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Variation in the rate of recovery in 
motor function between the 
upper and lower limbs in patients 
with stroke: some proposed 
hypotheses and their implications 
for research and practice
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Background: Stroke results in impairment of motor function of both the upper 
and lower limbs. However, although it is debatable, motor function of the lower 
limb is believed to recover faster than that of the upper limb. The aim of this paper 
is to propose some hypotheses to explain the reasons for that, and discuss their 
implications for research and practice.

Method: We searched PubMED, Web of Science, Scopus, Embase and CENTRAL 
using the key words, stroke, cerebrovascular accident, upper extremity, lower 
extremity, and motor recovery for relevant literature.

Result: The search generated a total of 2,551 hits. However, out of this number, 51 
duplicates were removed. Following review of the relevant literature, we proposed 
four hypotheses: natural instinct for walking hypothesis, bipedal locomotion 
hypothesis, central pattern generators (CPGs) hypothesis and role of spasticity 
hypothesis on the subject matter.

Conclusion: We opine that, what may eventually account for the difference, 
is the frequency of use of the affected limb or intensity of the rehabilitation 
intervention. This is because, from the above hypotheses, the lower limb 
seems to be used more frequently. When limbs are used frequently, this will 
result in use-dependent plasticity and eventual recovery. Thus, rehabilitation 
techniques that involve high repetitive tasks practice such as robotic 
rehabilitation, Wii gaming and constraint induced movement therapy should 
be used during upper limb rehabilitation.
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Highlights

  - There is reported difference in the rate of recovery of motor function between upper and 
lower limbs following stroke. The latter is believed to recover faster than the former.

 - One of the reasons attributed to this is that, the cortical homunculus of the upper limb is larger 
in size due to its higher tactile sensitivity.

 - We also proposed natural instinct for walking, bipedal locomotion, central pattern generators 
hypotheses to further help explain the reasons for the difference.

 - However, most importantly, the difference could a factor of intensity or frequency of use of the 
lower limb compared to the upper limb, and spasticity.

 - Therefore, interventions for upper limb motor function should consider increasing the intensity 
and effective management of spasticity.

1. Introduction

Stroke causes impairment in motor, sensory and cognitive 
functions. For the motor function, its impairment results in disability 
in carrying out activities of daily living (ADL), which can negatively 
affect the patient’s quality of life (1–4). Thus, for stroke survivours to 
regain the ability to carry out ADL such as feeding, bathing, wearing 
clothes, grooming and picking up the telephone to answer calls, 
recovery of upper limb motor function is needed (5). Similarly, 
recovery of lower limb motor function is essential for walking which 
is required for ADLs such as transfer from one place to another, going 
for shopping and participating in social and other activities (6). In 
addition, recovery of motor function, independence in carrying out 
ADL, and the ability to participate in social and other activities are 
important in achieving good quality of life (7, 8). Therefore, the 
importance of upper and lower limb motor function recovery cannot 
be overemphasized.

However, to date, the rate of recovery of upper and lower limb 
motor function following stroke is a subject of debate that 
requires the attention of clinician scientists and researchers. For 
instance, for a very long time, it has been suggested that, the 
difference is due mainly to the size of the areas representing the 
limbs in the cortical homunculus. The area representing the 
upper limb is larger than that of the lower limb (9, 10); and as 
such, it was suggested that, its recovery may take a longer time 
following stroke. Although this could be a possible explanation 
for the difference, a more recent evidence has however not shown 
any significant correlation between lesion volume or size and 
motor function (11); suggesting that, other factors may 
be responsible for the difference in the rate of recovery between 
the two.

In addition, although, some researchers opined that, there is 
essentially no difference in the rate of recovery between the two (12, 
13); yet, some studies reported lower limb to recover faster than the 
upper limb (14–22). However, the fast recovery of the lower limb 
compared to the upper limb, has been observed to be  in a 
subpopulation of patients with anterior circulation infarct (14). 
Anterior circulation supplies brain areas that are mainly responsible 
for the motor and sensory functions of the lower limb, and speech 
production (23). Moreover, it is noteworthy in the study by Paci and 
colleagues that, all the participants included in the study received 
rehabilitation (14). During rehabilitation, it was observed that more 
attention is usually given to the lower limb compared to the upper 

limb (24). Thus, allocating attention to the limb may result in intensive 
practice during rehabilitation, which is important for use-dependent 
plasticity and recovery (25). Therefore, this could be another reason 
for the difference.

Another reason for the variation could be the type of stroke. 
This is because, ischemic type of stroke generally shows better 
functional outcomes compared to the hemorrhagic type (26). 
This is because, hemorrhagic type of stroke is associated with 
complications such as expansion of hematoma, increased blood 
pressure, venous thrombotic events and perihematomal oedema 
with increased intracranial pressure that can cause further 
damage to brain cells (27). In addition, other factors such as 
severity of the impairment and age may be  the possible 
explanation for the difference in rate of recovery (28–30). 
Furthermore, pattern or rate of recovery that is observed 
following stroke largely depends on the type of outcome measures 
used to determine the recovery. The neurophysiological measures 
of recovery such as the transmagnetic stimulation (TMS), are 
generally more sensitive than the behavioral measures such as the 
Fugl-Meyer motor assessment (31). Unfortunately, most studies 
used the behavioral measures to assess recovery following stroke 
(15–22).

However, considering that all the above arguments may not 
be exhaustive on the subject matter, there seems to be many other 
factors which require further investigation that have not yet been 
considered in the debate on the variation in the rate of recovery of 
motor function between the upper and lower limbs following stroke 
(30). The aim of this paper is to propose several hypotheses for the 
possible difference in the rate of recovery of motor function between 
upper and lower limbs following stroke, and their implications for 
research and practice.

2. Literature search

For this purpose, five databases, PubMED, Web of Science, 
Scopus, Embase and CENTRAL were searched from their inceptions 
to February, 2023 using the key words, stroke, cerebrovascular 
accident, upper extremity, lower extremity and motor recovery for 
relevant literature. The search generated a total of 2,551 hits. However, 
out of this number, 51 duplicates were removed using Endnote 
software. Thereafter, relevant articles on recovery of motor function 
were read, and based on our understanding of the reviewed literature, 
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experience and knowledge of the subject matter, we  proposed 4 
hypotheses: natural instinct for walking hypothesis, bipedal 
locomotion hypothesis, central pattern generators (CPGs) hypothesis, 
and role of spasticity hypothesis on the subject matter to help explain 
why the difference exists. See Table 1 for the summary of the articles 
guiding the proposed hypotheses.

3. The hypotheses

3.1. Natural instinct for walking hypothesis

Humans seem to have a natural instinct for wanting to walk no 
matter what. This can be  seen even early in life, where stepping/
walking reflex, which is the placement of one foot in front of the other 
when the soles of feet touch ground, is present at birth (32). Although 
this reflex disappears at age 6 weeks, it voluntarily reappears at age 
8–12 months (32). In addition, humans consider walking as a means 
to an end; and as such they walk to carry out their ADL such as going 
for shopping, and participating in social and leisure activities (40).

Moreover, historically, it is believed that, “humans made multiple 
journeys on foot out of Africa to the Eurasian landmass, and 
dispersing eventually to the Americas and Asia-Pacific region” (41–
43). This seems to suggest that, importance of the lower limbs for all 
human endeavors is as old as the humans themselves. Consequently, 
in the event of an injury to the nervous system such as after stroke, the 
natural instinct of the patient is to want to recover walking ability as 
soon as possible, to help achieve independence in carrying out ADL 
as much as possible (44, 45). This is probably because, recovery of 
lower limb motor function significantly influences health-related 
quality of life (46). Interestingly, early mobilization following stroke 
results in early recovery (33). In addition, repetitive steps that are 
taken during walking can help induce recovery of lower limb motor 
function through use-dependent plasticity (47, 48).

See Figure  1 for the mechanism of the natural instinct for 
walking hypothesis.

3.2. Bipedal locomotion hypothesis

Human locomotion is bipedal, which involves three subtasks, 
propulsion, limb advancement and body weight support (34). As 
such, following stroke, the less affected or sound lower limb can 
be used during propulsion to help force the use of the affected limb 
(35, 49–51). Forced use of limb following stroke helps with 
reversing learned non-use, and promoting recovery (49, 52). In 
addition, bearing weight on the affected limb that generate 
proprioceptive information in the foot, can serve as important 
sources of sensory outputs for recovery (53). Consequently, 
bearing weight on the affected limb helps with the recovery of 
walking speed and functional mobility (52, 53).

See Figure  2 for the mechanism of the bipedal 
locomotion hypothesis.

3.3. Central pattern generators hypothesis

Walking in humans is mainly produced by the combined roles of 
the reflex circuit, which produces motor patterns triggered by sensory 
feedback, and the central pattern generators (CPGs), which is a 
network of neurons capable of generating rhythmic pattern 
movements even in the absence of command from the higher motor 
centers (36, 37, 54–57). The CPGs innervate mainly the muscles of the 
lower limb (54); and they may not be affected following stroke. In 
addition, the neurons that orchestrates walking reside predominantly 
in the lumbar spine (58, 59). Consequently, rythmic pattern movement 
such as stepping during walking can be generated even in the absence 
of control of the higher centers. Evidence of rhythmic-locomotor 

TABLE 1 Summary of some of the important articles guiding the proposed hypotheses.

Authors Type of article Main points from the article Hypothesis

O’Mara (32) Narrative review The article opines that walking is a natural phenomenon adapted by human being for their 

social participation

Natural instinct for walking 

hypothesis

Yen et al. (33) RCT Early mobilization involving standing and stepping practices resulted in improved ability to 

carry out ADL and functional ambulation; and reduced length of hospital stay

Natural instinct for walking 

hypothesis

Awad et al. (34) Expert review The authors argue that, human locomotion involves 3 subtasks, propulsion, limb advancement, 

and body weight support

Bipedal locomotion 

hypothesis

Abdullahi et al. 

(35)

Systematic review and 

meta-analysis

Performing tasks practice with the affected lower limb, while constraining the unaffected limb 

helps in improving its function including functional mobility

Bipedal locomotion 

hypothesis

Ryu and Kuo 

(36)

Modeling study Walking which is one of the important functions of the lower limb can be produced by central 

pattern generators (CPGs) located in the spinal cord even in the absence of control of the higher 

centers

Central pattern generators 

hypothesis

Minassian et al. 

(37)

Narrative review Walking which is one of the important functions of the lower limb can be produced by central 

pattern generators (CPGs) located in the spinal cord even in the absence of control of the higher 

centers

Central pattern generators 

hypothesis

Katoozian et al. 

(38)

Observational study Prevalence of spasticity is usually higher in the upper limb compared to the lower limb 

following stroke

Role of spasticity hypothesis

Kong et al. (39) Cross-sectional study Upper limb dexterity is severely affected by the presence of severe spasticity Role of spasticity hypothesis

RCT, randomized controlled trial; ADL, activities of daily living.
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FIGURE 1

Schematic representation of the mechanism of natural instinct for 
walking hypothesis.

FIGURE 2

Schematic representation of the mechanism of bipedal locomotion 
hypothesis.

activity in the lower limb was seen following epidural stimulation of 
the spinal cord (60).

See Figure  3 for the mechanism of the central pattern 
generators hypothesis.

3.4. Role of spasticity hypothesis

About 25% of patients with stroke develops spasticity, although it 
depends on the severity of the paresis (61). However, prevalence of the 
spasticity and its severity, are higher in the upper limb than in the 
lower limb (38). Presence of severe spasticity in the upper limb, 
correlates with poor hand dexterity (39). In addition, unlike the lower 
limb, spasticity in the upper limb is associated with 60, 100, and 33% 
cases of shoulder pain, elbow pain and wrist pain, respectively, (62). 
Presence of pain is a significant predictor of poor recovery of function, 
ability to carry out ADL and quality of life following stroke (63, 64). 
In contrast, presence of spasticity may not substantially affect 
functional recovery of the lower limb (65).

In addition, functional specialization of the upper and lower limbs 
differs. The upper limb is involved in the performance of complex fine 
motor movement (66). However, as noted earlier, spasticity in the 
upper limb is significantly associated with poor dexterity, a 
requirement for fine motor movement ability (39, 65). Moreover, 
spasticity is associated with decreased joint proprioception (67). 
Acuity of proprioception in the wrist joint is linked to the control of 
fine movement (66). Thus, this may be the reason why even in the 
presence of motor and functional recovery, use of the upper limb in 
daily activities, which is also an indicator of recovery, may not be easily 
achieved (68).

4. Discussion, and implications for 
research and practice

Recovery of motor function following stroke has been considered 
to depend on so many factors such as the size and location of the 
lesion, and time since stroke (28–30). Similarly, although it is still 
debatable, the recovery is considered faster in the lower than the upper 
limb (14–22). However, following review of the literature, we hereby 
proposed some hypotheses to help explain other possible reasons why 
the lower limb may recover faster than the upper limb, and discussed 
the implications of the hypotheses for research and practice. The 
hypotheses are natural instinct for walking, bipedal locomotion, 
central pattern generators and role of spasticity hypotheses.

Following stroke, natural instinct for walking, which will result in 
motor activity with the affected limb; bipedal locomotion, in which 
weight is borne on the affected limb, while the unaffected limb is used 
to propel the affected one; role of CPGs in producing rhythmic 
movement patterns such as the steps needed during walking; and the 
role of spasticity in impairing movement, suggest that, the lower limb 
may recover faster than the upper limb because it is used more than 
the latter in activities. This is because inadequate amount of activity as 
may often be the case with upper limb compared to the lower limb, 
may not be able to drive neural reorganization that is required for 
recovery (69). Interestingly, walking is an ADL, and use of the limb for 
daily activities in the real world, is a significant predictor of recovery 
of motor function following stroke (70).

The above argument seems to suggest that, use-dependent 
plasticity may be the reason for faster recovery of motor function in 
the lower limb compared to the upper limb. Thus, increasing activity 
or intensity of practice during upper limb rehabilitation is important 
to help optimize recovery, by inducing biochemical, physiological and 
anatomical changes in the brain (71–74). Increasing the intensity of 
practice of the affected upper limb can be achieved through the use of 
technology driven rehabilitation interventions such as the Wii gaming 
and robotic rehabilitation (75, 76). In addition, techniques such as the 
constraint induced movement therapy, which comprises of massed 
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tasks practice with the affected limb, constraint of the unaffected limb, 
and transfer package (a contract to ensure continuous use of the 
affected at home) should be considered (77–79). Already, it is known 
that, repetitive tasks practice of the upper limb results in greater 
recovery (80–82); and this will in turn result in increased use of the 
limb in the real world (83).

In addition, the larger muscles of the lower limb are very 
important in maintaining standing posture (84). Thus, because of 
patients’ natural instinct for wanting to regain walking, they would 
have to be able to stand first before they can walk. In doing so, bearing 
weight on the two limbs will automatically stimulate the stretch reflex, 
which will in turn activate the motor cortex (85, 86). When the motor 
cortex is repeatedly activated, recovery of motor function ensues (87). 
In addition, even during walking, weight is continuously borne on the 
lower limbs which helps with the restoration of motor function 
through the mechanisms already mentioned above. This is because, 
control of gait and posture are intricately related (86). Moreover, due 
to the bipedal nature of human locomotion, the unaffected limb forces 
the affected one into activity during propulsion and limb advancement. 
Thus, this can result in use-dependent plasticity, and eventual recovery 
of the lower limb (49).

Similarly, the role the CPGs play in the generation of rhythmic 
movement pattern such as the steps required for walking, may aid 
with the faster recovery of the lower limb (37, 54). Thus, considering 
the roles play by bipedal locomotion in humans, where the unaffected 
limb forces the affected limb into activity during propulsion and limb 
advancement; and the potential role of the CPGs in lower limb 
recovery, use of rhythmic bilateral movement training and bilateral 
upper limb exercise may help promote recovery of upper limb motor 
function through use-dependent plasticity (88, 89). Furthermore, as 

noted earlier, presence of spasticity in the upper limb is associated 
with poor recovery outcomes (39). Thus, this seems to suggest that, 
presence of spasticity may account for the difference in the rate of 
recovery between the upper limb and the lower limb. As such, 
managing spasticity in the upper limb during early post stroke may 
help hasten its recovery. Consequently, effective interventions for 
spasticity in patients with stroke such as active exercises, joint 
positioning and joint stretching should be used (90).

Although, the 4 theories proposed in this paper tried to explain 
some of the reasons why the lower limb motor function recovers faster 
than that of the upper limb, they are not in any way exhaustive, and as 
such other factors should also be considered. One of these factors is 
the argument that, upper limb occupies a larger area in the motor 
homunculus due its high tactile sensitivity, compared to the lower 
limb (9). Thus, to help recruit more areas of the brain to aid with the 
recovery of upper limb motor function, sensorimotor stimulation 
techniques such as the brain and peripheral electrical stimulation and 
tactile stimulation can be used in combination with other interventions 
(91–93). Stimulation of the nervous system can result in recovery of 
the upper limb (91, 94).

Secondly, the timing of rehabilitation is also important. This is 
because early post stroke is the period when the potential for recovery 
is higher (8, 95, 96). In addition, it is important also to note that, 
ability to determine or predict recovery depends on the outcome 
measure used (97). Furthermore, the difference sometimes may also 
depend on the psychometric properties of the outcome measures used 
(20). For instance, most studies use measures of daily function or 
disability rather than measures of impairment (20). Thus, in 
determining and predicting recovery of motor function after stroke, a 
combination of clinical, neurophysiological and imaging outcome 
measures should be used (20, 98, 99). Moreover, research is needed to 
be carried out, where practice/ activity will be controlled between 
upper and lower limbs, to determine if one will recover faster than the 
other. Similarly, studies should compare patients with the same degree 
of spasticity in the upper and the lower limbs to determine which one 
recovers faster.

5. Conclusion

The lower limb may regain motor function following stroke at a 
rate faster than the upper limb. Although many factors can help 
explain the reason why, most importantly the reason majorly has to 
do with the intensity or frequency or dose of use of the lower limb 
compared to the upper limb, and presence of spasticity and its 
significant impact on the upper limb. Therefore, rehabilitation 
strategies for upper limb motor function following stroke should 
consider increasing the intensity of practice especially in the real 
world, and management of spasticity, especially during early 
post stroke.

6. Expert opinion

In our opinion, the hypotheses we  presented are some of the 
factors that make the lower limb to recover its motor function faster 
than the upper limb; and that all of them seem to suggest that, the 
main factor for the difference is intensity of use of the lower limb 

FIGURE 3

Schematic representation of the mechanism of central pattern 
generators hypothesis.
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compared to the upper limb. However, these factors we hypothesized 
seem not to be yet thoroughly investigated, and as such, future studies 
should focus on investigating them. For instance, views or opinions of 
stroke survivours using qualitative research methodology should 
be collected to explore what they prefer to recover immediately after 
having a stroke. In addition, ethnography method of qualitative 
research, whereby a group’s behavior is observed by the researcher 
without interfering with their behavior, can be used to observe stroke 
survivours through their recovery journey. That way, the researchers 
can document the journeys of recovery of upper and lower limbs 
motor function with the goal of observing which one of them 
recovers faster.

Similarly, observational studies using objective outcome measures 
of motor function (physical function) such as the Fugl Meyer motor 
assessment and Wolf motor function test (WMFT) can also be used 
to objectively determine the difference over a long period of at least 1 
year. In addition, electrophysiological measures of motor function 
such as the electromyography (EMG) to measure muscle electrical 
activity, and functional magnetic resonance imaging (fMRI) to 
measure cortical activity should also be  used to determine the 
difference. Furthermore, biomechanical measurements of aspects of 
motor function such as movement speed, smoothness, quality and 
directness should also be  considered. Thus, in determining the 
difference in recovery of motor function between the upper and lower 
limbs, a combination of outcomes measures of physical function, 
electrophysiological function, biomechanics, perspectives or views of 
patients and the caregivers and participants observation should 
be  used to help with more reliable comparison. Moreover, many 
variables such the participants’ age, sex, time since stroke, side 
affected, lesion volume, type of stroke, presence of neglect, and 
handedness before stroke need to be controlled in the studies.

In addition, in practice, clinicians should consider methods and 
techniques that will help increase the intensity of practice with the 
upper limb. For instance, transfer package whereby a contract is 
designed between the clinicians, the patients and their caregivers to 
make patients practice with the affected limb more in the real world, 
particularly at home; and home programs to increase the intensity of 
practice can be used. Furthermore, self-management techniques such 
as the use of motivational interviewing that will help increase patients’ 
self-efficacy to enable them practice more with the affected limb 
should be incorporated in upper limb rehabilitation. Similarly, use of 
mechanical and computer devices such as the AUTOCITE (automated 
constraint induced movement extension), Wii games and other 
robotic devices that can help guarantee increased intensity of practice 
should also be considered during upper limb rehabilitation. However, 

the challenges that researchers and clinicians may face in determining 
whether upper limb or lower limb will recover faster in patients 
include the role of spontaneous recovery, patients own personal 
motivation and effort, caregiver support and probably the 
clinical setting.
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