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Objective: This study aims to identify blood and cerebrospinal fluid biomarkers 
that are correlated to the functional improvement of stroke patients after 
rehabilitation therapy, and provide ideas for the treatment and evaluation of 
stroke patients.

Methods: The PubMed, Web of Science, and Embase databases were searched 
for articles published in the English language, from inception to December 8, 
2022.

Results: A total of 9,810 independent records generated 50 high-quality 
randomized controlled trials on 119 biomarkers. Among these records, 37 articles 
were included for the meta-analysis (with a total of 2,567 stroke patients), and 
101 peripheral blood and cerebrospinal fluid biomarkers were included for the 
qualitative analysis. The quantitative analysis results revealed a moderate quality 
evidence that stroke rehabilitation significantly increased the level of brain-derived 
neurotrophic factor (BDNF) in serum. Furthermore, the low-quality evidence 
revealed that stroke rehabilitation significantly increased the concentration 
of serum noradrenaline (NE), peripheral blood superoxide dismutase (SOD), 
peripheral blood albumin (ALB), peripheral blood hemoglobin (HB), and peripheral 
blood catalase (CAT), but significantly decreased the concentration of serum 
endothelin (ET) and glutamate. In addition, the changes in concentration of 
these biomarkers were associated with significant improvements in post-stroke 
function. The serum BNDF suggests that this can be  used as a biomarker for 
non-invasive brain stimulation (NIBS) therapy, and to predict the improvement of 
stroke patients.

Conclusion: The concentration of serum BNDF, NE, ET and glutamate, and 
peripheral blood SOD, ALB, HB and CAT may suggest the function improvement 
of stroke patients.
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Introduction

Stroke is the leading cause of death in China, and the second 
leading cause of death worldwide (1, 2). Surviving a stroke can lead 
to a series of sequelae, such as post-stroke motor deficits, sensory 
deficits, cognitive deficits, and other dysfunctions, increasing the 
global medical burden (3–6). Rehabilitation plays an essential role in 
the functional recovery of post-stroke patients (7). To date, a number 
of general scales and instruments (National Institute of Health Stroke 
Scale, Barthel index, etc.) have been introduced worldwide to evaluate 
the recovery of extrinsic function (motor function, cognitive 
function, speech function, etc.) of stroke patients (8). However, 
relatively few studies (9, 10) have evaluated the intrinsic physiological 
mechanism of recovery (improvement of neural repair and protection 
of brain tissues) of stroke patients, in order to predict possible 
treatment targets through changes in blood and cerebrospinal fluid 
components, before and after intervention. Furthermore, since 
relevant evidences have not been summarized by any published 
literature, it remains difficult to determine whether the changes in 
biomarkers can predict the functional improvement or deterioration 
of stroke patients.

In order to provide the possibility of developing biomarkers for 
improved function in stroke rehabilitation, and put forward specific 
therapeutic targets, the present study conducted a meta-analysis and 
systematic evaluation of evidence-based treatments, and documented 
the presence or absence of biomarkers that show evidence of 
replication. The present study aims to identify biomarkers associated 
with functional improvement after the rehabilitation of stroke patients.

Methods

Data sources and search strategy

The present meta-analysis was registered in the INPLASY 
International Platform for Registered Systematic Reviews and Meta-
Analyses Program (Registration number: INPLASY202320058), and 
performed according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) standards.

A comprehensive literature search was conducted on three online 
databases (PubMed, Web of Science, and Embase) to identify relevant 
articles published in the English language, from inception to 
December 8, 2022. The search terms used for these databases were 
modified, and are listed in Supplementary Table S1. In addition, the 
reference list of the included articles was manually checked to identify 
relevant studies that did not appear in the literature search.

Eligibility criteria

The inclusion criteria for the present study were, as follows: (1) 
randomized controlled trials (RCTs) that reported the therapeutic 
effect of rehabilitation therapy on adult stroke patients; (2) the 
intervention group received rehabilitation therapy alone or combined 
with other therapies, while the control group received a sham 
rehabilitation therapy or no rehabilitation treatment; and (3) the 

outcome included the concentration of biomarkers in peripheral 
blood (serum, plasma, etc.) or cerebrospinal fluid.

The exclusion criteria were, as follows: (1) studies that failed to 
meet the inclusion criteria; (2) study designs other than RCTs, such as 
observational studies; and (3) studies published in languages other 
than the English language.

At least three studies were required to quantitatively combine 
these for the meta-analysis. When less than three datasets were 
reported for a specific biomarker in a given biological fluid, the 
findings were qualitatively summarized.

Data extraction

Three independent reviewers (CGB, WMF, and ZCL) assessed the 
eligibility of each study, and performed the data extraction and quality 
assessment of qualified studies. If there were any discrepancies, these 
were resolved by consensus.

The information obtained from each study included the first 
author’s name, publication year, number of participants, patient 
characteristics (age, gender, type of stroke, and average time to stroke), 
rehabilitation prescription, comprehensive training/practice, 
biomarker measurements (biological fluid and quantification 
method), and functional measurement.

For each trial, the mean differences and standard deviations of the 
outcomes at pre- and post-intervention were extracted for each group 
(rehabilitation and control groups). For studies without numerical 
data, the GetData Graph Digitizer 2.25 was used to extract the data 
from the graphs, or the corresponding author was contacted to request 
for any missing data.

Quality assessment

The methodological quality of the included studies was assessed by 
three independent raters using the Physiotherapy Evidence Database 
(PEDro) scale (11, 12). The scale consisted of 11 elements. The first 
element was the measure of external validity, but this was not taken into 
account when the overall results were calculated. Each of the 10 quality 
criteria was marked as 1 (pass) or 0 (fail). Individual item scores were 
added to determine each study’s total score. The maximum total score 
for each study was 10/10. In addition, the Grading of Recommendation 
Assessment, Development and Evaluation (GRADE) method was used 
to determine the quality of evidence provided by the RCTs (13). This 
included five standards: risk of bias, inconsistent results, imprecision of 
results, indirectness of evidence, and publication bias. The quality of 
each piece of evidence was categorized as high, moderate, low, or 
very low.

Data synthesis and analysis

Based on the results for eligible studies, a further functional 
meta-analysis was conducted for studies with significant differences 
in biomarkers, in order to determine the therapeutic effect of the 
rehabilitation. Since the functional measurement values of these 
studies were not completely consistent, the data were extracted 
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according to the research objectives of each study. If nearly 10 
observations were compared, three subgroup analyses were 
performed to determine the factors that influenced the changes in 
biomarker concentrations induced by the stroke rehabilitation: (1) 
stroke stage, (2) rehabilitation method, and (3) treatment sessions 
(non-invasive brain stimulation, NIBS).

All statistical analyses were carried out using the Stata MP 14.0 
software. The standardized mean differences (SMDs) of the change 
scores (endpoints minus baseline scores) and the corresponding 95% 
confidence intervals (CIs) were used to summarize the effect. The 
heterogeneity was evaluated using the I2 statistic and Cochrane’s 
Q-test. When low heterogeneity was observed (I2 < 50%, p > 0.05), the 
fixed-effects model was used. Otherwise, the random effects model 
was used. A p-value of 0.05 was considered statistically significant. A 
sensitivity analysis was performed to assess the stability of the 
systematic studies.

Results

Characteristics of the RCTs

The database search identified a total of 9,810 articles (Figure 1). 
Among the 50 studies that met the inclusion criteria, 36 studies were 
entered into the qualitative review form (Supplementary Table S2), 
and 37 high-quality RCTs were included for the meta-analysis (with a 
total of 2,567 stroke patients). The details of the included studies are 
presented in Supplementary Table S2. Sub-studies were identified in 
one study, which included two experimental groups (10). The serum 
meta-analysis included six markers, the plasma meta-analysis 
included two markers, and the peripheral blood meta-analysis 
included 10 markers (Table 1). For the qualitative synthesis, 101 kinds 
of markers in plasma, serum, peripheral blood, and cerebrospinal fluid 
were included (Supplementary Table S3).

FIGURE 1

The PRISMA flowchart for the selection and inclusion of studies.
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According to the PEDro score, the quality scores of the studies 
ranged within 6–10, with an average quality score of 7.14 ± 1.18 
(mean ± standard deviation), indicating that the methodological 
quality was relatively high (Table  2). The quality of the evidence 
evaluated using the GRADE method is presented in 
Supplementary Table S4. The sensitivity analysis results revealed that 
these had no significant influence on the meta-analysis results 
(Supplementary Figure S1).

Biomarkers in serum

For the effect of the rehabilitation on serum biomarkers in stroke 
patients, the meta-analysis revealed a moderate evidence, when 
compared to the control group. Furthermore, the concentration of brain-
derived neurotrophic factor (BDNF) significantly increased in the 
treatment group, and this was significantly correlated to the functional 
improvement after stroke (10, 14, 15, 28, 34, 36, 41, 47, 48) (Figure 2; 
Table 1). Compared to the control group, the low-quality evidence in the 
treatment group revealed that the concentration of serum noradrenaline 
(NE) increased (27, 28, 36), while the concentrations of serum endothelin 
(ET) (39, 44, 46) and glutamate (36, 40, 42) decreased, and these were 
significantly associated with the functional improvement after stroke 
(Supplementary Figures S2–S4; Table 1).

Compared to the control group, the concentration of serum tumor 
necrosis factor-α (TNF-α) (38, 39, 45) significantly decreased in the 
treatment group, but this had no significant correlation with the 
improvement in post-stroke function (Supplementary Figures S5; 
Table 1). The serum concentration of 5-hydroxytryptamine (5-HT) in 
the treatment group did not significantly change 
(Supplementary Figure S6; Table 1) (27, 28, 36).

For the effect of rehabilitation therapy on the serum BDNF 
concentration in stroke patients, the sub-group analysis based on the 
stroke period revealed that there was a significant correlation with the 
concentration changes in the subacute stage of stroke, but there was 
no correlation in the acute stage (36). The subgroup analysis based on 
the rehabilitation therapy revealed that there was a significant 
correlation with non-invasive brain stimulation (NIBS) therapy, 
but  there was no correlation with no-NIBS (36, 48) 
(Supplementary Figures S7A,B; Table 1). According to the treatment 
sessions for NIBS (five sessions vs. 10 sessions vs. 18–20 sessions vs. 
30+ sessions), it was found that the serum BDNF concentration was 
significantly correlated with 18–20 sessions (10, 14, 28, 47) and 30+ 
sessions (10, 41), but this was not associated with five sessions (34) 
and 10 sessions (10, 15) (Supplementary Figures S7C; Table 1).

In the qualitative synthesis (Supplementary Table S3), the serum 
concentrations for nerve growth factor (NGF), nitric oxide, 
interleukin (IL)-1, IL-4, triiodothyronine (T3), free triiodothyronine 
(FT3), thyroid stimulating hormone (TSH), total protein, 
γ-aminobutyric acid (GABA), and vascular endothelial growth factor 
(VEGF) were significantly higher in the treatment group, when 
compared to the control group. However, the serum concentrations 
for matrix metalloproteinase (MMP-9), TNF, IL-6, intercellular 
adhesion molecule (ICAM)-1, soluble intercellular adhesion 
molecule (sICAM), soluble vascular cell adhesion molecule 
(sVCAM), ET-1, substance P, soluble E-selectin, soluble protein-
100B, s-100, Toll-like receptor 4 (TLR4), nuclear factor kappa-B 
(NF-κB), malondialdehyde (MDA), NT-proBNP, corticotropin 

releasing factor (CRF), myelin basic protein (MBP), neuron specific 
enolase (NSE), reactive oxygen species (ROS), and lipid hydrogen 
peroxide (LHP) significantly decreased. The concentrations for 
serum insulin-like growth factor-1, total serum thyroxine (T4), free 
thyroxine (FT4), bone-specific alkaline phosphatase (BAP), and 
C-telopeptide of type I  collagen cross-links (CTx) did not 
significantly change.

Biomarkers in plasma

For the effect of rehabilitation on plasma biomarkers in stroke 
patients, the meta-analysis revealed that the plasma concentrations for 
BDNF (9, 23, 29, 43) and VEGF (9, 24, 25) did not significantly 
increase in the treatment group, when compared to the control group 
(Supplementary Figures S8, S9; Table 1).

In the qualitative synthesis (Supplementary Table S3), the plasma 
concentrations for NGF, thiol, IL-1β, IL-1β mRNA, IL-2, IL-4, vascular 
cell adhesion molecule1 (VCAM-1), and endothelial progenitor cells 
(EPCs) were significantly higher in the treatment group, when 
compared to the control group. Furthermore, the plasma 
concentrations for carbonyl, thiobarbituric acid reactive substances 
(TBARS), ICAM-1, and insulin significantly decreased. However, the 
plasma concentrations for stromal cell-derived factor 1α (SDF-1α), 
total antioxidant status (TAS), NADPH oxidase, nitrite, nitrite peroxide 
(H2O2), TNF, IL-10, interferon γ (IFN-γ), transforming growth 
factor-β (TGF-β), P-selectin, E-selectin, tissue plasminogen activator 
(tPA), plasminogen activator inhibitor-1 (PAI-1), von-Willebrand 
factor (vWF), Copeptin, and TNF-α did not significantly differ.

Biomarkers in peripheral blood

For the influence of rehabilitation therapy on biomarkers in 
peripheral blood in stroke patients, the meta-analysis revealed a 
low-quality evidence that the concentrations of superoxide dismutase 
(SOD) (17, 19, 27, 42), albumin (ALB) (31, 32, 37), hemoglobin (HB) 
(20, 22, 31, 37), and catalase (CAT) (17, 19, 42) significantly increased 
in peripheral blood in the treated group, and that this was 
significantly associated with improvement in function after stroke 
(Supplementary Figures S10–S13; Table 1).

The concentrations of other biomarkers in peripheral blood in the 
treatment group did not exhibit significant changes, which included 
calcitonin-gene-related peptide (CGRP) (21, 33, 46), blood glucose 
(fasting) (16, 18, 30), total cholesterol (TC) (16, 18, 20, 24, 26, 35), 
triglyceride (TG) (20, 24, 30), low-density lipoprotein (LDL) (20, 24, 
30, 35), and high-density lipoprotein (HDL) (16, 18, 20, 24, 30, 35) 
(Supplementary Figures S14–S19; Table 1).

In the qualitative synthesis (Supplementary Table S3), the 
concentrations in peripheral blood for lactate, EPCs, prealbumin, lgA, 
lgM, and lgG significantly increased, while the concentrations in 
peripheral blood for hematocrit, monocyte-platelet aggregates (MPA), 
white blood cells, and C-reactive protein significantly decreased in the 
treated group. There were no significant changes in concentrations in 
peripheral blood for erythrocytes, HbA1c, C-peptide, NOS2mRNA, 
leukocytes, platelets, lipoprotein-associated phospholipase A2 
(Lp-PLA2), asymmetric dimethylarginine (ADMA), Mono1, Mono2, 
Mono3, MPA3, and thrombin.
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TABLE 1 Summary of meta-analyses.

Studies (n) SMD (95% CI) P I2 (%) P (heterogeneity)

Serum

BDNF 10 1.57 (0.70, 2.44) 0 93.1 0

(function) 9 1.45 (0.94, 1.97) 0 80.4 0

Stage of stroke

Acute 1 0.21 (−0.18, 0.61) 0.29

Subacute 9 1.76 (0.77, 2.76) 0.001 92.8 0

Rehabilitation method

NIBS 8 1.94 (0.82, 3.06) 0.001 93.5 0

no-NIBS 2 0.30 (−0.05, 0.65) 0.094 0 0.350

Treatment sessions (NIBS)

5 sessions 1 0.14 (−0.70, 0.98) 0.746

10 sessions 2 1.14 (−1.12, 3.41) 0.322 90.6 0.001

18–20 sessions 5 2.23 (0.82, 3.64) 0.002 93.3 0

30+ sessions 2 4.75 (1.30, 8.20) 0.007 87.2 0.005

TNF-α 3 −2.19 (−4.13, −0.24) 0.027 98.1 0

(function) 3 0.83 (−0.02, 1.69) 0.057 93.8 0

ET 3 −2.29 (−4.48, −0.10) 0.041 98.3 0

(function) 3 0.42 (0.08, 0.75) 0.014 56.4 0.101

NE 3 0.94 (0.33, 1.54) 0.002 80.3 0.006

(function) 3 1.70 (1.09, 2.31) 0 76.7 0.014

Glutamate 3 −0.92 (−1.34, −0.51) 0 57.9 0.093

(function) 2 1.49 (0.06, 2.92) 0.041 91.9 0

5-HT 3 0.76 (−0.39, 1.91) 0.194 94.5 0

Plasma

VEGF 3 1.84 (−0.16, 3.84) 0.071 95.6 0

BDNF 4 0.96 (−0.68, 2.59) 0.250 95.7 0

Blood

SOD 4 4.17 (1.52, 6.82) 0.002 97.2 0

(function) 3 1.05 (0.71, 1.40) 0 0 0.555

ALB 3 1.45 (0.31, 2.58) 0.013 93.9 0

(function) 3 0.65 (0.41, 0.89) 0 0 0.617

HB 5 1.62 (0.62, 2.62) 0.001 93.8 0

(function) 5 0.63 (0.42, 0.84) 0 0 0.615

CAT 3 11.87 (5.98, 17.76) 0 98.5 0

(function) 2 0.97 (0.49, 1.44) 0 0 0.344

CGRP 3 0.10 (−0.94, 1.15) 0.844 93.4 0

FBG 3 −0.16 (−0.40, 0.08) 0.194 0 0.934

TC 6 −0.13 (−0.35, 0.08) 0.226 19.2 0.288

TG 3 −0.18 (−0.41, 0.05) 0.124 0 0.755

LDL 4 −0.18 (−0.39, 0.02) 0.083 0 0.915

HDL 6 0.10 (−0.09, 0.28) 0.308 0 0.831

BDNF, brain-derived neurotrophic factor; TNF-α, tumor necrosis factor-α; ET, endothelin; NE, noradrenaline; 5-HT, 5-hydroxytryptamine; VEGF, vascular endothelial growth factor; SOD, 
superoxide dismutase; ALB, albumin; HB, hemoglobin; CAT, catalase; CGRP, calcitonin-gene-related peptide; FBG, fasting blood glucose; TC, total cholesterol; HDL, high density lipoprotein; 
LDL, low density lipoprotein; TG, triglyceride; NIBS, non-invasive brain stimulation.
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TABLE 2 Assessment of risk of bias for the included studies.

References Criteria Total

1 2 3 4 5 6 7 8 9 10 11

Bai et al. (14) Y 1 0 1 1 0 0 1 1 1 1 7

Bai et al. (10) Y 1 0 1 1 0 0 1 1 1 1 7

Bintang et al. (15) Y 1 0 1 1 0 1 1 1 1 1 8

Carr et al. (16) Y 1 0 1 0 0 0 1 1 1 1 6

Cichon et al. (9) Y 1 0 1 1 0 0 1 1 1 1 7

Cichon et al. (17) Y 1 0 1 1 0 0 1 1 1 1 7

Faulkner et al. (18) Y 1 1 1 0 0 1 1 1 1 1 8

Gambassi et al. (19) Y 1 0 1 0 0 0 1 1 1 1 6

Gjellesvik et al. (20) Y 1 0 1 1 1 1 1 1 1 1 9

He et al. (21) Y 1 0 1 0 0 0 1 1 1 1 6

Hsu et al. (22) Y 1 0 1 1 1 1 1 1 1 1 9

Huang et al. (23) Y 1 0 1 0 0 0 1 1 1 1 6

Krawcyk et al. (24) Y 1 1 1 1 1 1 1 1 1 1 10

Lee et al. (25) Y 1 0 1 1 0 1 1 1 1 1 8

Lennon et al. (26) Y 1 1 1 0 0 1 1 1 1 1 8

Liang et al. (27) Y 1 0 1 0 0 1 1 1 1 1 7

Liu et al. (28) Y 1 0 1 0 0 0 1 1 1 1 6

Lu et al. (29) Y 1 0 1 1 1 0 1 1 1 1 8

MacKay-Lyons et al. (30) Y 1 1 1 0 0 1 1 1 1 1 8

Mao et al. (31) Y 1 0 1 0 0 1 1 1 1 1 7

Qin et al. (32) Y 1 0 1 1 0 1 1 1 1 1 8

Tang et al. (33) Y 1 0 1 0 0 0 1 1 1 1 6

Utomo et al. (34) Y 1 0 1 0 0 0 1 1 1 1 6

Vahlberg et al. (35) Y 1 0 1 0 0 0 1 1 1 1 6

Wang et al. (36) Y 1 0 1 0 0 0 1 1 1 1 6

Wang et al. (37) Y 1 0 1 0 0 0 1 1 1 1 6

Wang et al. (38) Y 1 0 1 0 0 0 1 1 1 1 6

Wang et al. (39) Y 1 0 1 0 0 0 1 1 1 1 6

Wang et al. (40) Y 1 0 1 1 1 0 1 1 1 1 8

Wang et al. (41) Y 1 0 1 1 0 1 1 1 1 1 8

Wang et al. (42) Y 1 0 1 0 0 0 1 1 1 1 6

Xiong et al. (43) Y 1 0 1 1 0 1 1 1 1 1 8

Zhang et al. (44) Y 1 0 1 0 0 0 1 1 1 1 6

Zhang et al. (45) Y 1 0 1 0 0 0 1 1 1 1 6

Zhang et al. (46) Y 1 0 1 0 0 0 1 1 1 1 6

Zhao et al. (47) Y 1 1 1 1 1 0 1 1 1 1 9

Zhao et al. (48) Y 1 1 1 1 0 1 1 1 1 1 9

Criteria numbers: 1, eligibility criteria; 2, random allocation; 3, concealed allocation; 4, similar groups at baseline; 5, blinding subjects; 6, blinding therapists; 7, blinding assessors; 8, outcome 
obtained in more than 85% of the subjects; 9, intention-to-treat analysis; 10, between-group statistical comparisons; 11, point estimates and measures of variability.

Biomarkers in cerebrospinal fluid

The qualitative synthesis results (Supplementary Table S3) 
revealed that there were no significant differences in concentrations 
of somatostatin (SS) in the cerebrospinal fluid in the treated group and 
control group (49).

Discussion

The rehabilitation prescriptions in the present study were 
mainly exercise training or NIBS. The meta-analysis of studies on 
biomarker changes after stroke rehabilitation revealed that 
rehabilitation can significantly increase the concentration of serum 
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BDNF and NE, and peripheral blood SOD, ALB and HB, and CAT, 
and decrease the biomarkers of serum ET, glutamate, and TNF-α. 
In addition to serum TNF-α, the concentration changes of other 
biomarkers were significantly associated with functional 
improvement after stroke (Figure 3). The present study preliminarily 
deduced that serum BDNF, NE, ET and glutamate, and peripheral 

blood SOD, ALB, HB, and CAT can be  used as indicators of 
functional recovery in stroke patients. Furthermore, the results 
revealed that some biomarkers did not exhibit flagrant concentration 
changes after rehabilitation therapy, such as plasma BDNF and 
VEGF, serum 5-HT, peripheral blood CGRP, glucose (fasting), TC, 
TG, LDL, and HDL.

FIGURE 2

(A) Forest plot for the effect of rehabilitation treatment on serum brain-derived neurotrophic factor (BDNF) in stroke patients. (B) Forest plot for the 
effect of rehabilitation therapy on functional recovery in stroke patients in the serum BDNF study.
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FIGURE 3

Markers associated with significant functional improvement after stroke rehabilitation are shown, while markers that could not be analyzed by the 
meta-analysis due to insufficient data were placed in Supplementary Table S2.

Previous studies (50, 51) have repeatedly proven that low 
serum BDNF levels are significantly correlated to poor functional 
outcomes and high mortality, and that elevated BDNF levels after 
stroke are correlated to improvement of functional recovery. This 
is consistent with the present findings, in which the meta-analysis 
of the pooled data revealed that rehabilitation induced a 
significant increase in serum BDNF levels, and that this change 
was associated with functional improvement. The sub-group 
analysis for stroke period and treatment modality revealed that 
serum BDNF is closely correlated with the factors of subacute 
stroke and NIBS treatment, but not acute stroke and non-NIBS 
treatment. Due to the small number of studies on acute stroke and 
non-NIBS (there are only 1 and 2 studies, respectively), these 
results should be interpreted with caution, but there is no doubt 
that serum BDNF is significantly correlated with subacute stroke 
and NIBS treatment. The study (52) carried out by Niimi et al. 
confirmed that the combined rehabilitation of low-frequency 
rTMS appears to be able to improve the motor function of the 
affected limbs by activating BDNF. This indicates that serum 
BDNF can be used as a biomarker for NIBS treatment, and that 
this can be used to predict the improvement of stroke function. 
The subgroup analysis based on NIBS treatment times revealed 
that 18–20 or 30+ treatments had a significant effect, while 5 and 
10 treatments did not have a significant effect. These results also 
revealed that the serum BDNF concentration increased with the 
increase in number of rehabilitation sessions.

For the other serum biomarkers that had significant effects after 
rehabilitation, it was found that the serum NE concentration 
significantly increased, while the serum ET and glutamate 
concentrations significantly decreased after the rehabilitation 
intervention, and this was correlated to the significant improvement 
in post-stroke function. This discovery reinforces the evidence 

obtained from previous studies conducted on animals and humans. 
Furthermore, previous studies (53–55) have revealed that NE can 
improve the motor network connectivity in stroke patients, thereby 
facilitating motor performance in brain injury, and that elevated levels 
of ET and glutamate correlate with the degree of ischemic brain injury, 
and are positively associated with the infarct volume.

For evidences obtained from animal model trials (56), the 
inhibition of the release of pro-inflammatory factor TNF-α was found 
to be effective in ameliorating neurological damage after brain injury. 
Hou et al. reported that hyperbaric oxygen rehabilitation in post-
operative patients with brain tumors inhibited the expression of 
serum TNF-α, reduced cerebral arterial flow velocity, and effectively 
reduced the incidence of cerebral arterial spasm, thereby facilitating 
the patient’s clinical recovery (57). The present meta-analysis results 
for the included studies revealed that the level of serum TNF-α can 
be significantly reduced after stroke rehabilitation, but the change in 
its concentration was not found to be significantly correlated with 
functional improvement after stroke.

For peripheral blood biomarkers, it was found that the 
concentrations of nutritional indicators (ALB and HB) and antioxidant 
markers (CAT and SOD) significantly increased with the rehabilitation 
of stroke. For ALB and HB, Zhou et al. reported that low serum ALB 
levels can be used to predict the poor prognosis of patients with acute 
ischemic stroke, and that the decrease in serum ALB levels is negatively 
correlated with disability and mortality (58). In a retrospective study, 
it was found that low HB levels in stroke patients are associated with 
poor prognosis (59). Furthermore, the decrease in serum ALB levels 
may increase the risk of venous thromboembolism and pneumonia 
(60, 61), thereby affecting functional recovery. In contrast, elevated HB 
levels may improve the atherosclerosis, thereby promoting recovery 
(62). For CAT and SOD, since oxidative stress and hypoxia additively 
or synergistically exacerbate greater atherosclerosis, the increase in 
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antioxidant enzyme activity may reduce free-radical-induced damage, 
and provide protection against neurological injury (63, 64).

These present findings suggest that eight biomarkers are associated 
with the significant functional improvement in stroke patients, while 
101 biomarkers did not yield sufficient data for the meta-analysis. 
Over time, more data on biomarkers in stroke patients and the 
recovery of patients from different dysfunctions are needed to establish 
a timeline of biomarker changes and functional recovery progress, and 
determine the most sensitive and specific prognostic and diagnostic 
marker. In the future, brain injury biomarkers may also be normalized 
in brain-injured patients through therapies, such as adjunctive 
neuroprotective therapies, thereby improving neurological outcomes 
(65). The present study contained RCTs based on rigorous criteria, and 
the summarized evidence provided high quality data for this field.

The present study had some limitations. First, although 50 
qualified RCTs were identified, focus was given on the quantitative 
summary of 37 articles in selecting biomarkers with datasets of ≥3. 
The in-depth analysis of studies with marker datasets of <3 would 
unlikely change the main conclusions. Furthermore, it is possible 
that valid biomarkers were included in the studies 
(Supplementary Table S3), which are not presently available from 
the population. Therefore, future RCTs are needed, in order to 
provide stronger evidence for these biomarkers. Second, the 
heterogeneity of the study design (e.g., type of stroke dysfunction, 
demographic characteristics, rehabilitation treatment approach, 
and biomarker measures) led to the high heterogeneity of the 
quantitative results. Due to the small number of biomarker studies 
included in the present meta-analysis, it was impossible to 
determine the best diagnostic marker for the functional recovery of 
different functional disorders, different stroke periods, and different 
treatment modalities. Finally, some samples of important stroke 
markers were identified. Therefore, future RCTs are needed to verify 
the robustness of the present results. Furthermore, in order to 
improve the replicability of the evidence, studies with a larger 
sample size are needed in the future. Moreover, researchers should 
consider conducting multi-center studies with a large sample size 
in the same region, in order to record the biomarker results of 
patients in different periods after onset and recovery from different 
functional impairments. In addition, in future studies, researchers 
should note that due to the ceiling effect and floor effect of the scale, 
changes in biomarkers can be used to predict whether a patient’s 
function tends to improve or deteriorate. This would help broaden 
the treatment thinking of patients with chronic stroke or 
severe disease.

Conclusion

The present study was the first to conduct a meta-analysis of the 
influence of rehabilitation on biomarkers in stroke patients, which is 
correlated to functional improvement after stroke. The present results 
revealed that stroke rehabilitation can significantly increase the 
concentrations of serum BDNF, serum NE, peripheral blood SOD, 
peripheral blood ALB, peripheral blood HB, and peripheral blood 
CAT, and significantly decrease the concentrations of serum ET, 
serum glutamate, and serum TNF-α. In addition to serum TNF-α, the 
changes in other biomarkers were also associated with the significant 

improvement in post-stroke function. It was also revealed that serum 
BNDF can be  used as a biomarker for NIBS treatment, and in 
predicting the improvement in stroke function.
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