Additionally, the analysis of the immune landscape demonstrated 
elevated immune-related networks in IS patients compared to healthy controls.

Conclusion: The study uncovers the involvement of specific genes and immune 
cells in the pathogenesis of IS, suggesting their importance in understanding 
and potentially targeting the disease.
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1 Introduction

Ischemic stroke (IS) is a common cerebrovascular disease 
characterized by impaired blood supply to the brain, leading to 
ischemia and hypoxia in brain tissue and resulting in conditions such 
as brain tissue necrosis (1). Local blood supply disorders in the brain 
can cause significant neurological damage, affecting speech, 
movement, balance, and swallowing. Severe brain injury, long-term 
disability, or even death can occur as a result (2). This leads to 
prolonged hospital stays, increased medical expenses, and substantial 
consumption of medical resources, creating a significant economic 
burden on global healthcare systems. Worldwide, approximately 
9.77% of strokes occur in individuals under the age of 35. Additionally, 
statistics show that about 1 in every 4 individuals over the age of 25 
will experience a stroke in their lifetime, indicating a gradual increase 
in stroke incidence (3).

IS imposes significant psychological and economic burdens on 
patients, families, and society. It is associated with high morbidity, 
disability, mortality, and recurrence rates. Therefore, early diagnosis 
and effective emergency treatment are crucial in reducing the risk of 
disability and mortality. The key to effective treatment lies in timely 
restoration of blocked blood vessels and blood supply to save brain 
tissue from necrosis. Currently, the recommended methods for early 
blood flow restoration in IS include intravenous thrombolysis and 
endovascular therapy. Intravenous thrombolysis, in particular, is the 
preferred treatment option for patients within the time window (4, 5). 
Recombinant tissue Plasmin activator (rt-PA) is considered the most 
effective drug for clinical treatment, and its efficacy and safety have 
been studied in various clinical trials since 1996. Over time, the time 
window for intravenous thrombolysis has been gradually expanded 
from the initial 3 h to 4.5 h or even 6 h (6, 7).

The severity of neurological deficit in patients with IS can 
be  assessed using the National Institutes of Health Stroke Scale 
(NIHSS). Studies have shown that the NIHSS score can independently 
predict the clinical prognosis of IS patients (8). During the first 24 h 
after onset, the NIHSS score changes dynamically as the disease 
progresses or is treated. The relationship between the degree of 
neurological deficit and long-term functional outcome becomes 
stronger after the initial few hours and then levels off (9). Early 
diagnosis and treatment of IS can help predict the natural course of the 

disease, reverse disease progression, improve prognosis, and reduce the 
incidence of complications such as IS. Therefore, there is an urgent need 
to supplement existing diagnostic measures and develop new diagnostic 
models. The rapid advancement of second-generation sequencing 
technology in recent years has provided a foundation for the discovery 
of several disease-related genes. In this study, we conducted a search in 
the GEO database to identify genes that showed differential expression 
between IS and healthy control samples. Based on these data, 
we employed Random Forest to discover important genes expressed in 
IS. Subsequently, we utilized this data to construct an early diagnosis 
model of IS using the Artificial Neural Network method (Figure 1).

2 Materials and methods

2.1 Data downloading and analysis

DEGs were identified using the Gene Expression Omnibus 
(GEO).1 The screening criteria included the expression patterns and 
clinical phenotypic data from the GSE16561, GSE22255, and 
GSE58294 microarray datasets, which were retrieved using the query 
tool and presented in Table  1. Annotation data for appropriate 
platform microarray probes were collected from the GEO database. 
During the translation of ChIP probe IDs and gene symbols, multiple 
probes matching a single gene symbol were found. In such cases, the 
gene expression level was determined based on the average expression 
level of the probes.

When selecting the datasets for our study, we  adhered to a 
stringent set of criteria to ensure the quality and relevance of the data. 
We  prioritized datasets directly associated with IS and ensured 
coverage of diverse types of IS patients and control groups to obtain a 
comprehensive research perspective. We chose three datasets, namely 
GSE16561, GSE22255, and GSE58294, each containing IS patient and 
control samples from different experimental platforms. In terms of 
data preprocessing, we standardized the raw gene expression data 
using relevant software packages in R to eliminate technical variations. 
Differential gene analysis using the Limma R package identified the 
DEGs associated with IS. To enhance statistical power, we combined 
the data from GSE16561 and GSE22255 and validated the results 
using the GSE58294 dataset. This systematic preprocessing ensured 
the reliability of the selected datasets, laying a solid foundation for 
subsequent bioinformatics analyses.

The fundamental principle behind selecting the three datasets, 
GSE16561, GSE22255, and GSE58294, is based on the critical 
information they provide, contributing to the study of gene expression 
and pathological mechanisms in acute ischemic stroke. The purpose 
of GSE16561 is to identify a set of genes for the diagnosis of acute 
ischemic stroke through the analysis of gene expression in peripheral 
whole blood, providing insights into the biological pathways involved 

1 http://www.ncbi.nlm.nih.gov/geo

Abbreviations: IS, Ischemic stroke; rt-PA, Recombinant tissue Plasmin activator; 

NIHSS, National Institutes of Health Stroke Scale; GEO, Gene Expression Omnibus; 

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, 
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Operating Characteristic; AUC, Area Under Curve; logFC, log Fold Change; ARG1, 
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A chain; NFIL3, Nuclear factor interleukin-3-regulated protein; CCR7, C-C 
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in the human response to acute ischemic stroke. GSE22255 aims to 
understand the etiology of stroke by analyzing gene expression profiles 
to better comprehend the complexity of this disease, which has 
unclear pathogenesis involving environmental and genetic factors. 
GSE58294 collected blood samples from cardioembolic stroke subjects 
and controls, exploring the molecular mechanisms of this specific type 
of stroke through whole-genome analysis. These three datasets offer 
researchers a unique opportunity to delve into the molecular-level 
pathological mechanisms of acute ischemic stroke and search for 
potential diagnostic biomarkers.

2.2 DEGs and enrichment investigation

The Limma R package was utilized to compare and analyze 
differences between 59 IS subjects and 44 healthy controls from 
datasets GSE16561 and GSE22255. Limma employs traditional 
Bayesian data analysis to filter frequencies. The significance level was 
set at an adjusted p-value of <0.05 and a log Fold Change (logFC) 
greater than 1. A DEGs heatmap can be generated using appropriate 
heatmap software. We  conducted enrichment analysis of Gene 
Ontology (GO) functions using the R package clusterspectrum, and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 

analysis of associated genes. Through Metascape cluster analysis,2 
we identified three significantly enriched GO keywords (p < 0.05) and 
pathways (p < 0.05).

2.3 Construction of PPI network

A PPI network was constructed using differential genes selected 
from the String database.3 The minimum interaction score required 
for the PPI network was set to 0.6. Additionally, individual outliers 
were excluded during the construction of the PPI network.

2.4 Random forest DEGs screening

In the study, we employed a random forest model to identify 
DEGs associated with IS. Regarding model parameterization, 
we utilized the Random Forest software for model creation, adjusting 

2 http://metascape.org/gp/index.html

3 https://www.string-db.org/

TABLE 1 Data download.

ID GSE number Data type Samples Source type Group

1 GSE16561
Illumina HumanRef-8 v3.0 expression 

beadchip

39 ischemic stroke patients24 

healthy control
peripheral whole blood RNA Discovery cohort

2 GSE22255
[HG-U133_Plus_2] Affymetrix Human 

Genome U133 Plus 2.0 Array

20 ischemic stroke20 sex- and 

age-matched controls
Blood genomic expression profile Discovery cohort

3 GSE58294
[HG-U133_Plus_2] Affymetrix Human 

Genome U133 Plus 2.0 Array
69 cardioembolic stroke23 control Blood Validation cohort

FIGURE 1

Flowchart.
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parameters such as the number of nodes and trees to optimize model 
performance. During the training process, we  conducted gene 
feature selection, choosing the most predictive gene subset, and 
ensured model accuracy in distinguishing IS patients from the 
control group through model evaluation. This systematic approach 
not only optimized the structure of the random forest model but also 
enhanced the accurate identification of IS-related DEGs, providing 
a reliable analytical foundation for unraveling the pathogenic 
mechanisms of IS.

DEGs Random Forest models were created using Random Forest 
software. First, we estimated the average model error rate for all genes 
using out-of-range data. The ideal variable value for a binary node tree 
is 6, and for a random forest, it is 500. We then used the loss-of-
precision method (the Gini method) to determine the effect size in the 
random selection forest pattern. Genetic disease factors with a 
significance score greater than 2.0 were selected for subsequent model 
development. The merged dataset’s unstructured hierarchical 
clustering of 10 key genes was categorized, and a heatmap was created 
using the freely accessible pheatmap program.

2.5 Artificial neural network modeling

When conducting neural network training, we integrated the 
GSE16561 and GSE22255 datasets and standardized the data using 
the R package ‘neuralnet’, ensuring consistent input ranges across 
all features. Subsequently, we constructed a feedforward artificial 
neural network for IS classification. Through iterative experiments 
and adjustments, we  determined a network architecture that 
balanced complexity and performance: one hidden layer containing 
five neurons. The model architecture consisted of an input layer, a 
hidden layer, and an output layer. The input layer had neurons 
corresponding to the number of gene features in our dataset. The 
hidden layer comprised five neurons, and the output layer contained 
two neurons representing the binary classification outcomes—
control (con) and treatment (treat). We  employed the sigmoid 
activation function (logistic function) for both the hidden and 
output layers due to its suitability for binary classification tasks. The 
neural network was trained using the resilient backpropagation 
with weight backtracking (Rprop+) optimizer, which adjusts weight 
updates based on the sign of the gradient, improving convergence 
speed and stability. The sum of squared errors (SSE) was used as the 
loss function to measure the discrepancy between predicted outputs 
and actual targets. Training continued until convergence criteria 
were met, with a default maximum of 100,000 epochs, although 
training often stopped earlier when the partial derivatives of the 
error function fell below 0.01. We initialized the weights randomly 
within the range [−1, 1] and set a random seed of 12,345,678 to 
ensure reproducibility. To assess the model’s performance, 
we computed the validation results using the area under the receiver 
operating characteristic curve (AUC) with the ‘pROC’ software 
package. This metric comprehensively considers the model’s true 
positive rate and false positive rate, ensuring superior performance 
and generalizability. The disease class scores were deduced by 
utilizing the network’s predicted probabilities. The objective of this 
systematic approach was to optimize the structure and parameters 
of the neural network, ensuring the model’s effectiveness and 
robustness in diagnostic tasks.

2.6 AUC evaluation

The effectiveness of the scoring model on healthy controls and IS 
samples was evaluated using the GSE58294 dataset. ROC curves were 
constructed and the area under the curve was calculated using the 
proc. software package to measure classification efficiency. 
Additionally, a threshold for the ROC curve was determined, along 
with the specificity and sensitivity for identifying IS and healthy 
controls below this threshold.

2.7 Immune landscape estimate and 
correlation test

Using the R program ‘complot’ and 1,000 permutations, 
we  derived 22 samples from the IS cohort using CIBERSORT4. 
We compared the transcript ratios of core leukocyte marker matrix 
genes (LM22) to analyze the value of immune cells. We selected cases 
with a CIBERSORT score of p < 0.05 or above for further study. To 
demonstrate variations in immune cell infiltration between the two 
groups, we  created violin plots in R using the ‘vioplot’ package. 
We explored the relationship between the discovered gene indication 
and the number of invading immune cells through Spearman’s 
correlation study in R. Finally, we visualized the obtained correlations 
using the ‘ggplot2’ package’s charm technique.

3 Results

3.1 DEGs identification

Limma’s technique was used to identify DEGs between samples 
from the IS dataset and healthy control samples. Bayesian testing was 
employed for this purpose. The DEGs data were visualized in a 
volcanic map (Figure  2A) and a heatmap (Figure  2B). Using a 
significance criterion of p < 0.05 and fold change values greater than 
one, the analysis identified 26 significant DEGs associated with IS 
(Supplementary Table S1).

3.2 DEGs metascape analysis

To enrich and assess different genes, we utilized the Metascape 
database. We  employed various resources such as GO Biological 
Processes, KEGG Pathways, Canonical Pathways, Cell Type Signatures, 
Responder Gene Sets, CORUM, TRUST, DisGeNET, PaGenBase, 
Transcription Factor Targets, WikiPathways, PANTHER Pathways, 
and COVID to enhance the lists of DEGs. Our enrichment 
background included every gene in the genome. We combined entries 
that had a p-value <0.01, a seed size of 3, and a contribution factor 
greater than 1.5. These entries were then ranked based on their 
membership commonality. Figures 3A,B display the top 13 terms from 
the Matescape enrichment study. Additionally, the findings of the 
route and process enrichment investigations can be  found in 
Supplementary Table S2.

4 https://cibersortx.stanford.edu/
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3.3 Enrichment analysis in IS patients’ and 
healthy control people’s samples

In this study, we  analyzed 26 significant DEGs using cluster 
analysis software to determine GO enrichment. The Benjamini-
Hochberg correction was applied with P and Q values set at 0.05. To 

ensure unique GO-enrichment data, we  compressed terms and 
removed phrases with >0.75 gene overlap. The results for the three GO 
enrichment zones are presented in Figures 4–6. Figure 4 showcases 
the GO enrichment findings for all three categories, highlighting 
-log10 (adj p) >5 GO words. The findings suggest that IS is associated 
with various linked biological processes such as multicellular organism 

FIGURE 2

(A) A volcano plot displaying the findings of differential expression. Black dots represent the remaining functioning genes. (B) A heatmap in degrees. 
The colors on the chart vary from red to green, indicating strong to low expressiveness. The red bars in the heatmap’s top half reflect sick samples, 
whereas the blue bars represent healthy samples.

FIGURE 3

(A) An improved term network. Notes are colored using cluster IDs, and notes with the same cluster ID are frequently near to one other. (B) Colored 
bar plot of p-value for enlarged DEGs phrases.
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FIGURE 4

Graph displaying the results of the enrichment analysis. A bar graph is produced as a result of GO enrichment. The log 10 (adj p) values are represented 
on the y-axis, while the z-scores are plotted on the x-axis.

https://doi.org/10.3389/fneur.2024.1475582
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2024.1475582

Frontiers in Neurology 07 frontiersin.org

process, reaction to steroid hormone, and response to 
lipopolysaccharide. Additionally, cellular components such as 
secretory granule lumen, cytoplasmic vesicle lumen, and vesicle 
lumen are involved. Molecular functions like immune receptor 
activation and other essential actions are also implicated. Figures 5, 6 
provide further details on the GO enrichment terms and the main 
DEGs involved. We performed a KEGG pathway enrichment analysis 
on the DEGs, identifying several significantly enriched biological 
pathways, including the IL-17 signaling pathway, TNF signaling 
pathway, and fluid shear stress and atherosclerosis. Figures 7–9 present 
the results of these pathways, along with the associated DEGs.

3.4 Random forest tree selection

The random forest method produces a score of 26. To determine 
the appropriate parameter mtry, we conducted recurrent random 
forest classification using all possible values from factors 1 to 26. 
We evaluated the model’s average error rate, which helps determine 
the optimal number of factors within a node to describe a binary tree. 
We  selected 10 as the number of variables for the analysis. 

We minimized variants and ensured minimal out-of-band mistakes. 
For the final model, we used 500 trees as variables, based on the 
correlation plot of model uncertainty versus the number of selected 
trees (Figure  10A). Throughout the development process of the 
random forest model, we evaluated the variable correlation of the 
output scores using the Gini method. We assessed the accuracy and 
root mean square error, which are presented in Supplementary Table S3 
as the main output results. From this evaluation, we  selected 10 
candidate genes with a significance larger than 2.0 for further 
investigation. In Figure 10B, we highlight DUSP1, ADM, FAIM3, 
ARG1, NFIL3, PTGS2, F13A1, HLA-DQB1, ID3, and CCR7 as the 
most important variables among the 10. With these 10 essential 
characteristics, we performed k-means unsupervised clustering on the 
pooled dataset. As shown in Figure 10C, these 10 genes can be used 
to distinguish between sick and normal samples. HLA-DQB1, ID3, 
FAIM3, and CCR7 are a group of genes that showed little or no 
positive control in the treated samples. On the other hand, F13A1, 
DUSP1, NFIL3, PTGS2, ARG1, and ADM belonged to different 
clusters and exhibited high expression in healthy samples and low 
expression in diseased samples, see Additional file 4 for the 
codes used.

FIGURE 5

Graph displaying the results of the enrichment analysis. Gene clustering circles, with the inner circles representing DEGs, the red circles representing 
up-regulated genes, the blue circles representing down-regulated genes, and the outside circles representing GO keywords.

https://doi.org/10.3389/fneur.2024.1475582
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2024.1475582

Frontiers in Neurology 08 frontiersin.org

3.5 Creating a model of an artificial neural 
network

The neural network software utilizes the combined datasets of 
GSE16561 and GSE22255 to create artificial neural network models. 
The first step in data normalization is data preparation. The min-max 
approach [0, 1] is used to separate the amplified information prior to 
training the network. Before starting the computation, the maximum 
and minimum data values should be normalized, and the number of 
hidden layers should be set to 5. There are no strict guidelines for 
determining the number of layers and neurons to use as parameters. 
The number of neurons should be approximately two-thirds of the 
input layer and one-third of the output layer. Therefore, the number 
of neurons parameter is set to 10. The training group aims to 
determine the value of each candidate’s DEG. The validation set is 
used to evaluate the classification performance of the model in terms 
of gene expression and gene weights. The rank value of the resulting 
illness neural network model is calculated as the sum of Gene 

Expression multiplied by Neural Network Weight (Figure  11A). 
We utilized all of the available data to build the neural network model. 
The experimental findings indicate that the model’s area under the 
ROC curve (AUC) is close to one (average AUC > 0.99), suggesting its 
resilience. We conducted a review of the GSE58294 datasets to ensure 
that the area under the ROC curve (AUC) remained around 0.9 
(Figures 11B,C), see Additional file 5 for the codes used.

3.6 The immune landscape and the 
features of IS patients

According to functional enhancement analyses, immune-related 
networks were found to be elevated in samples from individuals with 
IS compared to healthy controls. To investigate changes in the 
immunological state between IS patients and healthy controls, 
we analyzed genomic information from blood samples obtained from 
the GSE16561 and GSE22255 pooled datasets. The CIBERSORTx tool 

FIGURE 6

Graph displaying the results of the enrichment analysis. GO enrichment circle map. On the left are DEGs, with red bands indicating up-regulated genes 
and blue bands representing down-regulated genes. The various colored ribbons on the right indicate various GO ideas. Connecting lines represent 
genes that are included in GO terms.
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was utilized to calculate the percentages of 22 different types of 
immune cells in the data. CIBERSORTx is an online tool that uses a 
background subtraction technique to determine the relative 
abundance of immunological tissues in individuals. Figure  12A 
illustrates the distribution of these 22 unique immune cell types in 
participants with IS and healthy controls. By employing Spearman’s 
correlation analysis, we examined the associations between immune 
cells. The strongest positive association (R = 0.55) was observed 
between T cells follicular helper and activated Mast cells, while the 
most significant negative correlation (R = −0.49) was found between 
Monocytes and T cells CD8 (Figure 12B). Furthermore, the fraction 
of T cells CD8 in the IS group was significantly lower (p < 0.001) 
compared to the non-IS group (Figure 12C).

4 Discussion

Compared to previous bioinformatics studies on disease 
mechanisms, this study has several advantages. Firstly, it utilizes 
multiple data packages in the R language to rigorously normalize the 
data through background calibration, normalization, elimination of 
batch effects, and removal of outliers. This ensures the reliability of the 
results to the greatest extent possible. Secondly, the study employs 
Random Forest and Artificial Neural Network techniques to identify 
disease-related module genes for further investigation. Random Forest 
and Artificial Neural Network have the advantage of discovering 
highly linked genes and clustering them into gene modules. These 

resulting modules can then be correlated with clinical parameters for 
follow-up investigation. Additionally, this study takes a multi-
bioinformatics approach by combining multiple biomolecules to 
analyze disease mechanisms. This comprehensive and in-depth 
analysis aims to explore the underlying mechanisms of IS in a more 
comprehensive and in-depth manner.

In this study, we first calculated the DEGs associated with IS using 
the classifier model and identified 10 key candidate DEGs. Then, 
we utilized the neural network model to calculate the anticipated 
weights of the chained genes, generate the neural IS classification 
model score, and evaluate the classification performance of the model 
using autonomous sample datasets. The AUC efficiency was found to 
be  exceptional, indicating that neural IS has a high 
classification efficiency.

ARG1 is a cytoplasmic enzyme primarily expressed in the liver, 
but it is also found in immune cells in peripheral blood. It plays a 
crucial role in the urea cycle and is involved in the immune response 
following organismal injury. Additionally, ARG1 is closely associated 
with recovery from IS (10–12). Jickling’s study demonstrated 
consistent upregulation of ARG1 mRNA in leukocytes of IS patients. 
Signaling downstream of the injured brain upregulates ARG1 mRNA 
levels in immune cells in peripheral blood and downregulates the 
expression of miR-30a-5p, which is further enhanced by miR-30a-5p 
downregulation (13). In an animal model, Cai discovered that ARG1 
promotes microglia/macrophage cytomegaly and inflammation 
regression in stroke mice, thus contributing to brain tissue injury 
repair (14). Zhu, through bioinformatics analysis, identified 

FIGURE 7

Graph displaying the results of the enrichment analysis. A bar graph displaying the findings of KEGG pathway enrichment. The log 10 (adj p) values are 
represented on the y-axis, while the z-scores are plotted on the x-axis. A bar graph represents the KEGG pathway, and the size of the histogram shows 
the number of genes in the route.
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differences in the expression of ARG1 and Kruppel-like factor12 
(KLF12) genes in IS and normal specimens, suggesting a potential 
association with the occurrence of IS (15). DUSP1 plays a crucial role 
in regulating inflammation and the immune response. It is involved 
in various cellular processes, including T cell differentiation, 
development, and activation. Additionally, DUSP1 has been associated 
with the development of several autoimmune diseases (16). A study 
by Li found that DUSP1 was overexpressed in both males and females, 
as well as in both elderly and young individuals with IS (17). Another 
study by Xu demonstrated that DUSP1 reduces ischemic reperfusion 
injury in the brain by inactivating the JNK-Mff pathway and inhibiting 
mitochondrial fission, thereby attenuating cerebral ischemia–
reperfusion injury (18). Furthermore, DUSP1 has been suggested as a 
potential biomarker and therapeutic target for interfering with the 
inflammatory immune response of macrophages induced by ischemia-
hypoxia (19). The F13A1 gene encodes the A chain of human 
coagulation factor XIII, which plays a crucial role in covalently cross-
linking fibrin fibers and stabilizing fibrin clots (20). It is involved in 

various physiological processes, including coagulation, wound 
healing, angiogenesis, and platelet degranulation. Functional 
abnormalities or mutations in the F13A1 gene can lead to the 
development of multiple disorders (21). The presence of the F13A1 
204Phe allele has been closely associated with IS in young women, and 
the risk of IS is further increased when combined with the use of oral 
contraceptives. Additionally, the presence of this allele may serve as a 
prognostic indicator for IS (22). NFIL3, a basic leucine zipper 
transcription factor, is expressed in multiple immune cells and plays 
a crucial role in regulating immune function. Studies conducted by 
Tamai have demonstrated that NFIL3 exhibits neuroprotective 
properties, promotes neuronal survival, and has anti-apoptotic effects. 
Additionally, NFIL3 is involved in various cellular processes including 
immune cell development, cell survival, and circadian rhythm control 
(23). CCR7 helps T lymphocytes to enter chemokine receptors in 
lymph nodes and plays an important role in the human immune 
system. It was found that CCR7 expression was significantly 
downregulated after ischemic brain white matter injury, thereby 

FIGURE 8

Graph displaying the results of the enrichment analysis. Gene clustering circles: the red circles represent up-regulated genes, the blue circles represent 
down-regulated genes, and the outside circles represent KEGG elements.
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reducing homing migration of DCs (dendritic cells) and inhibiting 
antigen-dependent T lymphocyte expansion, which in turn failed to 
respond to antigen-specific immune responses, suggesting that CCR7 
may play an important role in IS (24, 25). Yang found that CCR7 
expression was significantly up regulated in the serum of IS patients, 
which may have an important impact on the changes in the disease 
(26). In addition, CCR7 expression was found to be upregulated in 
astrocytes and granule layer neurons in the CA1 region of the 
hippocampus in a gerbil model of transient localized cerebral 
ischemia, and the timing of CCR7 expression in both cells correlated 
with the course of the disease (27). ADM is a cytokine closely linked 
to vascular function. It is produced by various tissue cells, such as 
endothelial and vascular smooth muscle cells. Because of its small size, 
ADM can easily move between the blood and the interstitium (28, 29). 
ADM has been shown to have several beneficial effects, including 
reducing peripheral blood pressure, preventing atherosclerosis, and 
maintaining endothelial cell stability. Hypertension, atherosclerosis, 
and vascular calcification are known to be high risk factors (30, 31). 

Hirose found a positive association between the rs3840963 
polymorphic locus of ADM2 and the development of asymptomatic 
cerebral infarction and cerebral white matter lesions (32). PTGS2, also 
known as COX-2, plays a crucial role as an inflammatory mediator 
throughout the process of inflammation formation. Overexpression 
of PTGS2 can disrupt the internal environment balance, contribute to 
the inflammatory response after brain injury, and promote the 
expansion of the brain infarct area (33). Studies have shown that 
PTGS2 can mediate both early damage and late repair effects on 
neurons. Therefore, targeting PTGS2 could be a potential therapeutic 
approach to alleviate neurological damage caused by cerebral ischemia 
(34, 35). ID3 is associated with vascular disease pathology and plays a 
crucial role in various cellular processes. It also has a protective effect 
against atherosclerosis, and polymorphisms in the ID3 gene are 
considered potential risk markers for human atherosclerosis (36). 
Zhang et al. found that ID3 inhibits bHLH protein-DAN binding and 
gene expression in B cells. Using bioinformatics analysis, investigators 
established a regulatory relationship between ID3 and IS (37). 

FIGURE 9

Graph displaying the results of the enrichment analysis. Diagram of KEGG pathway enrichment. DEGs are depicted on the left, with red bands 
representing up-regulated genes and blue bands representing down-regulated genes. On the right, different colored ribbons represent different 
pathways. Connecting lines reflect the roles of genes in this pathway.
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O’Connell et al. conducted a genome-wide expression profiling study 
using microarray analysis of peripheral blood from 39 patients with 
acute IS and observed significant expression of ID3 in these patients 

(38). FAIM3 is predominantly expressed in the digestive and urinary 
tracts, bone marrow, and testicular tissues, and is involved in 
homeostasis and activation of the innate immune system. However, it 

FIGURE 10

(A) The number of trees used influences the mistake rate. The x-axis represents the number of decision trees, while the y-axis represents the mistake 
rate. (B) To obtain the random forest classifier results, use the Gini coefficient approach. (C) Unsupervised clustering heatmap displaying hierarchical 
clustering of 10 important genes created by random forest when the GSE16561 and GSE22255 datasets were combined. Normal samples are 
represented by the red bands above the heatmap, while IS samples are represented by the blue bands. Red genes have high expression levels in the 
samples, whereas blue genes have low or undetectable expression levels in the samples.
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appears to be limited to the cerebellum in the nervous system (39, 40). 
Brennery et al. discovered that FAIM3 is essential for dendritic cell 
pro-inflammatory function and suppression of T-regulatory cell 
activation (41). HLA-DQB1, a paralog of the HLA class II β-chain, 
plays a crucial role in the immune system’s ability to differentiate 
between proteins produced by the body and those produced by 
external invaders like viruses and bacteria (42). Variations in 
HLA-DQB1 have been linked to muscular weakness, poor 
coordination, numbness, and various other health issues. Additionally, 
these variations increase the risk of inflammatory demyelinating 
illnesses in the central nervous system, specifically affecting the white 

matter of the brain (43). The exact mechanism through which the 
HLA-DQB1 gene influences the susceptibility to these illnesses is still 
unclear. However, it is important to note that other changes in both 
HLA and non-HLA genes, some of which remain unidentified, may 
also contribute to the development of complex disorders.

According to current research, the immune system plays a role in 
the progression of individuals with IS from the acute to the chronic 
phase (44). In Jayaraj’s study, it was found that various inflammatory 
cells, such as neutrophils, B cells, and monocytes, enter the ischemic 
zone after IS, leading to brain damage (45). The CD+

3CD−
4CD−

8 T cells 
contribute to brain damage through the apoptosis-related factor 

FIGURE 11

(A) Visualization of a neural network. (B) Training set for validating ROC curve results (merged dataset of GSE16561 and GSE22255). (C) The testing 
team examines the ROC curve results (combined dataset of GSE58294).
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ligand/protein tyrosine phosphatase non-type 2 receptor/tumor 
necrosis factor alpha pathway, which exacerbates neuroinflammation 
and brain injury (46). In the pathogenesis of IS, neuronal stromal cells 
and macrophages have a dual function. They promote the production 
of inflammatory factors, disrupt the blood–brain barrier, allow 
leukocytes to enter damaged brain tissue, and further exacerbate brain 
injury. Macrophages with different gene expression profiles have been 
found to have neuroprotective effects in different inflammatory 
settings (47). Our study suggests that T cells CD8, Macrophages M0, 
Neutrophils, T cells gamma delta, NK cells activated, Mast cells 
resting, and Mast cells activated may be related to the development of 
IS. Excessive infiltration of ischemic brain tissue by Neutrophils in 
patients with IS can lead to a systemic inflammatory response and 
disruption of the blood–brain barrier. Additionally, peri-infarct tissue 

neovascularization is equally important to the structure, along with 
reperfusion (48). Massive infiltration of T cells is a prominent 
characteristic of IS, where T cells directly interact with neurons and 
produce a significant amount of cytotoxic factors (49). However, 
further studies have revealed that transient immunosuppression also 
occurs after IS, and over time, CD+

8 T lymphocytes may participate in 
the repair process following IS (50). Additionally, dendritic cells play 
a role in the immunological response to IS by enhancing antigen 
presentation by T cells and mast cells (51, 52). However, more 
experimental evidence is required to understand the specific 
mechanisms underlying these associations. These immune cells play 
a crucial role in IS and should be the focus of future research.

Using GEO datasets and the CIBERSORTx tool, we identified 
significant alterations in the immune microenvironment of IS 

FIGURE 12

The immunological landscape of IS. (A) The CIBERSORT algorithm was used to forecast the proportions of 22 immune-cell types in the control and 
treatment groups. (B) Immune cell infiltrating correlation analysis. (C) Analysis of 22 immune-cell subsets in the control and treatment groups.
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patients, revealing complex interactions between these changes and 
key DEGs. A major immune feature observed was the substantial 
reduction in CD+

8 T cells, which play a crucial role in adaptive 
immune responses. Their reduction in IS patients suggests a post-
stroke immunosuppressive state, potentially impairing inflammation 
control and tissue repair. DEG analysis revealed that genes such as 
DUSP1 and ARG1 were significantly associated with the decrease in 
CD+

8 T cells, indicating a role in modulating T cell function during 
IS. DUSP1, a negative regulator of inflammatory signaling pathways, 
may act by modulating T cell activity and reducing immune-mediated 
neuronal damage. In contrast, a marked increase in neutrophil 
infiltration was observed, indicating a strong inflammatory response 
during the acute phase of IS. Excessive neutrophil infiltration is 
known to exacerbate blood–brain barrier disruption and neuronal 
damage by releasing oxidative stress molecules and inflammatory 
mediators. ARG1, which was highly expressed in IS patients, is closely 
associated with macrophage polarization and may influence 
neutrophil recruitment and activation, further contributing to the 
inflammatory response seen in stroke. The downregulation of 
CCR7  in IS patients may impair the migration and antigen 
presentation of dendritic cells and T cells. As a key regulator of 
immune cell migration and antigen presentation, the downregulation 
of CCR7 may hinder immune cell recruitment and effective antigen 
presentation, affecting T cell proliferation and activation. This suggests 
that local immune responses, particularly in regions of white matter 
damage, may be suppressed, with CCR7 downregulation exacerbating 
neuroinflammation and pathological damage. Furthermore, the 
upregulation of ADM was linked to vascular function and 
inflammation regulation. ADM, a vasoactive peptide, plays a dual role 
in maintaining endothelial stability and modulating immune cell 
activity. Its increased expression was associated with enhanced 
macrophage and T cell infiltration, suggesting that ADM may help 
suppress excessive inflammation while promoting tissue repair in 
IS. In conclusion, this study highlights the intricate relationship 
between key DEGs and immune cell infiltration in IS. These findings 
suggest that DEGs may regulate immune responses and play a critical 
role in the onset and progression of IS. By integrating DEG analysis 
with immune cell profiles, we  gained deeper insights into IS 
immunopathology, identifying potential targets for immune-
modulating therapies. Future studies should focus on further 
validating the causal relationships between these genes and immune 
cell function and exploring their potential for personalized 
IS treatment.

In this study, we conducted an in-depth analysis of 26 significant 
DEGs using GO and KEGG enrichment analysis, revealing key 
biological processes, cellular components, and molecular functions 
associated with IS. GO enrichment analysis showed that IS is closely 
related to biological processes such as multicellular organism 
processes, steroid hormone response, and lipopolysaccharide 
response. The enrichment of these biological processes suggests that 
IS pathology involves widespread systemic responses, particularly in 
inflammation and immune regulation. For example, the link between 
steroid hormone-regulated processes and inflammation may reflect 
abnormal immune and inflammatory responses in IS patients. The 
enrichment of the lipopolysaccharide response further supports the 
idea that a strong immune response accompanies IS, indicating that 
infection and immune response may play a key role in the onset and 

progression of stroke. Additionally, the enriched cellular components, 
including secretory granule lumen, cytoplasmic vesicle lumen, and 
vesicle lumen, suggest potential roles in regulating intracellular and 
extracellular transport and intercellular signaling, which may 
be closely related to immune cell activation and function regulation. 
On the molecular function level, GO analysis revealed associations 
between IS and essential molecular functions such as immune 
receptor activation. Immune receptor activation is a critical 
mechanism in regulating immune responses and inflammation, 
suggesting that immune receptors play a crucial role in IS immune 
regulation, possibly by modulating immune cell activation and 
signaling pathways during stroke onset. Meanwhile, KEGG pathway 
enrichment analysis identified several significant biological pathways, 
including the IL-17 signaling pathway, TNF signaling pathway, and 
fluid shear stress and atherosclerosis pathways. The enrichment of 
these pathways reflects the critical role of pro-inflammatory signaling 
in IS, particularly the IL-17 and TNF signaling pathways, which are 
widely recognized as major drivers of inflammation. Activation of 
these pathways may contribute to neuronal damage and blood–brain 
barrier disruption by promoting neutrophil and other immune cell 
recruitment. Additionally, the enrichment of the fluid shear stress and 
atherosclerosis pathways suggests a strong connection between stroke 
and atherosclerosis, with endothelial dysfunction potentially playing 
a key role in IS pathogenesis. These enrichment analysis results 
highlight the importance of IS-related DEGs in regulating immune 
responses and suggest that these genes play a crucial role in the 
inflammatory response and tissue damage following stroke. These 
findings are highly relevant to our study’s focus, deepening our 
understanding of the molecular mechanisms underlying IS and 
providing potential therapeutic targets for future interventions. For 
example, the activation of the IL-17 and TNF signaling pathways 
points to the possibility of targeting these pathways to mitigate 
stroke-related inflammation and reduce neuronal damage. 
Additionally, the enrichment of immune receptor and vesicle-related 
cellular components suggests potential intervention pathways by 
regulating intracellular transport and signaling. Future research 
should further explore these genes and their associated pathways to 
validate their functional roles in stroke onset and progression, 
providing new directions for the development of personalized 
stroke treatments.

In our study, we  conducted an in-depth exploration of the 
pathogenic mechanisms of IS by integrating the whole-genome 
expression profiles from three datasets (GSE16561, GSE22255, and 
GSE58294) and performing immune cell analysis. Initially, using 
the Limma package, we conducted differential expression analysis 
to identify the DEGs between IS patients and the control group. 
Subsequently, employing immune cell quantification tools such as 
CIBERSORT, we  quantified the immune cell types, revealing 
relative abundance information across different samples. Through 
immune cell analysis, we  identified significant immune cell 
changes between IS patients and the control group, encompassing 
various subgroups such as T cells, B cells, monocytes, 
and macrophages.

Further analysis unveiled the DEGs associated with immune cells 
in the context of IS, providing crucial insights into the immunological 
mechanisms underlying IS. Our study not only offers a profound 
understanding of the immunology of IS but also provides robust 
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support for the development of future immunotherapeutic strategies 
targeting IS.

In this study, we utilized Random Forest and Artificial Neural 
Network models due to their robustness and ability to handle 
complex biological data. RF is particularly effective in gene 
selection, as it resists overfitting, while ANN captures non-linear 
relationships and optimizes classification through weight 
adjustment. To further evaluate the robustness of these methods, 
we compared them with other commonly used machine learning 
models such as Support Vector Machine and Logistic Regression. 
Our results demonstrated that the Random Forest and Artificial 
Neural Network models outperformed these traditional models, 
particularly in terms of prediction accuracy and area under the 
curve, highlighting the efficiency of our approach. Additionally, 
we performed cross-validation across multiple independent datasets 
from the GEO database (GSE16561, GSE22255, and GSE58294), 
which originated from various research institutions and represented 
different populations. Despite these differences in sample 
characteristics, Random Forest and Artificial Neural Network 
models consistently achieved high accuracy across all datasets, 
further confirming the generalizability of our method. Thus, by 
comparing Random Forest and Artificial Neural Network models 
to other machine learning techniques and validating their 
performance on external datasets, we ensured the robustness and 
reliability of our results, enhancing the overall credibility of 
the study.

This study addresses several key issues. First, by comparing tissue 
samples from IS patients and healthy controls, we identified DEGs, 
providing valuable insights into the molecular mechanisms of 
IS. However, a challenge in clinical application is the time required 
for RNA extraction and quantification of DEGs, which may not align 
with the treatment window for acute IS. This could potentially delay 
treatment decisions. Thus, while identifying DEGs is crucial for 
understanding disease mechanisms and discovering potential 
biomarkers, its practical use in rapid diagnosis remains constrained 
by time limitations. Moreover, this study employed a combination of 
Random Forest and ANN models for IS diagnosis prediction. 
Although initial results demonstrate high predictive accuracy, further 
validation is needed to ensure clinical applicability across diverse 
patient populations. Future research should focus on optimizing 
these diagnostic models and exploring more efficient analytical 
methods to ensure their reliability and practical utility in 
clinical settings.

5 Conclusion

The study uncovers the involvement of specific genes (ARG1, 
DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, 
HLA-DQB1) and immune cells (neutrophils, T cells, macrophages, 
dendritic cells) in the pathogenesis of IS, suggesting their importance 
in understanding and potentially targeting the disease.
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