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Drosophila melanogaster is a valuable model organism for a wide range of 
biological exploration. The well-known advantages of D. melanogaster include 
its relatively simple biology, the ease with which it is genetically modified, the 
relatively low financial and time costs associated with their short gestation and 
life cycles, and the large number of offspring they produce per generation. D. 
melanogaster has facilitated the discovery of many significant insights into the 
pathology of Parkinson’s disease (PD) and has served as an excellent preclinical 
model of PD-related therapeutic discovery. In this review, we provide an overview 
of the major D. melanogaster models of PD, each of which provide unique insights 
into PD-relevant pathology and therapeutic targets. These models are discussed 
in the context of their past, current, and future potential use for studying the 
utility of secondary metabolites as therapeutic agents in PD. Over the last decade, 
senolytics have garnered an exponential interest in their ability to mitigate a broad 
spectrum of diseases, including PD. Therefore, an emphasis is placed on the 
senolytic and senomorphic properties of secondary metabolites. It is expected 
that D. melanogaster will continue to be critical in the effort to understand and 
improve treatment of PD, including their involvement in translational studies 
focused on secondary metabolites.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminergic neurons 
in the substantia nigra pars compacta (SNpc) of the central nervous system (CNS). A key 
component in the development of PD is the formation of Lewy bodies (1). These are insoluble 
aggregates of misfolded alpha-synuclein (α-Syn) protein fibrils, among other components. Lewy 
bodies accumulate within neurons and contribute to their death. The degeneration of SNpc 
dopaminergic neurons leads to a pathologic reduction of dopamine at the striatum. As a result, 
individuals with PD experience motor symptoms like resting tremors, slowness of movement 
(bradykinesia), erratic and writhing movements of the face, arms, legs, or trunk (dyskinesia), 
rigidity, stiffness, postural instability, and compromised balance (2). Additionally, people with 
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PD have non-motor symptoms, including cognitive changes, sleep 
disorders, autonomic dysfunction, gastrointestinal issues, and mood 
disorders (3).

PD is thought to be  caused by a combination of genetic and 
environmental factors, with only around 10% of people with PD 
having one of the identified genetic mutations, such as SNCA 
(Synuclein Alpha), PINK1 (PTEN Induced Kinase 1), and PRKN 
(Parkin RBR E3 ubiquitin protein ligase) (4). A study by Goldman 
et  al. investigating the genetic contribution to PD risk using 
concordance rates in monozygotic and dizygotic twins found the 
hereditability of PD to be  around 27%, further suggesting that 
nongenetic factors may be  the more predominant sources of PD 
risk (5).

In addition to genetic contributions, environmental toxins have 
been associated with PD, including pesticides such as rotenone and 
paraquat, can enter the human body through various routes, including 
inhalation, ingestion of residues in food and water, and dermal 
exposure. Epidemiologic studies have commonly found that PD is 
correlated with farming and rural environments due to exposure to 
pesticides and herbicides (6, 7).

Medical management of PD is a significant challenge, as existing 
therapies have limited effectiveness and undesirable side effects. For 
example, dyskinesia is a common side effect of long-term use of 
levodopa, the most common medication used to manage PD (8). This 
form of dyskinesia, known as levodopa-induced dyskinesia (LID), can 
make it difficult for an individual to perform routine tasks of daily 
living. Therefore, alternative therapeutic agents that can effectively 
target the underlying mechanisms of PD without causing significant 
adverse effects are greatly needed and highly sought after. One 
approach to addressing this need is exploring the therapeutic potential 
of secondary metabolites in pre-clinical Drosophila melanogaster 
models of PD.

D. melanogaster, colloquially referred to as the fruit fly, is a valued 
and versatile model organism. For example, it exhibits a relatively 
simple biology with a well-characterized genome, anatomy, and 
molecular pathways that are also well-conversed within higher 
organisms, including humans (9). Their biological simplicity facilitates 
relatively easy and precise genetic manipulation. Therefore, they have 
been indispensable in the study of genetics, disease mechanisms, and 
the identification of novel therapeutic targets. Finally, D. melanogaster 
have short gestation periods and a high reproductive capacity, 
enabling rapid experimental turnover, large-scale genetic screens, and 
developmental research (10). This feature is particularly advantageous 
for studying the effects of genetic alterations or environmental factors 
over successive generations. Practically, it also offers cost-effectiveness, 
with relatively low financial and time costs associated with 
maintenance and experimentation (11, 12).

Secondary metabolites, sometimes referred to as phytochemicals 
or bioactive compounds, are natural products extracted from plants. 
These metabolites are not essential for the plant’s growth, 
development, or reproduction. Instead, they are produced by plants 
as a defense mechanism against external threats such as UV 
radiation, predators, and pathogenic microorganisms (13). 
Secondary metabolites have been compiled into four groups based 
on their chemical structure: terpenoids, phenylpropanoids, 
polyketides, and alkaloids (14). Examples of terpenoids include 
limonene from the rind of lemons and oranges, menthol from 
peppermint, and taxol from the Pacific yew tree, which is used in 

chemotherapy. Phenylpropanoids (phenolics) are compounds such 
as curcumin from turmeric, resveratrol from grapes, and capsaicin 
from chili peppers (15). Polyketides are complex and usually have 
antibiotic or anticancer properties. Examples include the antibiotic 
erythromycin and the chemotherapeutic agent doxorubicin. 
Lovastatin is a polyketide used for lowering cholesterol (16). 
Examples of the fourth classification, alkaloids, include morphine 
from opioid poppies, quinine from Cinchona trees, and caffeine from 
coffee beans (17).

2. Overview of relevant Drosophila 
melanogaster models of PD

There are two broad categories of D. melanogaster models of PD 
– those made through genetic manipulation and those that are toxin-
induced. In genetic models, PD-associated genes can be  knocked 
down or overexpressed to highlight their effects on phenotype and 
risk. Toxin models involve either an acute dose or chronic dosing. 
Sublethal, chronic dosing closer reflects the natural progressive course 
of neurodegeneration and is not as likely to prematurely kill the flies 
when compared to the more convenient acute dose method. Toxin 
models are better suited for studying the potential environmental 
impacts on PD risk and development, whereas genetic models provide 
valuable insights into familial cases. In both genetic and toxin models, 
the role of oxidative stress and mitochondrial dysfunction in 
dopaminergic neuronal degeneration is notable.

2.1. SNCA

D. melanogaster models of PD have been able to faithfully recreate 
some of the key features of the disease, including the formation of 
α-Syn aggregates into Lewy bodies and the loss of dopaminergic 
neurons. Among the pathological conditions that can act as an 
impetus for α-synucleinopathy is the overexpression of α-Syn itself. 
However, D. melanogaster do not have a homolog for the human gene 
that encodes for α-Syn, namely, SNCA (18). However, induced 
transgenic overexpression of human α-Syn in D. melanogaster has 
been achieved using various approaches, including the Gal4-upstream 
activating system, which allows for tissue-specific and inducible 
expression of transgenes (18).

Transgenic models that overexpress human α-Syn provide 
opportunities to study Lewy body formation and potential therapeutic 
interventions. The D. melanogaster transgenic α-Syn model has 
demonstrated that α-Syn overexpression leads to progressive 
locomotor impairments, including reduced climbing ability and 
impaired flight, reminiscent of motor deficits observed in PD patients 
(19, 20). Furthermore, α-Syn overexpression in D. melanogaster leads 
to the formation of intracellular aggregates and the loss of 
dopaminergic neurons, mimicking the neurodegenerative process 
observed in PD (20). At the molecular level, these models have shown 
that α-Syn-induced neurodegeneration involves oxidative stress, 
mitochondrial dysfunction, impaired protein degradation pathways, 
and synaptic dysfunction (21). Furthermore, genetic modifiers that 
enhance or suppress α-Syn-induced toxicity have been identified in 
D. melanogaster, which underscores the intricate genetic interactions 
of PD pathology and highlights potential therapeutic targets (22).
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2.2. PINK1 and PRKN

Genetic mutations in PINK1 and PRKN are the most commonly 
known causes of early-onset familial PD, and these mutations are also 
linked to sporadic forms of PD (23, 24). Both genes have been 
identified as critical regulators of mitochondrial quality and function 
within the same biological pathways (25). When a mutation in either 
of these genes stops them from functioning normally, mitochondria 
become dysfunctional and fail to be  cleared. Significantly, 
manipulating these genes in D. melanogaster mimics the cellular 
pathophysiology of PD.

For example, loss-of-function mutations in PINK1, by either 
disrupting gene expression or protein function, have been extensively 
studied using D. melanogaster as a model organism. Indeed, the first 
in vivo report of PINK1 manipulation was conducted in 
D. melanogaster (26). This seminal study and other early work revealed 
that a loss of the D. melanogaster PINK1 homolog (CG4523) results in 
fragmented mitochondria, reduced ATP levels, muscle degeneration, 
locomotor deficits, dopaminergic neuronal loss, male sterility, and 
increased sensitivity to oxidative stress (27, 28). These effects are 
reversible by the expression of human PINK1 or with overexpression 
of PRKN (26). Furthermore, D. melanogaster that overexpress PINK1 
demonstrate improved mitochondrial function, enhanced resistance 
to oxidative stress, preserved dopaminergic neuronal survival, and a 
longer lifespan compared to wild type controls (29–31). The use of 
PINK1 and PRKN genetic models in D. melanogaster has yielded 
several key findings regarding the molecular mechanisms of PD 
pathogenesis, such as the importance of maintaining mitochondrial 
homeostasis and protecting against cellular stress.

Loss-of-function mutations in PRKN (a.k.a. PARK2) in 
D. melanogaster, either by knockout or RNAi knockdown, leads to the 
disruption of mitochondrial function, increased cellular sensitivity to 
oxidative stress, and phenotypical locomotor defects, similar to the 
clinical features of PD (32, 33). Furthermore, studies using PRKN 
overexpression in D. melanogaster have elucidated the protective 
effects of Parkin (the protein product of PRKN) on mitochondrial 
function and cell viability. For example, PRKN overexpression 
enhances mitochondrial quality control mechanisms, such as 
mitophagy, promotes the elimination of damaged mitochondria, 
delays aging, extends the lifespan, and protects against senescence in 
D. melanogaster (34). Moreover, PRKN overexpression in 
D. melanogaster can rescue mitochondrial defects caused by other 
genetic mutations or environmental stressors (35). These findings 
suggest that Parkin plays a crucial role in maintaining mitochondrial 
homeostasis and protecting against the neurodegenerative 
processes in PD.

The aforementioned genetic models have been chosen for 
discussion because they have been used to study the effects of senolytic 
secondary messengers. However, there are other important 
D. melanogaster genetic models of PD. For example, D. melanogaster 
that harbor mutations in either the dominant genes for 
glucocerebrosidase (GBA) or vacuolar protein sorting 35 (VPS35) or 
in the recessive gene DJ-1 produce phenotypes similar to those 
observed in idiopathic PD (36). It is important to note some genes 
implicated in PD pathology can play different roles in dopaminergic 
neuron degeneration depending on the specifics of the model used 
(37). Therefore, it is critical to be mindful that while neurodegeneration 
might be morphologically and behaviorally identical in many distinct 

experimental contexts, the underlying genetic pathways and cellular 
programs might differ.

2.3. Rotenone

A commonly used toxin for D. melanogaster models of PD is 
rotenone, a naturally occurring pesticide implicated in the 
development of sporadic PD (38). Rotenone has lipophilic properties 
that allow it to readily cross the blood–brain barrier (BBB) (39). The 
mechanism of action of rotenone involves inhibiting the function of 
complex I in the mitochondrial electron transport chain, leading to 
pathologically high oxidative stress, neuronal dysfunction, and, 
eventually, cell death (40, 41). A study by Sherer et al. demonstrated 
that chronic rotenone exposure to human neuroblastoma cells causes 
complex I  inhibition and may lead to the accumulation and 
aggregation of α-synuclein (42). Exposure to rotenone has also been 
shown in vitro to lead to endoplasmic reticulum stress and to 
be associated with the unfolded protein response (43). The chronic 
administration of rotenone to D. melanogaster results in the selective 
loss of dopaminergic neurons, the formation of protein aggregates 
similar to Lewy bodies, and locomotor deficits (44, 45). Therefore, this 
model exhibits all the classic pathological features of PD.

2.4. Paraquat

Paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) is an 
herbicide with sweeping, nonspecific weedkilling properties. It has 
been used in more than 100 countries to protect crops such as cotton, 
cocoa, tobacco, soybean, rice, and others (46). In the context of its 
intended agricultural use, paraquat is generally considered safe when 
applied following recommended guidelines and safety precautions 
(47). However, it can easily seep into groundwater and has been 
detected in harvested fruits and vegetables, which raises environmental 
and food safety concerns (47). Paraquat has also been shown to 
be highly toxic for fish, algae, and mammals, even at low levels (46).

The toxicity of paraquat is attributed primarily to its role in 
producing noxiously high levels of reactive oxygen species (ROS). 
Through redox-cycling reactions, paraquat is taken up by 
mitochondria and reduced by nicotinamide adenine dinucleotide 
phosphate (NADPH) to produce the highly reactive superoxide (O2

−) 
anion (48–50). In addition, O2

− can subsequently lead to a rise in toxic 
ROS, such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO•), 
which cause extensive oxidative damage to cellular components such 
as DNA, lipids, and proteins. Paraquat exposure has also been 
associated with damage to complex I of the electron transport chain, 
which also increases ROS burden (51). Furthermore, studies have 
shown that paraquat increases the levels of p53 protein and its 
downstream target genes, such as the pro-apoptotic protein, Bax (51). 
Finally, paraquat induces cellular senescence, a critical component of 
PD pathology (52, 53). Oxidative stress, its associated cellular 
dysfunction, senescence, and apoptosis are key pathological hallmarks 
of PD. Although environmental exposure to paraquat has been widely 
linked to an increased risk of PD, some epidemiological studies do not 
show a correlative relationship (54, 55).

D. melanogaster treated with paraquat experience elevated 
oxidative stress-induced lipid peroxidation in the brain, evidenced 
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by increased quantities of the end product of lipid peroxidation, 
namely malondialdehyde (56). In addition, the quantity of O2

− and 
H2O2 in the brains of D. melanogaster dramatically increases 
between 2 and 4-fold in response to paraquat-induced oxidative 
stress (56, 57). Concurrently, the activity of antioxidant enzymes, 
such as superoxide dismutase (SOD), is significantly reduced in 
paraquat-treated D. melanogaster models of PD, which exacerbates 
the rate and extent of cellular damage caused by paraquat-induced 
oxidative stress (56). However, some studies show the opposite trend 
of SOD activity increasing in paraquat-treated D. melanogaster, 
presumably as a defense mechanism (57). Indeed, SOD activity was 
shown to be elevated in the substantia nigra and basal ganglia of 
postmortem brains of PD patients (58). Similarly, the transcription 
factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical 
regulator of the cellular response to oxidative stress (59). Nrf2 
mRNA expression increases in paraquat-treated D. melanogaster just 
as it does in leukocytes and dopaminergic neurons of PD patients 
(60, 61). These results suggest that despite an attempt by cells to 
protect themselves from oxidative stress, disease ensues when their 
efforts are insufficient. Beyond oxidative stress, apoptosis, and 
mitochondrial dysfunction, D. melanogaster paraquat models 
replicate other PD-relevant pathology, such as elevated nitrosative 
stress, impaired dopamine metabolism, reduced brain-derived 
neurotrophic factor, and heightened endoplasmic reticulum 
stress (62).

2.5. MPTP and 6-OHDA

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is 
another commonly used toxin for mimicking PD pathology and 
behavior, as it specifically targets dopaminergic neurons in the 
substantia nigra. MPTP is converted in vivo to 1-methyl-4-
phenylpyridinium (MPP+) by monoamine oxidase-B. MPP+ is then 
taken up by dopaminergic neurons via the dopamine transporter 
and interferes with mitochondrial function, leading to cell death. 
Although not as commonly used as paraquat or rotenone, MPTP 
has successfully been used in D. melanogaster models of PD to study 
the dopaminergic neuroprotective properties of resveratrol and 
trans-astaxanthin (63, 64). 6-Hydroxydopamine (6-OHDA) is 
another commonly used toxin to induce PD-like pathology. 
Although widely used in rodent models, it has rarely been used in 
D. melanogaster models. 6-OHDA cannot pass the BBB, therefore 
necessitating an injection to the brain. Due to D. melanogaster 
anatomy, this is not a favorable model (65). The mechanism of 
action of 6-OHDA involves entering catecholaminergic neurons 
through dopamine membrane transporters (DAT) or noradrenaline 
membrane transporters (NAT) and accumulating intracellularly 
(66). The metabolism of 6-OHDA by monoamine oxidase-A yields 
H2O2, triggers the generation of ROS, and inhibits complex I of the 
electron transport chain (67).

There are other toxins used to produce PD-related phenotypes. 
For example, D. melanogaster exposure to iron (Fe) induced PD-like 
motor and non-motor symptoms, which were attenuated by the 
co-administration of hesperidin, a citrus flavonoid (68). Hesperidin 
was more effective than L-DOPA at protecting against motor 
coordination, memory, and anxiety deficits, in addition to reducing 
the concentration of caudal Fe (68).

3. Senolytic and senomorphic 
secondary metabolites in Drosophila 
melanogaster models of PD

Senescence is a complex phenomenon of irreversible growth 
arrest in cells. It plays a crucial role in various stress responses, aging 
processes, and chronic disease. Multiple factors contribute to the 
development of senescence, such as DNA damage, telomere 
shortening, oncogenesis, oxidative stress, and inflammation (69, 70). 
The accumulation of senescent cells in tissues is both a consequence 
and a contributing factor of age-related pathologies, therefore feeding 
into a positive feedback loop of increasing pathology (53). For 
instance, senescent cells secrete a molecular cocktail of 
proinflammatory cytokines, chemokines, and tissue-damaging 
proteases known collectively as the senescence-associated secretory 
phenotype (SASP). Although SASP is an initial protective mechanism 
against foreign entities, it can also exacerbate chronic inflammation 
and contribute to tissue dysfunction (53, 71).

Secondary metabolites are organic compounds that are not 
directly involved in the growth, development, and reproduction of an 
organism. Instead, they play important roles in various physiological 
processes such as defense against predators, competition for resources, 
and communication among organisms (72). Secondary metabolic 
pathways are also diverse within and across organisms. Often, they are 
enzymatically derived from primary metabolites, intermediates in 
primary metabolism, or are unique metabolic precursors. Plants are a 
common source of secondary metabolites used for health and 
wellness. The biosynthesis and storage of plant secondary metabolites 
occur in structures such as vacuoles, glandular trichomes, cuticles, 
and oil cells (73).

There are several secondary metabolites that have demonstrated 
potential in treating PD. Capsaicin, an active compound from chili 
peppers, was seen to protect dopaminergic neurons in PD mouse 
models by supporting mitochondrial function and inhibiting 
neuroinflammation (74). Berberine, an isoquinoline alkaloid from 
Chinese herbs, has shown potential in PD treatment through its 
antioxidant, anti-inflammatory, and anti-apoptotic effects (75). 
Caffeine, commonly contained in coffee and tea, has been studied for 
its neuroprotective effects in modulating adenosine receptors and 
reducing neuroinflammation, potentially providing protection against 
PD progression (76). The naturally produced alkaloid nicotine, found 
in small quantities in certain foods, has exhibited neuroprotective 
effects on dopaminergic neurons to modulate neurotransmitter 
systems affected in PD (77). Each of these compounds has shown 
promise in preclinical studies using D. melanogaster models, and some 
have moved to clinical trials (78–80).

Senolytic secondary metabolites selectively target senescent cells 
for induced apoptosis or programmed death, ultimately leading to 
their clearance from tissues and possible replacement with healthy 
cells (81). Senolytics have shown exciting promise in pre-clinical and 
clinical studies for their ability to enhance tissue regenerative capacity 
and alleviate age-related pathologies (82). While the relatively nascent 
study of senolytic secondary metabolites in the treatment of 
neurodegeneration is still evolving, several bioactive compounds have 
shown encouraging neuroprotective properties through their 
senolytic activity.

The mechanism of action and efficacy of senolytic secondary 
metabolites vary depending on the metabolite and cellular environment 
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(81, 83, 84). For example, in response to cellular stress, some senolytic 
secondary metabolites will activate either the intracellular p53 or 
P16INK4A pathways, leading to a senescent cellular state (85). Other 
secondary metabolites act through senescence-associated 
vulnerabilities, exploiting specific characteristics or dependencies of 
senescent cells. These vulnerabilities include altered metabolic profiles, 
increased reliance on anti-apoptotic proteins, or dysregulated stress 
response pathways (86). By targeting these vulnerabilities, senolytic 
secondary metabolites can induce senescent cell death while sparing 
healthy cells. Furthermore, secondary metabolites often possess anti-
inflammatory and antioxidant properties, which can contribute to their 
overall therapeutic effects. By reducing the inflammation and oxidative 
stress associated with SASP, these compounds can potentially attenuate 
the damaging effects of senescent cells on surrounding tissues without 
being true senolytics and are, instead, senomorphics (87–90).

Senomorphic secondary metabolites mitigate the detrimental 
effects associated with senescent cells rather than selectively 
eradicating them. Compared to senolytics, they are a recently 
recognized behavioral class of cells that has not received as much 
attention. For example, a default PubMed search for “senolytic” 
returns about 1,165 items – beginning in 2014. In contrast, a default 
PubMed search for “senomorphic” returns about 75 items – beginning 
in 2019. However, there is a growing body of evidence that is 
illuminating their mechanisms of curtailing the pro-inflammatory 
SASP. Therefore, they have emerged as promising candidates for novel 
therapeutic interventions in age-related diseases, including cancer, 
neurodegenerative disorders, and cardiovascular diseases. By 
harnessing the power of senescence modulation, senomorphic 
secondary metabolites offer a nuanced approach to counteract the 
detrimental effects of cellular senescence, promoting tissue 
rejuvenation and potentially extending healthspan. Further research 
into the mechanisms underlying the senomorphic effects of these 
compounds is warranted.

There are many classifications and subclasses of secondary 
metabolites based on their chemical architecture and biosynthetic 
pathways. The currently known senolytic secondary metabolites are 
broadly categorized as either phenolic compounds or alkaloid 
compounds (91).

Phenolics have one or more aromatic rings with one or more 
hydroxyl groups and are products of phenylpropanoid metabolism, 
downstream of the shikimic acid and malonic acid pathways (92). 
The flavonoid subclass of phenolic compounds is the most abundant 
type found in fruits and vegetables and contains six subfamilies: 
flavones, isoflavones, flavonols, flavanones, flavan-3-ols, and 
anthocyanidins (92).

Alkaloids are characterized by a nitrogen-containing heterocyclic 
ring and are derived from several metabolic pathways (93). For 
example, the shikimate pathway produces aromatic amino acids that 
serve as metabolic precursors to many alkaloids. The shikimate 
pathway also directly produces some alkaloids in addition to the 
terpenoid pathway. The polyketide pathway, like the shikimate 
pathway, provides many alkaloid precursors (94).

3.1. Quercetin

Quercetin is a senolytic phenolic compound of the flavonoid class, 
flavonol subfamily. Flavonols are the most ubiquitous flavonoid and 

have high concentrations in onions, grapes, cherries, apples, citrus 
fruits, and tomatoes (95). Since quercetin is the main flavonol 
representative, it has been extensively studied for its health-related 
benefits, including its antioxidant, anti-inflammatory, anti-microbial, 
and senolytic properties (53, 96–98). Quercetin’s senolytic activity 
includes inducing apoptosis of senescent cells, mitigating the effects 
of SASP, providing a robust antioxidant capacity either directly or by 
increasing glutathione levels, and activating autography to clear 
senescent cells (95, 99, 100). Therefore, it demonstrates both pure 
senolytic and senomorphic properties.

Silkworms have been used for medicinal purposes for more than 
5,000 years. Silkworm extract has been used in treating diabetes, liver 
disease, and hypertension, even demonstrating the ability to 
regenerate axons and promote Schwann cell proliferation (101). 
Mature silkworms can be steamed, freeze-dried, and then processed 
into the ingestible Hongjam (102). Hongjam contains high levels of 
flavonoids, the most abundant of which is quercetin (103). In a recent 
study, normal D. melanogaster feed was supplemented with golden-
silkworm Hongjam (GSHJ), which extended their lifespan and the 
length of time they voluntarily engaged in  locomotion (102). 
Furthermore, GSHJ was protective against the PD phenotype of 
rotenone-treated D. melanogaster. For example, it prevents the onset 
and progression of rotenone-induced motor control deficit (102). The 
neuroprotective mechanisms of Hongjam are attributed in part to its 
enhancement of the electron transport chain activity (mitochondria 
complexes I  through IV). Additionally, consumption of the GSHJ 
supplemented diet suppressed autophagy signaling and UPR signaling, 
both of which are necessary to establish senescence (104–107). 
Hongjam also has anti-inflammatory properties, reducing cytokine 
levels (108).

Blue light irradiation is toxic to D. melanogaster by increasing 
oxidative stress and accelerating their aging (109). In a recent study, 
D. melanogaster exposed to blue light irradiation and quercetin 
treatment experienced a quercetin-mediated reduction of senescent 
cells, decreased protein content in males, and decreased lipid content 
in females (110). Behaviorally, quercetin improved lifespan and 
extended the time the flies voluntarily engaged in motor activity, 
which the authors interpreted as the health span. Quercetin also 
improved their heat stress survival, increased male activity levels, and 
boosted female egg production (110). Although blue light caused 
oxidative stress, senescence, and pre-mature aging in D. melanogaster, 
it did not specifically lead to a PD model. However, neurodegeneration, 
at least in the early stages of the disease, shares many of the 
physiological changes associated with increased oxidative stress, 
inflammation, and senescence.

Similarly, D. melanogaster that have been treated with H2O2 also 
experience pathological levels of oxidative stress, disrupted redox 
homeostasis, and exhibit signs of general stress such as significantly 
elevated levels of Upd1, a homolog of IL-6 (111). Additionally, H2O2 
treatment of D. melanogaster increases the expression of stress-
related genes, the synthesis of heat shock protein-70 (Hsp70), and 
neuronal apoptosis caused by nitric oxide (NO) (111, 112). Quercetin 
treatment of D. melanogaster exposed to H2O2 nearly completely 
neutralizes the increase in Hsp70 and Upd1, in addition to 
preserving performance on the negative geotaxis assay (111). 
Furthermore, quercetin mitigates H2O2-driven increased levels of 
protein carbonyls and thiobarbituric reactive substances, which 
serve as general indicators of oxidative stress. Accordingly, quercetin 
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rescues the reduced level of antioxidants superoxide dismutase, 
glutathione, and catalase generated by H2O2 exposure (111). As with 
blue light, H2O2 does not specifically lead to a PD model of 
D. melanogaster. However, these results have translational value 
with neurodegeneration.

D. melanogaster exposed to acute and sub-acute doses of paraquat 
have also been used to investigate the PD-specific neuroprotective 
properties of quercetin. Either H2O2 or paraquat exposure can 
be sufficient to induce cellular senescence related to PD pathology. The 
mechanism of action for these toxins includes the initiation of DNA 
damage, compromised proteostasis, neuroinflammation, and oxidative 
stress (52, 113–115). The neuroprotective capabilities of the secondary 
metabolites 4-hydroxyisophthalic acid, ellagic acid, and quercetin, in 
addition to the primary metabolite nicotinamide – a precursor to the 
coenzyme nicotinamide adenine dinucleotide – have been compared 
(116, 117). All four of these compounds improved the survival rates 
of D. melanogaster in a dose-dependent manner after the flies had 
been exposed to an acute, high dose of paraquat. However, males had 
a better overall survival rate per antioxidant. Furthermore, the ability 
of quercetin to preserve mortality was greater in males (116). Among 
the metabolites, nicotinamide had the greatest effect on females (116). 
In the sub-acute paraquat exposure model, all bioactive compounds 
improved performance on the negative geotaxis assay, reduced ROS 
levels, reduced lipid peroxidization levels, protected against 
glutathione depletion, and the activity of superoxide dismutase and 
catalase. There was no appreciable difference in the benefits of 
4-hydroxyisophthalic acid, quercetin, and nicotinamide, where ellagic 
acid was overall the least protective (116).

The mechanisms of quercetin’s neuroprotective properties have 
been further studied beyond D. melanogaster PD models. For example, 
in 6-OHDA treated rats and PC12 cell culture, quercetin is shown to 
be a powerful antioxidant, can upregulate PINK1 and Parkin, protects 
mitochondria from damage, and inhibits α -Syn accumulation (118). 
Furthermore, quercetin disaggregates α -Syn fibrils through covalent 
bonding with α -Syn fibrils rather than through antioxidant activity 
(119). Quercetin covalently bonds to α -Syn fibrils, oligomers, or 
monomers, which increases their hydrophilicity. Therefore, the 
fibrillation of α -Syn and subsequent aggregation is inhibited (119). 
Excitatory cells of the cerebellum that have been treated with H2O2 
experience nuclear translation of Nrf2 and increased expression of 
glutathione when exposed to quercetin (120). Finally, in silico 
molecular docking experiments have revealed that the active sites of 
monoamine oxidase-B stably interact with quercetin, suggesting that 
quercetin could prevent increased ROS production and oxidative 
stress associated with the upregulation of monoamine oxidase-B in 
PD (121).

3.2. Fisetin

Fisetin is a senolytic phenolic compound of the flavonoid class, 
flavonol subfamily. It is one of the most abundantly available and 
studied flavonols (122). Fisetin is found in various fruits and 
vegetables and is predominant in strawberries, apples, and onions. 
Like all flavonoids, its biosynthesis begins with the shikimate pathway, 
which feeds into the phenylpropanoid pathway to produce 
phenylalanine, and then begins flavonoid biosynthesis after converting 
to 4-coumaroyl-CoA (123). Fisetin has been extensively studied for its 

wide-ranging medicinal applications, including its senolytic 
effects (124).

In a study by Jhonsa et al., a paraquat-treated D. melanogaster 
model of PD experienced a diminished lifespan and negative geotaxis 
assay performance in a dose-dependent manner, spanning from 5 mM 
to 15 mM (125). At the 15 mM dose of paraquat, mortality was 100% 
within 24 h. L-DOPA treatment at 2 mg/mL improved survival among 
the 15 mM paraquat-treated D. melanogaster to more than 35% at the 
24-h mark. However, treatment of 2.8 mg/mL fisetin boosted the 
survival rate to more than 45%. Fisetin also rescued locomotor deficits 
on the negative geotaxis assay to about 90% of the control, whereas 
L-DOPA improved performance to only about 75% of the control. 
Fisetin treatment also rescued glutathione, catalase, and superoxide 
dismutase quantity and the enzymatic activity of acetylcholine 
esterase (AChE). Consequently, fisetin facilitated reduced ROS 
accumulation compared to L-DOPA treatment and control. L-DOPA 
was not as effective as fisetin in all parameters assayed, except for 
rescuing AChE activity, where it dramatically outperformed 
fisetin (125).

In a related study, a cell culture model of PD (human 
neuroblastoma SH-SY5Y cells treated with 6-OHDA) experienced 
increased expression of several genes related to oxidative stress. 
However, their expression was suppressed by fisetin in a dose-
dependent manner (126). Furthermore, fisetin decreased the 6-OHDA 
mediated increase in ROS production, cell death driven by apoptosis, 
and cell death driven by P13K–Akt signaling (126). Unfortunately, 
outside of the therapeutic range, fisten is cytotoxic at concentrations 
of 50 ∝M and 100 ∝M, whereas 6-OHDA was severely cytotoxic at 
only 10 ∝M. At 50 ∝M of either 6-OHDA or fisetin, lactate 
dehydrogenase levels rose significantly, indicating cell damage (126).

Fisetin’s antioxidant, neuroprotective, and senolytic effects have 
been demonstrated in other aged and neurodegenerative models. For 
example, D. melanogaster ALS models that express hSOD1G85R (the 
mutated version of human SOD1), develop rapid and late-onset ALS 
symptoms (127). Compared to the control, D. melanogaster hSOD1G85R 
that received fisetin treatment experienced longer lifespan, longer 
health span, curbed ROS production, stabilized redox homeostasis, 
reduced the levels of wild type and mutated hSOD1 protein, and 
improved motor skills (127). A part of fisetin’s mechanism of action is 
to increase the expression of the extracellular signal-regulated kinase 
(ERK) pathway, which upregulates a variety of genes in antioxidant 
systems. This action of fisetin has also been shown in AD mouse 
models, D. melanogaster and mouse models of Huntington’s disease, 
and other ALS models (128–130). Finally, in naturally aged mice and 
in mouse models of progeroid syndrome, which exhibit tumor 
suppressant and senescent characteristics due to the addition of a 
p16INK4a-luciferase reporter, fisetin was the most potent senolytic out 
of nine other tested flavonoids (124).

3.3. Curcumin

Curcumin is a senolytic phenolic compound of the polyphenol 
class, curcuminoid subfamily. Curcumin is responsible for the 
distinctive yellow color of the spice turmeric, which is derived from 
the rhizomes of the Curcuma longa plant. The biosynthesis of 
curcumin involves the conversion of feruloyl-CoA and malonyl-CoA 
to feruloyldiketide-CoA via diketide-CoA synthase (131). Curcumin 
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is then synthesized via curcumin synthase combining 
feruloyldiketide-CoA and feruloyl-CoA (131).

The health benefits of curcumin include potent anti-inflammatory, 
antioxidant, anti-apoptotic, and immunomodulatory properties, 
which have been observed in both animal and clinical studies (132, 
133). Considerable attention has been shown to curcumin due 
to its anticarcinogenic, antidepressant, cardioprotective, and 
neuroprotective applications, among other clinical benefits (133–135). 
There is robust evidence that curcumin suppresses the 
pro-inflammatory cytokines IL-1, IL-1β, IL-4, IL-5 IL-6, IL-8, IL-10, 
IL-12p70, IFNγ, MCP-1, and TNF-α (133, 136, 137). It also reduces 
the total and differential white blood cell count, reduces iNOS mRNA 
levels, inhibits the COX-2 enzyme, and increases BDNF production. 
Furthermore, curcumin inhibits NF-κB signaling, suppresses the 
MAPK pathway, stimulates the BDNF/tyrosine kinase receptor B/
PI3k/Akt pathway, as well as the PI3k/Akt/GSK3 pathway (133, 
136–138).

Curcumin targets senescent cells for clearing. The senolytic 
capacity of curcumin has been demonstrated in a variety of contexts 
and cell types (136, 139, 140). Additionally, the curcumin analog, 
EF24, is a strong senolytic that induces apoptosis of senescent cells 
through Bal-2 proteasome degradation, independent of producing 
ROS (141). Other curcumin analogs have been identified, such 
demethoxycurcumin, bisdemethoxycurcumin, calebin A, C1, and A13 
(142). Intriguingly, it has been suggested that the senolytic-related 
benefits of curcumin are actually senomorphic in nature, due to its 
activation of sirtuins and AMPK rather than directly inhibiting and 
removing senescent cells (143).

Sulforaphane (from broccoli seed extract) and curcumin extend 
the lifespan of male and female D. melanogaster individually. 
Synergistically, they extend the lifespan even greater than either alone 
(144). A concoction of two parts curcumin and five parts broccoli seed 
extract at a concentration of 0.8 g/L yielded the greatest improvement 
in lifespan extension of about 20 days. RNA-Seq analysis of brain 
tissue revealed that the phytochemical blend either upregulated or 
downregulated about 70 genes, which was confirmed with 
qPCR. Downregulated genes were the majority and had the greatest 
differential expression. KEGG and GO analysis of the top hits 
confirmed that the downregulated genes would confer longevity and 
altered metabolism. RNAi knockdown of the top deferentially 
expressed genes confirmed that they were neuroprotective against 
age-related dopaminergic degeneration. Furthermore, in the 
protocerebral posterior medial bundle, the number of dopaminergic 
neurons increased. Finally, RNAi knockdown of the top candidate 
genes preserved the lifespan of D. melanogaster that were treated with 
paraquat (144).

α -Syn misfolding and aggregation is a pathological hallmark of 
PD. The N-terminus is a PD mutation hotbed, the C-terminus is 
intrinsically disordered, and the central hydrophobic “non-amyloid-
β-component” (NAC) is the domain that binds with other α -Syn 
proteins to self-aggregate (53). Small soluble oligomers are formed 
early in the aggregation cycle and are more toxic than the large, 
mature fibrils that accumulate in Lewy bodies (145). Therefore, 
preventing α -Syn is a critical strategy for mitigating α -Syn fibrillation. 
A recent molecular dynamics in silico study argues that curcumin has 
the capacity to destabilize soluble α -Syn oligomers by binding to the 
hydrophobic region to increase oligomer root-mean-squared 
deviation and radius of gyration, and to reduce β-sheet content and 

the number of backbone hydrogen bonds (146). Together, these results 
confirm that curcumin can biochemically prevent α -Syn fibrillation 
and aggregation into Lewy bodies. Previous in vivo and in vitro studies 
have suggested that curcumin can inhibit α -Syn aggregation 
(147, 148).

dUCH is a D. melanogaster homolog of the human UCH-L1 gene 
that is exclusively expressed in CNS neurons and is involved in 
ubiquitin-proteasome activity (149). In PD, mutated UCH-L1 
colocalizes with α -Syn in Lewy bodies and enhances α -Syn 
aggregation (150–152). In normal physiological conditions, UCH-L1 
prevents the fibrillation and aggregation of α -Syn, and also inhibits 
the synthesis of monoamine oxidase-B, leading to increased dopamine 
levels (142, 153). Knockdown of dUCH in D. melanogaster adults and 
larvae caused elevated ROS in the eye imaginal discs and dopaminergic 
neurons (154). Conversely, curcumin treatment reduced ROS levels 
0.6-fold in eye imaginal discs and 0.5-fold in adult brains. The 
performance of the larval crawling assay and adult climbing assay was 
also negatively impacted by dUCH knockdown. Interestingly, dUCH 
knockdown larvae crawled more slowly than controls and exhibited 
tremors, reminiscent of the clinical presentation of PD. However, 
when treated with curcumin, dUCH knockdown larvae had greater 
crawling speeds than knockdown larvae without curcumin treatment. 
In dUCH knockdown adult flies, climbing ability decreased every 
consecutive day after the knockdown procedure. However, curcumin 
treatment provided climbing improvements at every time point 
studied. Furthermore, histological analysis confirmed that in larval 
and adult flies, dUCH knockdown reduced the number of 
dopaminergic neurons. However, curcumin treatment of dUCH 
knockdown flies resulted in preserved dopaminergic neuron quantity 
at both the larval and adult stages (154).

Adult male D. melanogaster experience dose-dependent mortality 
in response to rotenone exposure. Sub-acute doses of 500 ∝M for 
14 days resulted in a mortality rate of about 90%. However, when 
pre-treated with curcumin dosed at 500 ∝M a day for 6 days, 
D. melanogaster mortality was reduced to about 50% (155). Negative 
geotaxis performance was reduced by 70% in the D. melanogaster 
treated with rotenone. However, pretreatment with curcumin for 
5 days significantly restored the rotenone-induced crawling deficit in 
a dose-dependent manner. Rotenone exposure increased ROS and 
hydroperoxides, as well as reduced glutathione levels, all of which 
were restored with curcumin (155). Finally, the levels of dopamine and 
its metabolites diminish in a rotenone-treated fly, whereas curcumin 
pretreatment preserves them (155). Another study confirmed that 
curcumin was neuroprotective in the rotenone-induced 
D. melanogaster model of PD by mitigating ROS production and 
restraining caspase-3 and caspase-9 activity (156).

Dietary supplementation with 25 ∝M, 50 ∝M, and 100 ∝M of 
curcumin significantly extended the lifespan and health span of 
transgenic α -Syn D. melanogaster in a dose-dependent manner (157, 
158). In addition to promoting longevity, curcumin also reduces levels 
of oxidative stress, lipid peroxidation, protein carbonyl, and cell death 
in the brains of the transgenic α -Syn D. melanogaster PD models (157, 
158). Transgenic LRRK2 D. melanogaster exposed to chronic 0.1% 
H2O2 treatment starting day 1 post-eclosion had a shortened lifespan, 
impaired climbing assay performance, diminished numbers of 
dopaminergic neurons, increased brain oxidized protein levels, and 
increased LRRK2 kinase activity compared to untreated transgenic 
LRRK2 D. melanogaster. 1 mM curcumin extended the lifespan, 
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improved climbing assay performance, suppressed the loss of 
dopaminergic neurons, reduced brain oxidized proteins, and inhibited 
LRRK2 kinase activity in transgenic LRRK2 D. melanogaster that were 
treated with chronic 0.1% H2O2 compared to those that were not 
treated with chronic 0.1% H2O2 (159).

Despite the remarkable senolytic and neuroprotective abilities of 
curcumin, it is limited as a therapeutic agent due to its poor 
bioavailability. Several factors contribute to its low bioavailability. For 
example, curcumin is not very soluble in water, which encourages it 
to aggregate, resist gastrointestinal absorption, and be eliminated from 
the body (160). However, a slight amount gets absorbed through the 
gastrointestinal tract, which then undergoes significant hepatic 
metabolism, effectively inactivating the majority of available curcumin 
(160). Following hepatic metabolism, it is quickly expelled from the 
body through the gall bladder (161). Finally, curcumin does not 
evenly distribute across body tissues, nor does it easily cross the BBB 
(162, 163).

Therefore, recent attempts to exploit curcumin’s neuroprotective 
capacity have focused on nanodelivery strategies, including 
polysaccharide nanoparticles, silica nanoparticles, nanosuspensions, 
carbon nanotubes, and PLGA nanoparticles (160). In D. melanogaster 
models of PD, successful local delivery of curcumin to the brain via 
nanocomposites has included an alginate-curcumin nanostructure, 
dosed to flies at concentrations as low as 10−5 g/mL and a curcumin 
monoglucoside at 10 ∝M (155, 164). A polymeric 
polyvinylpyrrolidone-curcumin nanoparticle, dosed between 5 ∝M 
and 10 ∝M was also successful at increasing the bioavailability of 
curcumin in D. melanogaster (165). In MPTP-treated mice, curcumin-
loaded polysorbate 80-modified cerasome nanoparticles of about 
110 nm in diameter had much greater solubility and BBB passage 
compared to free curcumin. Furthermore, their effectiveness was 
enhanced with ultrasound-targeted microbubble destruction (166).

3.4. Resveratrol

Resveratrol is a phelonic compound of the stilbenoid class. It is the 
most well-known phytochemical to provide anti-aging benefits and, 
therefore, has been widely studied for its antioxidant, anti-
inflammatory, and senolytic properties. Resveratrol is found mainly 
in pigmented fruits and vegetables, such as grapes, blueberries, and 
cranberries, but it is also found in peanuts, cocoa, and wine (167). 
However, a recent study showed that resveratrol found in rice callus 
dramatically extended the life of D. melanogaster and prevented 
age-related tissue degeneration (168). The biosynthesis of resveratrol 
relies on the conversion of p-coumaric acid to p-coumaroyl CoA by 
4-coumarate-CoA ligase. Thereafter, three malonyl-CoA molecules 
and one p-coumaroyl CoA molecule synthesize resveratrol through 
the enzymatic activity of stilbene synthase (169). Resveratrol has been 
shown to be neuroprotective in D. melanogaster models of PD, but its 
senolytic capacity is dynamic and complicated.

The therapeutic benefit of resveratrol has been studied in parkin 
loss-of-function mutated D. melanogaster. After a three-week period, 
the survival rate of untreated parkin-mutant flies was found to be 75% 
less than that of the wild type flies. However, a significant enhancement 
in survival rate was observed in the parkin-mutant flies that were 
treated with resveratrol (15, 30, and 60 mg/kg diet) compared to the 
untreated parkin-mutant flies (170). Additionally, in comparison to 

the resveratrol-treated parkin mutant flies, the untreated parkin 
mutant flies exhibited worse performance on the negative geotaxis 
assay. Concomitant with the climbing results, AChE activity in 
resveratrol-treated parkin mutant flies increased about 2.1, 2.4, and 2.5 
folds for 15, 30, and 60 mg/ kg diet of resveratrol compared to the 
AChE activity in untreated parkin mutant flies. Furthermore, 
untreated parkin mutant flies showed a 3.4-fold decrease in AChE 
activity compared to wild type flies. The oxidative stress markers of 
H2O2, MDA, and NO were elevated in parkin-mutant flies compared 
to the wild type and reduced in untreated parkin-mutant flies 
compared to those treated with resveratrol. Resveratrol also increased 
the levels of non-protein and total thiols, which helped establish a 
redox balance in the parkin mutant D. melanogaster. Furthermore, 
compared to wild type flies, untreated parkin mutant D. melanogaster 
have downregulated ple and Sod1 genes, which are responsible for 
encoding tyrosine hydroxylase and superoxide dismutase 1, 
respectively. However, these genes experienced upregulation in a 
resveratrol dose-dependent manner. Moreover, histology data showed 
no detectable brain lesions in the control or resveratrol-treated parkin 
mutated D. melanogaster. Finally, the mitochondrial mass in the brains 
of resveratrol-treated parkin mutated flies was significantly higher 
than the untreated parkin mutated flies and was comparable to wild 
type fly brains. Therefore, resveratrol is neuroprotective due to its 
antioxidant properties and ability to influence gene expression (170).

MPTP D. melanogaster models of PD constructed using 1,000 ∝
M -3,000 ∝M MPTP experienced 100% mortality within a week (63). 
However, MPTP concentrations of 250 ∝M and 500 ∝M were not as 
lethal. Furthermore, MPTP treatment induced a pronounced 
reduction in climbing rates, the emergence of offspring, cell viability, 
AChE, catalase, and glutathione-S-transferase activity, eosinophilia, 
rarefaction of CNS white matter, segmental loss of CNS neurons, and 
increased H2O2 and NO levels compared to the control group. 
However, all these parameters were significantly ameliorated when 
resveratrol was co-administered with MPTP (63). Even in the absence 
of MPTP, resveratrol consumption throughout the lifecycle 
significantly increased wild type D. melanogaster lifespan. For 
example, when D. melanogaster were given resveratrol doses at 30 mg/
kg and 60 mg/kg of diet, their lifespan lengthened by 39.5 and 41.9%, 
respectively (63). D. melanogaster lifespan extension by resveratrol has 
been shown to be  dependent on the activity of sirtuins and their 
antioxidant and anti-inflammatory properties, rather than explicitly 
by senolytic activity (63, 171).

The resveratrol found in grape skin extract (GSE) is 
neuroprotective and effective at rescuing PD-related deficits, primarily 
through mitochondrial preservation. PINK1 mutant D. melanogaster 
experience abnormal mitochondrial aggregation in their flight 
muscles, which leads to flight muscle degeneration and subsequent 
aberrant wing positioning (172). However, moderate to high quantities 
of GSE (8 and 16% of food, respectively) amplified the flight muscular 
production of ATP, reduced ROS generation, reduced mitochondrial 
aggregation in flight muscles, improved wing posture, and ameliorated 
the locomotor activity deficit of the PINK1 mutant D. melanogaster 
PD model (172). Moreover, the 16% GSE diet concentration proved 
effective in preventing mitochondrial aggregation in DA neurons and 
DA neuron loss in the PINK1 mutant flies (172). Furthermore, GSE 
treatment of PINK1 mutants reduced p62 accumulation, induced 
autophagy, increased LC3-I to LC3-II conversion, and restored C-I 30 
protein levels. GSE had contrasting effects in wild type flies, whereby 
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p62 and LC3 expression was increased without affecting the LC3-II/
LC3-I ratio (172). These effects indicate that the anti-aging properties 
of GSE are attained through improving overall mitochondrial 
integrity, activation of mitophagy, enhanced autophagy, and the 
increased expression and deployment of autophagy receptors (172).

D. melanogaster chronically exposed to 100 μM of rotenone every 
10 days experience age-related and rotenone-related reduced survival 
rate, locomotion impairment, loss of DA neurons and TH proteins, 
and increased expression of dSarm, the D. melanogaster homolog of 
Sarm1 (173). dSarm promotes axonal degeneration, triggers 
inflammation, and is necessary and sufficient for rotenone-induced 
locomotor deficits (173, 174). Interestingly, the locomotor deficits 
caused by rotenone are independent of elevated levels of ROS (173). 
Instead, resveratrol mitigated the inflammation response to rotenone 
treatment and rescued the associated locomotor deficits by 
downregulating dSarm expression (170). Therefore, dSarm is a key 
pro-inflammatory mediator of rotenone-induced neurotoxicity (173).

Despite the focus of these D. melanogaster studies on resveratrol’s 
antioxidant, anti-inflammatory, and senomorphic mechanisms for 
neuroprotection, other studies have focused on its senolytic capability, 
its harmful effects, or even its benign influence on health (90). 
Although the delineation is somewhat arbitrary, smaller resveratrol 
doses of less than 10 ∝M are sufficient to yield its senomorphic 
antioxidant behavior (90). For example, in the aforementioned study, 
resveratrol was fed as a dietary supplement at a low dose of either a 
30 mg/kg diet or a 60 mg/kg diet (63). Furthermore, at 6 ∝M, resveratrol 
was neuroprotective against a C. elegans model of Alzheimer’s disease 
by reducing protein aggregation (175). Other actions, when taken 
together, could straddle between being senomorphic, anti-senescent, 
and fully senolytic, such as the activation of telomerase, activation of 
Silencing Information Regulator 2-Related Enzyme 1 (SIRT1), 
inhibition of NF-kB, and upregulation of Nrf2 signaling (176–179).

However, there is evidence that resveratrol at higher doses can act 
as a senolytic, pro-oxidant, or even induce senescence (90, 180, 181). 
In a recent study, 100 μM of resveratrol seemingly acted as a senolytic 
in rat primary culture models of intervertebral disc degeneration 
(180). For example, compared to the untreated diseased state, 
resveratrol increased the number of proliferative cells, decreased the 
number of SA-β-Galstaining-positive cells, restored the imbalance 
between the number of cells in the G0/G1 and S phases, increased 
telomerase activity, and reduced the expression of the p16 and p53 
genes (180). However, at high concentrations, resveratrol can 
be cytotoxic (90, 181). There have also been mixed results in clinical 
studies (182–185).

The current consensus on the use of resveratrol is that the 
compound has well-established senomorphic properties for a variety 
of pathologies, but there are other possible outcomes of its use (186). 
More research is needed to fully explore its ability to act as a senolytic. 
Despite the enigmatic behavior of resveratrol, it is currently used in 
many clinical trials and is generally well tolerated. Therefore, it is 
possible to get past the preclinical stage of investigation for PD, but 
likely will require bioengineering improvement (187, 188).

3.5. Piperlongumine

Piperlongumine (PLG) is a senolytic alkaloid commonly derived 
from the long pepper plant Piper longum Linn. P. longum is native to 

the tropical rainforests in South Asia, including those in India, 
Malaysia, Nepal, Sri  Lanka, and Vietnam, among other countries 
(189). The biosynthesis of PLG is not well characterized, but there 
have been many successful efforts to develop synthetic PLG analogs 
to study, improve, and market its pharmacological properties (190–
193). It boasts impressive anticancer properties in addition to 
antioxidant, anti-inflammatory, neuroprotective, and senolytic 
characteristics (194). It has been used as a spice and a medicinal elixir 
for millennia. In fact, it has been written about in detail by Hippocrates 
in Greece, used in India’s Ayurveda, and is included in traditional 
Chinse medicine (195, 196).

Several senolytic mechanisms of PLG have been established. For 
example, in WI-38 senescent cells, PLG selectively binds to the protein 
oxidation resistance 1 (OXR1), targeting it for proteasomal destruction 
via the ubiquitin-proteasome system (166). During periods of genome 
instability that lead to a DNA damage response, OXR1 maintains cell 
survival by activating G2-phase cell cycle arrest and inhibiting 
oxidative stress (197). Therefore, upregulated OXR1 is proposed as the 
mechanism that confers oxidative stress resistance to senescent cells. 
Conversely, suppression of OXR1 by PLG binding or by genetic 
knockdown in senescent cells induces apoptosis through reduced 
antioxidant enzymatic activity and increased ROS levels (197, 198). 
However, the senescent cell apoptosis pathway induced by PLG is 
ROS-independent. Instead, it depends on activated caspase-3 and the 
degradation of poly (ADP-ribose) polymerase (199).

PLG is neuroprotective beyond its senolytic abilities. For example, 
PLG activates the transcription factor Nrf2 to regulate cellular 
oxidative and inflammation homeostasis (200). Furthermore, PLG 
analogs have been manufactured to exert antioxidant and anti-
inflammatory effects via Nrf2 activation (191). In a transgenic α-Syn 
D. melanogaster model, the genetic overexpression of Nrf2 or the 
overexpression of Nrf2’s dimerization partner, Maf-S, restores the 
α-Syn associated locomotion impairments and dopaminergic neuron 
degeneration (201). Conversely, reduced expression of the main Nrf2 
inhibitor, Keap1, also protects against dopaminergic neuron loss in the 
transgenic α-Syn D. melanogaster model of PD (201). Furthermore, 
motor behavior assessments using rotarod and pole tests revealed that 
both PLG and L-DOPA ameliorated rotenone-induced motor deficits 
in mice and maintained tyrosine hydroxylase (TH) and dopamine 
levels (202).

PLG is also involved in restoring the impaired balance between 
autophagy and apoptosis that is characteristic of PD (203). In 
rotenone-induced SK-N-SH cell and mouse models of PD, PLG 
promotes autophagy and suppresses apoptosis to reverse the 
apoptotic-dominant nature of degenerative neurons in PD. PLG 
increases the rate of autophagy, as indicated by the increased 
conversion rate of cytosolic microtubule-associated Protein 1 Light 
Chain 3 alpha-I (LC3B-I) to the lipid-conjugated form, LC3B-II. This 
effect continued even when combined with bafilomycin A1, a 
lysosome inhibitor. Live-cell imaging confirmed that PLG induces 
autophagy and clears damaged mitochondria. Finally, PLG separates 
the heterodimer between the B-cell lymphoma 2 protein (BCL2) and 
the Beclin-1 protein, an activity that leads to autophagy. It also 
underscores BCL2’s involvement in PLG’s autophagy-promoting 
attributes (202). Additionally, PLG suppresses apoptosis by 
counteracting the rotenone-induced loss of mitochondrial membrane 
potential, blocking the mitochondrial permeability transition pore 
and preserving the function of mitochondrial complex I  (202). 
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Similarly, PLG reduces the extent that rotenone activates the 
pro-apoptotic proteins caspases-3 and caspases-9. Finally, PLG’s role 
in the autophagy-apoptosis balance is facilitated by the increase of 
BCL2 phosphorylation at Ser70 via MAPK8 signaling.

The PD-relevant neuroprotective and senolytic properties of PLG 
have been studied in SCNA transgenic SK-N-SH cells, senescent 
WI-38 human fibroblasts, 6-OHDA treated PC12 cells, rotenone-
treated SK-N-SH cells, rotenone-treated mice, MPTP treated rats, 
6-OHDA treated rats, and in lipopolysaccharide treated BV2 
microglial cells (192, 199, 202, 204–206). Notably, it has not yet been 
studied in D. melanogaster. Furthermore, all PD models used to study 
PLG except for the SCNA transgenic SK-N-SH cells have been acute 
toxin models. Acute toxin models are efficient to execute but do not 
lead to the progressive accumulation of α-Syn and Lewy bodies 
formation, which are the two cardinal histological signs of PD (207, 
208). In contrast, genetic models allow for the replication of specific 
disease aspects in isolation and can be used to study the early stages 
of PD development and progression (209). However, genetic models 
often do not exhibit hallmark clinical manifestations such as tremors, 
bradykinesia, and non-motor symptoms. The complications associated 
with various model organisms underscores the value of utilizing a 
variety of in vitro, in vivo, and in silico approaches to study 
pathophysiology and drug development (210). D. melanogaster is a 
paramount model for studying the roles of genetics in PD and should 
be  used in the characterization of PLG as a neuroprotectant 
and senolytic.

D. melanogaster is an efficient model for screening secondary 
metabolites, facilitating the identification of potential therapeutic 
candidates, and for the elucidation of molecular mechanisms of 
action. Further research is needed to clarify their precise mechanisms 
of action and evaluate their efficacy, safety, and potential for 
therapeutic applications in age-related diseases. In conclusion, 
secondary metabolites offer a promising avenue for the development 
of senolytic agents. These compounds interact with intracellular 
targets, modifying cellular behavior and selectively eliminating 
senescent cells. By targeting senescent cells and addressing the 
detrimental effects of cellular senescence, secondary metabolites hold 
potential as therapeutic interventions for age-related diseases. The 
information presented in this section is summarized in Table 1 and a 
schematic is presented in Figure 1.

4. Discussion

L-DOPA is the primary therapy for PD, but its prolonged use leads 
to drug-induced dyskinesia. Other drug strategies, like dopamine 
agonists and catechol-O-methyltransferase inhibitors, have non-motor 
side effects such as hallucinations, constipation, and orthostatic 
hypotension. Surgical options like deep brain stimulation improve 
motor dysfunction, but its efficacy drops over time as it does not 
address the neurodegeneration. Therefore, there is a clear and pressing 
need for more effective therapeutics, in addition to earlier intervention 
facilitated by a pre-symptomatic diagnosis.

A diet rich in fruits and vegetables has protective properties 
against chronic diseases. Additionally, plant-derived products 
have been crucial in drug development. In drug discovery from 
plant sources, concerns about “dirty” molecules interacting with 
multiple protein targets are common. These interactions can 

be noxious, activate cellular stress response pathways, increase 
lifespan, and enhance the survival of the organism that consumed 
the stressed plant. The concept of hormesis illustrates how low 
doses of these phytochemicals can offer beneficial effects, while 
high doses may result in toxicity. The intermittent and moderate 
activation of stress response pathways by these potentially harmful 
phytochemicals could play a key role in delivering cellular 
protection. In a similar fashion, periodic shifts in metabolic 
activity, like those seen in intermittent fasting, can prolong 
lifespan and offer neuroprotection due to the temporary triggering 
of stress response pathways by ketones generated from fatty acids. 
Because these noxious phytochemicals can impact evolutionarily 
conserved cellular signaling pathways, it is possible to extend 
these discoveries from invertebrate to mammalian models 
of diseases.

Secondary plant metabolites can influence evolutionarily 
conserved pathways, offering potential neuroprotection against PD 
by activating adaptive cellular stress responses. One such pathway is 
the Nrf2 / antioxidant response element (ARE) pathway, which 
regulates antioxidants and detoxifying enzymes in response to 
phytochemicals. Activation of the Nrf2 signaling pathway, either 
through genetic manipulation or through secondary metabolites like 
quercetin, PLG, or sulphorafane, is neuroprotective in 
D. melanogaster PD models (201, 211, 212). The transcription factor 
NF-kB controls genes related to immunity, inflammation, stress 
response, cell survival, and proliferation. As such, it has been 
described as a “master regulator of evolutionarily conserved 
biochemical cascades” (213). In PD and other neurodegenerative 
diseases, NF-kB activity is compromised. However, secondary 
metabolites like quercetin and resveratrol have been shown to 
restore NF-kB function and offer neuroprotection in D. melanogaster 
models of PD (116, 214). Sirtuins, such as SIRT1, are highly 
conserved NAD + -dependent deacetylases that regulate key 
transcription factors (215, 216). Activation of SIRT1 via secondary 
metabolites, such as resveratrol and quercetin, confers 
neuroprotection in D. melanogaster models of PD (217). 
D. melanogaster has been a valuable model for studying potential 
drug targets in shared molecular pathways between humans and flies 
that can be validated in vertebrates.

Cell culture-based screening in drug discovery has limitations 
in mimicking in vivo responses, leading to ineffective or toxic results 
when validated in animal models. Although 3D cell cultures better 
replicate in vivo responses, they are costly for high-throughput 
screening. Rodent models, while useful, are expensive and time-
consuming for initial drug screening. On the other hand, 
D. melanogaster, with its highly conserved molecular pathways 
relevant to human diseases, provides a cost-effective in vivo model 
for large-scale screening of phytochemicals targeting 
PD. D. melanogaster models offer powerful molecular tools for gene 
manipulation, making them ideal for screening bioactive 
compounds. Their genetic flexibility and cost-effectiveness compared 
to rodents make them valuable for evaluating drug candidates. The 
short life cycle and behavioral assays of D. melanogaster allow swift 
screening of numerous candidates, including those targeting 
PD-related mobility defects. Utilizing D. melanogaster models as an 
in vivo screening platform overcomes the limitations of in vitro 
assays, enabling rapid identification of potential drug candidates for 
further validation in mammalian models. The success of 
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TABLE 1 The molecular, cellular, and phenotypical effects of senolytic secondary metabolites in various D. melanogaster models of Parkinson’s disease.

Metabolite Model Citation Effects on cellular and molecular 
parameters

Effects on phenotypical 
parameters

Quercetin Rotenone (102) ↑ Mitochondrial complex I through IV activity ↑ Lifespan, health span

↓ Autophagy signaling, UPR signaling, cytokines ↓ Motor deficit

Blue light (110) ↓ Senescent cells, male fly protein content, female fly lipid content ↑ Lifespan, heat stress survival, male 

activity, egg production

H2O2 (111) ↓ Hsp70, Upd1, protein carbonyls, thiobarbituric reactive 

substances

↑ Negative geotaxis performance

↑ Superoxide dismutase, glutathione, catalase quantity

Paraquat (116) ↑ Superoxide dismutase, glutathione, catalase quantity ↑ Lifespan, negative geotaxis 

performance

↓ ROS, lipid peroxidization

Fisetin Paraquat (125) ↑ Glutathione, catalase, superoxide dismutase quantity ↑ Lifespan, negative geotaxis 

performance

↓ ROS, acetylcholine esterase activity

Curcumin

Paraquat (144) ↓ Gene expression, dopaminergic degeneration ↑ Lifespan

Alpha synuclein (146) ↑ Oligomer root-mean-squared deviation and radius of gyration ↓ Alpha synuclein fibrillation and 

aggregation into Lewy bodies

↓ Oligomer beta-sheet content and backbone hydrogen bonds

dUCH knockdown (154) ↓ ROS, preserved dopaminergic neuron quantity ↑ Crawling speed, coordination, 

negative geotaxis performance

Rotenone (155) ↑ Glutathione, dopamine, and dopamine metabolite quantity ↑ Lifespan, negative geotaxis 

performance

↓ ROS, hydroperoxides

Rotenone (156) ↓ ROS, caspase-3 activity, caspase-9 activity ↑ Lifespan, negative geotaxis 

performance

↑ Dopaminergic neuron quantity

Alpha synuclein (157, 158) ↓ ROS, lipid peroxidization, protein carbonyl, apoptosis ↑ Lifespan, health span

LRRK2 & H2O2 (159) ↓ Dopaminergic neuron loss, brain oxidized proteins, LRRK2 

kinase activity

↑ Lifespan, negative geotaxis 

performance

Resveratrol PARK (170) ↑ AChE activity, thiol quantity, ple and Sod1 expression, 

mitochondrial brain mass

↑ Lifespan, negative geotaxis 

performance

↓ H2O2, MDA, NO, brain lesions

MPTP (63) ↑ Offspring, activity of AChE, catalase, glutathione-S-transferase, 

eosinophilia, rarefaction of CNS white matter, CNS neuron 

quantity

↑ Lifespan, negative geotaxis 

performance

↓ H2O2 and NO

PINK1 (172) ↑ ATP production in flight muscles, wing posture, autophagy, 

LC3-I to LC3-II conversion, C-130 protein levels

↑ Rate of flying and jumping events

↓ ROS, mitochondrial aggregation in flight muscles and 

dopaminergic neurons, dopaminergic neuron loss, p62 

accumulation

Rotenone (173) ↓ Inflammation, dSarm expression ↑ Lifespan, negative geotaxis 

performance
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D. melanogaster in screening for diseases highlights its potential as 
a cost-effective solution in early-stage drug discovery.

D. melanogaster models, like any model system, have some 
disadvantages to consider. While they exhibit a high degree of 
conservation in molecular signaling pathways relevant to disease, 
there are notable physiological differences, including brain anatomy 
and BBB permeability. Additionally, D. melanogaster lacks a 
classical adaptive immune response, limiting the study of 
neuroinflammation relevant to humans. However, D. melanogaster 
offers insight into the innate immune response, contributing to 
disease pathogenesis without interference from adaptive immune 
signaling. Other drawbacks include the need for frequent passaging, 
the inability to freeze D. melanogaster strains, and the presence of 
vertebrate-specific factors linked to disease pathology. Despite these 
limitations, D. melanogaster remains a powerful model system, 
serving as an effective screening platform for drug discovery and 
enabling the development of novel assays to understand the 
mechanistic effects of bioactive compounds on disease pathogenesis.

D. melanogaster with mutated vesicular monoamine 
transporters (dVMAT) have successfully been used to identify, 
characterize, and validate drugs that rescue motor behavior in PD, 
namely pergolide and dacarbazine (12, 218). Pergolide is a dVMAT-
independent dopamine agonist that acts on the CNS to increase 
dopamine levels. Dacarbazine is a dVMAT-dependent anticancer 
drug that has shown potential in treating PD by promoting 
neuroprotection and neuroregeneration. Both of these drugs have 
been confirmed to be aminergic and able to improve locomotion in 
D. melanogaster that have either weakly expressed or null 
dVMAT (218).

Pergolide improves symptoms in PD patients, either as a 
standalone treatment or in combination with levodopa (219, 220). 
The symptomatic improvement of pergolide is attributed to its 
action on both dopamine D1 and D2 receptors, whereas other 
drugs, like bromocriptine, primarily target only dopamine D2 
receptors (219). However, the use of pergolide has also raised 

concerns regarding its potential side effects. Studies have concluded 
that PD patients treated with ergot-derived dopamine agonists, 
including pergolide and cabergoline, may be at an increased risk of 
developing cardiac valvulopathy by activating serotonin receptors 
in cardiac valves, leading to fibrosis and valve dysfunction (221, 
222). Therefore, pergolide has been withdrawn from the 
U.S. market (223).

Dacarbazine, also known as DTIC-Dome, has traditionally been 
used to treat malignant melanoma and Hodgkin’s disease. In rodent 
models, it has been shown to exhibit antioxidant and anti-
inflammatory effects (224). Interestingly, a PD patient’s response to 
levodopa improved while receiving dacarbazine as part of their 
treatment for melanoma (225). However, dacarbazine has also been 
shown to cause mitochondrial dysfunction and promote oxidative 
stress in rat hepatocytes (226). Due to the inconsistency of 
pre-clinical results, dacarbazine has not yet been brought into the 
mainstream drug arsenal for treating PD patients.

The translational potential of D. melanogaster models in PD 
research is evident, as they have facilitated the evaluation of 
potential therapeutic compounds, allowing for the screening and 
identification of novel drug candidates (12). These findings 
emphasize the significance of D. melanogaster in PD-related 
therapeutic research, as it continues to play a vital role in advancing 
the understanding of the disease and aiding in the development of 
potential therapeutic interventions. Despite the progress, however, 
current PD treatments remain palliative, primarily focused on 
symptom relief rather than addressing the disease’s root cause, with 
common medications such as L-DOPA and dopamine agonists 
often leading to adverse side effects over the long term (227). There 
is an urgent need for innovative therapeutic approaches that target 
the underlying causes of PD. Emerging research has explored gene 
therapy, stem cell transplantation, deep brain stimulation, 
microbial treatment, and neuroprotective agents (228). Particularly, 
the focus has shifted towards targeted drug delivery systems that 
can deliver therapeutic agents specifically to the brain regions 

FIGURE 1

Neuroprotective senolytic secondary metabolites in Drosophila melanogaster models of Parkinson’s disease. Treatment with quercitrin, fisetin, 
curcumin, and resveratrol exert a senolytic effect, which mitigates neurodegenerative pathophysiology. Created with BioRender.com
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affected, thereby enhancing treatment efficacy while minimizing 
side effects. Given the well-characterized anatomical and 
behavioral simplicity of D. melanogaster and their long-established 
role as PD models, their potential in shaping these advanced 
treatments appears promising.
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Glossary

6-OHDA 6-Hydroxydopamine

α-Syn Alpha-synuclein

ARE Antioxidant response element

BBB Blood–brain barrier

BCL2 B-cell lymphoma 2 protein

CNS Central nervous system

D. melanogaster Drosophila melanogaster

DAT Dopamine membrane transporters

dVMAT Drosophila vesicular monoamine transporter

ERK Extracellular signal-regulated kinase

GBA Glucocerebrosidase

GSE Grape skin extract

GSHJ Golden-silkworm Hongjam

L-DOPA Levodopa

LC3B-I Cytosolic microtubule-associated Protein 1 Light Chain 3 alpha-I

LID Levodopa-induced dyskinesia

MPP+ 1-Methyl-4-phenylpyridinium

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NAC Non-amyloid-β-component

NADPH Nicotinamide adenine dinucleotide phosphate

NAT Noradrenaline membrane transporters

Nrf2 Nuclear factor erythroid 2-related factor 2

OXR1 Oxidation resistance 1

P. longum Piper longum Linn

Paraquat 1,1′-Dimethyl-4,4′-bipyridinium dichloride

PD Parkinson’s disease

PINK1 PTEN Induced Kinase 1

PLG Piperlongumine

PRKN Parkin RBR E3 ubiquitin protein ligase

ROS Reactive oxygen species

SASP Senescence-associated secretory phenotype

SIRT1 Silencing Information Regulator 2-Related Enzyme 1

SNCA Synuclein Alpha

SNpc Substantia nigra pars compacta

SOD Superoxide dismutase

TH Tyrosine hydroxylase

VPS35 Vacuolar protein sorting 35
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