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Regional contribution of vascular 
dysfunction in white matter 
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neuropathological insights
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The maintenance of adequate blood supply and vascular integrity is fundamental 
to ensure cerebral function. A wide range of studies report vascular dysfunction 
in white matter dementias, a group of cerebral disorders characterized by 
substantial white matter damage in the brain leading to cognitive impairment. 
Despite recent advances in imaging, the contribution of vascular-specific 
regional alterations in white matter dementia has been not extensively reviewed. 
First, we present an overview of the main components of the vascular system 
involved in the maintenance of brain function, modulation of cerebral blood flow 
and integrity of the blood–brain barrier in the healthy brain and during aging. 
Second, we review the regional contribution of cerebral blood flow and blood–
brain barrier disturbances in the pathogenesis of three distinct conditions: the 
archetypal white matter predominant neurocognitive dementia that is vascular 
dementia, a neuroinflammatory predominant disease (multiple sclerosis) and a 
neurodegenerative predominant disease (Alzheimer’s). Finally, we then examine 
the shared landscape of vascular dysfunction in white matter dementia. By 
emphasizing the involvement of vascular dysfunction in the white matter, we put 
forward a hypothetical map of vascular dysfunction during disease-specific 
progression to guide future research aimed to improve diagnostics and facilitate 
the development of tailored therapies.
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1. Introduction

The term white matter (WM) dementia refers to a clinical syndrome characterized by 
dysexecutive symptoms, such as slowed processing speed and impaired sustained attention, 
due to multifocal or diffuse WM damage (1). Despite their high prevalence across several 
conditions, WM involvement in dementia has been historically overshadowed by a focus on 
gray matter (GM) pathology that typically predominates in cortical dementia syndromes, such 
as Alzheimer’s disease (AD). However, recent advances in neuroimaging have shed light on the 
intimate relationship between WM and cortical gray matter (CGM) and deep gray matter 
(DGM) regions, and how they govern vital functions, such as emotion and memory. The causes 
of WM dementia remain elusive, although vascular dysfunction has emerged as a key early 
pathophysiological contributor (2–14). Indeed, the maintenance of adequate blood supply and 
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vascular integrity is fundamental to ensure brain function in health. 
In WM dementia, growing evidence implicates vascular alterations, 
such as aberrant angiogenesis (7) and blood–brain barrier (BBB) 
impairment, and their impact on cerebral blood flow (CBF), as 
important culprits. Altogether, these abnormalities impact 
homeostasis (8, 9), brain metabolism (10, 11), and glial activation 
(12, 13), which contribute to neurodegeneration and the dementia 
syndromes that ensue. Although it is known that various neurological 
diseases are influenced by specific regional vascular deficits within 
the brain (15, 16), this angle has been poorly explored in the spectrum 
of WM dementia. Thus, a better understanding of the relationships, 
connections and differences between WM and GM vasculature may 
help to decipher the causes and consequences of WM dementia and 
are the focus of the current review.

After presenting the main components of the vascular system 
involved in brain maintenance in health and normal aging, we review 
the regional contribution of vascular changes to WM pathology (see 
anatomical considerations in Table 1) in the pathogenesis of three 
distinct conditions: the archetypal white matter predominant 
neurocognitive dementia that is vascular dementia, a 
neuroinflammatory predominant disease (multiple sclerosis, MS) and 
a neurodegenerative predominant disease (AD). Finally, we consider 
factors that contribute to vascular changes in vascular dementia, MS 
and AD. In so doing, we hope to highlight the importance of WM 
pathology in the pathogenesis of the spectrum of dementia types to 
guide future research.

2. The vascular system in normal brain

Blood vessels form a vital infrastructure for the supply of 
metabolites, oxygen and nutrients throughout the brain. The tubular 
structure of vessels is formed by vascular endothelial cells (ECs), 
surrounded by pericytes, astrocytes end-feet and extracellular matrix 

(ECM, forming the basal lamina), supplemented by direct interaction 
with neuron processes and oligodendrocytes. In that context, the term 
“blood–brain barrier” (BBB) encompasses a range of unique 
properties of brain blood vessels. The BBB tightly regulates cells, 
molecules and ions trafficking in and out of the parenchyma, 
maintaining adequate CBF and vessel permeability to ensure neuronal 
activity and protection against pathogens. The BBB is not a single 
entity: it is composed of ECs interacting with a network of brain cells 
(as mentioned above), that orchestrate vascular function with the 
activity and metabolic needs of the surrounding brain areas, termed 
the neurovascular unit (NVU). In this section, we briefly describe the 
function of these key anatomic structures in healthy brain (Figure 1) 
and their alteration in normal aging, commenting on the differences 
observed in WM and GM areas.

2.1. Vascular function in healthy brain and 
normal aging

2.1.1. Cerebral blood flow
By convention, CBF is defined as the volume of blood which flows 

at a rate of delivery through a defined quantity of brain tissue during 
a specific period of time (17). The brain needs an anatomically 
disproportionate oxygen supply, representing more than 20% of the 
total oxygen in the body while accounting for only 2% of the total 
body weight (18). Thus, CBF must modulate brain perfusion in order 
to supply oxygen and energy substrates essential for baseline 
neurological function. When neuronal activation occurs, an increase 
in oxygen and energy demand is followed by an increase in CBF via 
arterial vasodilation to supply essential metabolites, wherein glucose 
and its surrogates (the primary fuel source for the brain) enter the 
brain to complete the aerobic glycolysis (19).

With aging, cerebral oxygenation is commonly reduced. However, 
it is thought that global CBF remains relatively preserved (20). This 

TABLE 1 Neuroanatomical considerations.

White matter (WM) WM consists of subcortical tissues, containing myelinated axons which connect neurons and glial cells. It represents almost half of the brain’s 

volume. The corpus callosum is the largest WM structure in the brain that connects the left and right hemisphere. WM is an essential 

component connecting areas of gray matter (GM) throughout the CNS and coordinates their communications.

Cortical gray matter 

(CGM)

The CGM (or cerebral cortex) is the outermost tissue of the brain lying on the top of the cerebrum. It is made up of folded GM defined as gyri 

(top areas) and sulci (deep areas). It covers subcortical WM and is divided into four lobes: frontal, parietal (where precuneus is the portion of 

the superior parietal lobe), temporal and occipital. The cingulate cortex located in the medial aspect of the cerebral cortex wraps the corpus 

callosum. The cerebral cortex contains a highly complex network of glial cells, neurons, axons and extracellular matrix proteins, and is involved 

in numerous functions such as emotion, memory, learning and language.

Deep gray matter 

(DGM)

The DGM consists of the thalamus, hippocampus, nucleus accumbens and basal ganglia. It is made up of neurons from which originate deep 

nerve fibers. The hippocampus is a simplified cortical structure located in the medial region of the temporal lobe, and consists of the dentate 

gyrus surrounded by corpus-ammonis and the subiculum. It has direct connections with the entorhinal cortex, and the amygdala. The 

hippocampus plays a major role in learning and memory. The thalamus is located near the center of the brain, including the hypothalamus, the 

subthalamus and the epithalamus. It has connections with structures of the limbic system (hippocampus, amygdala, cingulate cortex) and the 

cerebral cortex. The thalamus is a crucial gateway which relay the information in the CNS, playing a role in sense processing, spatial learning and 

memory. The basal ganglia is located deep within the cerebral hemispheres. It consists of a group of subcortical nuclei composed of the corpus 

striatum, the globus pallidus and the substantia nigra. These structures are connected to various brain areas, receiving many inputs from the 

cerebral cortex and the thalamus. Due to its large connectivity, the basal ganglia is involved in motor control, as well as rule-based learning, 

working memory and cognitive functions. The amygdala is located in the medial temporal lobe in front of the hippocampus. Its main 

connections include the hippocampus, the basal ganglia through the striatum and the cerebral cortex. The amygdala is primarily responsible of 

the processing and memorizing of emotional reactions.
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stability is ensured by homeostatic processes which modulate CBF in 
response to cerebral perfusion pressure changes and various external 
and internal physiological factors, such as vasoactive stimuli and 
neuronal activity changes (21–27).

2.1.2. The blood–brain barrier

2.1.2.1. Endothelial cell as the wall of the vessels
ECs form an efficient physiological wall ensuring vessel integrity. 

ECs are adjoined to each other by tights junctions (TJs), which 
modulate the paracellular transport of molecules through the BBB, 
and are composed of a large panel of transmembrane proteins involved 
in permeability regulation (claudin family) and its maintenance 
(occludin and Zo-1) (28). In addition, ECs modulate transcellular 
transport thanks to a wide range of receptor and carrier-mediated 

transporters, regulating the passage of ions, nutrients, energy 
substrates and cells (29–33).

With aging, senescence of EC combined with TJ alterations may 
occur, increasing BBB permeability and neurovascular uncoupling, 
subsequently impacting the inflammatory milieu and neuronal 
dysfunction (34).

2.1.2.2. The neurovascular unit
The NVU is an anatomical and functional unit encompassing glial 

cells (astrocytes end-feet, microglia and oligodendrocytes), mural cells 
(smooth muscle cells and pericytes) and neuronal processes. It plays 
a critical role in modulating transport of vasoactive agents and 
neuromodulators, helping to maintain the cerebral micro-
environment and BBB integrity (35). Importantly, the NVU triggers 
vasodilation/vasoconstriction to match the local energy demand given 

FIGURE 1

Overview of cerebral vasculature in health and normal aging. In the brain, multiple interactions between vascular structures in the blood–brain barrier 
(BBB) and neurovascular unit (NVU) regulate cerebral blood flow (CBF). The BBB is a range of unique properties of endothelial cells and extracellular 
structures apposed to the membrane of these endothelial cells, forming the basal lamina. At the interface of the peripheral circulation and brain 
parenchyma, the NVU is composed of various cells, such as glial cells (astrocytes end-feet in close association with vessel wall, microglia, 
oligodendrocytes), neurons, and perivascular pericytes, which act together to regulate CBF and clearance pathways. Importantly, blood supply 
matches local neuronal demand by a mechanism called neurovascular coupling, wherein activated neurons release specific effectors which activate 
astrocytes and pericytes, inducing the release of vasoactive mediators and subsequently regulating local CBF. In addition to their critical role in brain 
homeostasis, these structures form a physical barrier protecting the brain against immune infiltrates (macrophages, lymphocytes) and infiltrating 
pathogens, restraining the entry of harmful molecules (toxins), organisms (bacteria), and infectious agents (viruses). During aging, each component of 
the cerebral vasculature is impacted.
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tight interactions between neuronal processes and vessel-related cells 
(36). To this end, each type of cell forming the NVU modulates a wide 
range of dynamic processes. Astrocytes and pericytes structurally 
support the BBB via their end feet and processes, respectively. 
Astrocytes cover 90% of the micro-vessel surface (5) and regulate 
homeostasis processes and neuronal activity, while pericytes have 
functions in CBF regulation, angiogenesis, protein clearance, and 
neuroinflammatory mechanisms. Microglia, which also act in concert 
with astrocytes, are the macrophages of the brain involved in the 
inflammatory response. Microglial cells interact with neurons to 
maintain their activity and play an important role in synaptic plasticity. 
Oligodendrocytes contribute to brain homeostasis by maintaining and 
producing myelin in both GM and WM.

The structures that form the NVU are intricately linked. With 
aging, each component of the NVU undergoes substantial changes, 
resulting in increased BBB permeability and penetration of toxic 
factors into the brain (37, 38). Dysregulated mechanisms include 
disruption of basal lamina from pericyte degeneration, release of 
pro-inflammatory factors from glial cells, reduced myelin repair from 
oligodendrocytes and reduced clearance capacity from neurons, to 
name a few. Each of these alterations can contribute to WM pathology 
seen in dementia syndromes.

2.2. Vascular heterogeneity across the 
normal brain and aging

2.2.1. White matter has a poorer cerebrovascular 
reserve compared with gray matter

The cerebral vasculature is a continuum from arteries to veins 
which differ across the brain (Table  2) (39). GM regions are 
characterized by a greater number of large vessels and capillaries 
compared with WM (40), particularly in DGM regions, such as the 
hippocampus (41, 42). This has been well described in a cohort of 42 
healthy young adults wherein vascular density for both arteries and 
veins was found to be lower in WM compared with GM, where it 
correlated with cortical thickness (43). Furthermore, GM and WM 
structures are morphologically heterogeneous, with energy supply 
being proportionally linked to the extent of connectivity between 
brain regions. The cerebrovascular reserve in GM is related to a rich 
neuronal, synaptic, and glia network demonstrating concomitant 
higher energy use, oxygen demand, and perfusion compared to WM 
(44). Therefore, differences in WM and GM vasculature, including 

changes to the structure and function of the NVU and BBB, and how 
they impact CBF should be kept in mind when considering studies on 
healthy aging and neurodegenerative disorders. Importantly, given the 
often-striking regional patterns of neurodegeneration seen in 
dementia syndromes, regional differences in these vascular structures 
and CBF warrant study.

2.2.2. Cerebral blood flow is physiologically 
reduced in white matter

Recent advances in neuroimaging support that CBF should not 
be  considered as a global constant. Normal CBF is considered to 
be  around 50 mL/100 g.min−1 in the healthy brain, and it is well 
established that CBF in WM is less compared to GM (~20 and 
80 mL/100 g.min−1, respectively), reflecting the poorer cerebrovascular 
reserve described above (17, 45). This is a consistent observation 
across the brain (45), as well as in the cerebellum (46). It is also well 
established that stress and aging lead to reductions in CBF that are 
more severe in WM compared to GM (47). Interestingly, WM 
vulnerability is linked to the degree of network integration and 
connectivity, as demonstrated by a study looking at CBF and glucose 
metabolism (48). These findings support that CBF is influenced not 
only by intrinsic morphological differences in WM and GM 
structures, but also by loss of connectivity between them that can 
occur with aging.

2.2.3. The blood–brain barrier is more vulnerable 
in periventricular WM with aging

Despite limited knowledge about region-specific BBB alterations 
in the healthy brain, a range of studies demonstrate vulnerability of 
WM and DGM to BBB and NVU damage with aging.

It is intuitive to postulate that molecular trafficking across the 
BBB is influenced by the distribution of the cerebrovasculature. It is 
well known that capillaries are more vulnerable (as the basal lamina 
is incomplete and pericyte coverage is lacking) in DGM 
(hippocampus, hypothalamus) and the surrounding WM, compared 
to CGM (49, 50). With aging, lower expression of TJ proteins has 
been reported in the periventricular WM (corpus callosum) 
compared with CGM, and morphological changes in ECs associate 
with BBB breakdown in WM but not GM following systemic 
inflammation (51). Prominent loss of pericytes has also been 
specifically observed in WM of pericyte-deficient mouse models, 
associating with accumulation of fibrinogen, a surrogate of BBB 
dysfunction (52). As fibrinogen is highly toxic for oligodendrocytes 

TABLE 2 Heterogeneity of vascular tree [based on Schaeffer and Iadecola (39)].

Element of vascular tree Vascular cells Perivascular cells

Artery Smooth muscle: Socs3, Atf3, Id2, Csrnp1 Endothelium: Gkn3, Hey1, 

Vcam, Vwf

Fibroblasts, mast cells, perivascular macrophages, extrinsic 

nerves

Arteriole (pial) Smooth muscle: Slc26a2, Ttr, Sh3bgrl2, Tmem255b Endothelium: 

Gkn3, Hey1

Fibroblasts, mast cells, pial cells, perivascular macrophages

Arteriole (pre-capillary) Astrocytes, microglia, intrinsic nerves

Capillary Pericytes Pdgfrb, Cspg4, Vtn Endothelium Mfsd2a, Rgcc Astrocytes, microglia, intrinsic nerves

Venule Smooth muscle: Sebox, Tnxb, Ggt1, Grm3 Endothelium: Slc38a5, 

Lcn2

Astrocytes, microglia, intrinsic nerves

Vein Smooth muscle: Sebox, Tnxb, Ggt1, Grm3 Endothelium: Slc38a5, 

Lcn2, Car4, Vwf, Vcam

Fibroblasts, mast cells, perivascular macrophages, extrinsic 

nerves
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(53), fibrinogen accumulation may also play a major role in 
oligodendrocyte loss leading to WM changes and cognitive decline 
with aging (54). Furthermore, astrocyte morphology and 
distribution are highly heterogenous across the central nervous 
system (CNS), with elongated astrocytes with few processes in WM 
tracts (55), in comparison with highly branched protoplasmic 
astrocytes in GM (56). In mice, an age-dependent increase in GFAP 
astrocyte subpopulations, specifically in CGM and DGM structures 
(frontal, temporal cortices and hippocampus), has been shown (57). 
These observations highlight the role of aging on vascular 
dysfunction in WM and GM, which may set the stage for the 
evolution of cognitive impairment in susceptible individuals.

3. Vascular dysfunction in vascular 
dementia

The entity of vascular dementia and the pathologies encompassed 
by the term have posed challenges over the decades (58). However, 
vascular dementia is likely the second most common cause of 
dementia (the lack of certainty of this likely reflects historical 
disagreement over the definition of the condition), with mean 
autopsy prevalence rates of 8–15% in the West and higher in parts of 
Asia (59). The interactions between the vasculature, WM alteration 
and dementia were recognized as early as the nineteenth century, 
where arteriosclerosis, WM atrophy and preservation of CGM were 
associated with a slowly progressive dementia and gait disturbance 
(60). More recently, vascular cognitive impairment (VCI) has been 
defined as “a syndrome with evidence of clinical stroke or subclinical 
vascular brain injury and cognitive impairment affecting at least one 
cognitive domain” (61), and includes the entities of post-stroke 
dementia, multi-infarct dementia (due to multiple cortical infarcts) 
and subcortical ischemic vascular dementia (SIVD) (58). In 
particular, the dementia associated with small vessel disease (SVD) 
pathology of the WM (SIVD) is characterized by a frontal 
dysexecutive syndrome, slowed processing speed and sustained 
attentional deficits (62). Another important entity linking vascular 
pathology and dementia is cerebral amyloid angiopathy (CAA).

In the next section, we explore the regional specific perfusion 
alterations and neuropathology of SVD (Figure 2), including insights 
from the rare monogenic subcortical arteriopathy syndromes 
associated with dementia, such as Cerebral Autosomal Dominant 
Arteriopathy with Subcortical Infarcts and Leukoencephalopathy 
(CADASIL).

3.1. Hypoperfusion in vascular dementia

By definition, chronic hypoperfusion is central to VCI, wherein a 
20–35% reduction in global CBF has been observed (63). This is 
supported by metanalyses which demonstrate a relationship between 
severity of WM hyperintensities (WMH, the cardinal manifestation 
of SIVD) and reduced CBF (64, 65). In aged patients with dementia, 
regions with WMH had lower CBF than normal appearing white 
matter (NAWM) and periventricular WM had lower CBF than other 
WM areas (66). It was also shown that low baseline CBF in normal 
appearing periventricular WM can predict the progression of WMH 
in aged patients.

Interestingly, changes to CBF extend beyond WM, and also 
involve CGM. Regional differences in CBF and their relationship to 
WMH were studied in a cohort of MCI patients wherein VCI is 
commonly observed. A relationship between reduced CBF and WMH 
was seen in parietal, occipital and temporal CGM but not frontal 
CGM; these findings were not accompanied by overlying cortical 
atrophy implying an early role for vascular dysfunction (67). In 
another study, GM atrophy was observed in SIVD, in particular in 
prefrontal cortex, the middle and superior temporal gyri and the 
thalamus (68), although this study did not look at CBF. The 
relationship between CBF alterations and patterns of atrophy therefore 
warrant further study.

Taken together, these studies highlight that regional CBF changes, 
even in GM, are associated with WM lesions seen in SIVD, detectable 
even in early disease phases. What is known about the pathological 
substrate of these CBF changes in vascular dementia will 
be discussed below.

3.2. Neuropathology of vascular 
dysfunction in vascular dementia

Pathologically, SIVD is characterized by hyalinization of the 
vessel walls, fibrinoid necrosis, widening of the perivascular spaces, 
perivascular demyelination, tissue ischemia, and astrogliosis (69, 
70). These features are influenced by hypertension, a major risk 
factor for SIVD. As WM is inherently vulnerable to cerebrovascular 
insults (71, 72), it is not surprising that prior studies have shown 
that the extent of subcortical WM vascular disease correlates with 
the presence of dementia (69, 73). Of important note, these changes 
in the small vessels do not occur in isolation, and have been 
associated with atherosclerotic disease of the larger cerebral 
vessels (74).

3.2.1. The blood–brain-barrier in vascular 
dementia

BBB permeability has been described in SVD but the results have 
been conflicting. Although one study reported that surrogates of BBB 
permeability, such as fibrinogen and IgG, in DGM and subcortical 
WM do not correlate with pathological measures of SVD, nor with 
MRI measures of leukoaraiosis in life (75), many studies have found 
evidence of BBB breakdown. In fact, BBB breakdown has been 
described in the perivascular space of DGM in SVD cases (76). A 
spectrum of animal and post-mortem studies support BBB 
dysfunction in SVD, wherein hypertension damages ECs of small 
cerebral vessels (77), and associates with increased fibrinogen and IgG 
deposition (DGM and WM) in the brain, particularly in astrocytes 
located in periventricular WM (78).

In addition to accumulation of toxic factors, ECs dysfunction is 
evidenced by reduced TJ protein expression in both rat models of SVD 
and deep WM of people with early stage SVD (79). Reduced 
endothelial nitric oxide synthase (eNOS), which results in 
vasoconstriction and ultimately tissue ischemia (80), is another 
marker of EC dysfunction that has been described in SVD. Decreased 
eNOS exacerbates BBB leakage, WM damage and dementia in animal 
models (81). Dysfunctional ECs can also secrete ECM-related proteins 
which disrupt TJs in DGM of animal models (82). As a consequence, 
BBB breakdown can lead to changes in the NVU promoting tissue 
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damage, in both WM and GM, mirroring CBF changes detected in 
imaging studies.

3.2.1.1. The neurovascular unit in vascular dementia
Although vascular pathology is thought to be  the underlying 

mechanism for leukoaraiosis, glial dysregulation is also of interest (6). 
Components of the NVU may be  compromised early in SIVD, 
including astrocytes, microglia and oligodendrocytes.

Increased reactive astrocytes are seen in WM lesions in aged 
patients, and are positive for fibrinogen accumulation, indicating 
BBB breakdown (78). Of note, the astrocytic network pattern 
found in SIVD is similar to that observed in MS WM 
demyelinated lesions. In mouse models of cerebral hypoperfusion, 

blockade of astrogliosis reduces demyelination and cognitive 
impairment (84).

Altering microglial activity can influence WM pathology. For 
example, microglial polarization to a less inflammatory phenotype 
(via fingolimod in mice) leads to preservation of both WM integrity 
and cognitive function (85, 86). Similarly, pioglitazone, a peroxisome 
proliferator-activated receptor γ agonist, ameliorates WM lesion 
scores and performance on the Morris water maze in stroke-prone 
hypertensive rats; these findings were associated with reduced 
proliferation of astrocytes and microglia with reduction of 
pro-inflammatory cytokines (87).

In rat models and human tissue of early SVD, increased numbers 
of oligodendrocyte progenitor cells (OPCs) have been detected and 

FIGURE 2

Vascular dementia and vascular dysfunction. (A) Typical MRI features of small vessel disease, showing subcortical and periventricular white matter 
hyperintensities (case courtesy of Frank Gaillard, Radiopaedia.org, RID: 25641). (B) Arteriole showing hyalinization of the vessel wall. Small arrow 
highlights a foamy macrophage in the hyalinized part. Large arrows show astrocytes in the surrounding neuropil (adapted from (74) with permission; 
H&E stain; scale bar 200 μm). (C) Fibrinogen deposition in a perivascular distribution in a white matter lesion in small vessel disease, shown with 
immunohistochemistry (adapted from (83) with permission; scale bar 50 μm). (D) Main features of blood–brain barrier and neurovascular unit 
alterations in vascular dementia compared with healthy brain (created with BioRender.com; OPC, oligodendrocyte progenitor cells; GM, gray matter; 
WM, white matter; ECM, extracellular matrix; VaD, vascular dementia; NVU, neurovascular unit).
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attributed to reduced maturation into oligodendrocytes (78); 
interestingly, drug treatment targeting EC dysfunction was found to 
promote OPC differentiation into oligodendrocytes (79). This is 
further supported by the observation that fibrinogen extravasation 
across a disrupted BBB and ischemia-induced oxidative stress impede 
OPC differentiation and maturation (6). The conflation of these 
findings highlights the impact of the NVU on glial function and WM 
integrity relevant to cognitive function.

3.2.1.2. Insights from hereditary microangiopathies
Several genetic diseases of the small cerebral vessels are associated 

with dementia. These include CADASIL (due to mutations in the 
NOTCH3 gene) and CARASIL (cerebral autosomal recessive 
arteriopathy with subcortical infarcts and leukoencephalopathy, due 
to mutations in the HTRA1 gene) (74). These diseases may inform 
pathological processes involved in the much more common sporadic 
SIVD. NOTCH3 encodes for a transmembrane receptor expressed in 
pericytes and vessel smooth muscle cells and is important for their 
integrity. There are many identified mutations within the gene and 
the disease often arises from deposition of abnormal NOTCH3 
protein within the vessel walls, resulting in changes similar to that 
seen in SIVD (88). HTRA1 (high temperature requirement a serine 
peptidase), mutated in CARASIL, causes loss of repression of 
TGF-beta, a growth factor, with resultant vascular fibrosis. A similar 
pathology is thus seen in CARASIL and these patients develop 
dementia earlier than in CADASIL, as the changes are more 
widespread (89). Therefore, both these conditions act as informative 
models of SIVD, in that they result in arteriole wall hyperplasia and 
resultant reduced blood flow and ischemia (89). Indeed, many of the 
imaging studies on CBF in cerebrovascular disease were done on 
cohorts of patients with CADASIL (90).

4. Vascular dysfunction in multiple 
sclerosis

MS is an inflammatory disorder of the CNS estimated to affect 
more than 2.8 million people worldwide (91). MS is characterized by 
inflammation, demyelination, and neurodegeneration that results in 
disability and reduction of quality of life (92). Changes to cognition 
and emotion are common features, an observation which dates back 
to Jean-Martin Charcot’s classic descriptions (93). More recent studies 
suggest that cognitive impairment is present in 34% of those with 
clinically isolated syndrome (CIS), 50% with relapsing–remitting MS 
(RRMS), and 80–90% of those with progressive MS (94). Interestingly, 
the cognitive impairment seen in MS has several similarities to that 
seen in vascular dementia, namely dysexecutive symptoms, slowed 
processing speed, and impaired sustained attention (95). Further, it is 
increasingly recognized that GM alterations may be associated with 
vascular disturbances in MS (Figure 3) and likely play an important 
role in cognitive decline. Indeed, GM demyelination is frequent and 
extensive in MS, both in CGM and DGM structures relevant to 
cognitive function (e.g., thalamus, hippocampus, cerebellum) (96–98). 
Vascular dysfunction is also increasingly recognized as an early feature 
of MS pathogenesis, supported by the pathognomonic vessel-
associated pathology characteristic of the disease (99).

We herein provide a summary of the main characteristics of 
vascular dysfunction in MS, including its regional variability.

4.1. Perfusion alterations in multiple 
sclerosis

The clinical pattern of MS dementia resembles that of vascular 
dementia with similarities in CBF hypoperfusion patterns being seen. 
While the formation of a new demyelinating plaque is accompanied 
by an increase in CBF, the MS brain gradually displays progressive 
reduction in CBF which correlates with the degree of atrophy and 
clinical disability.

Hyperperfusion has been shown to be one of the earliest events 
in plaque formation detectable on MRI, being present even before 
emergence of gadolinium-contrast enhancement and changes in 
diffusion (100). This relative hyperperfusion (18% increase from 
baseline) in active WM lesions has been attributed to vasodilation 
in response to an intense inflammatory response (101). This notion 
is supported by studies evaluating the experimental autoimmune 
encephalomyelitis (EAE) mouse model of MS, wherein induction 
of severe inflammation results in severe hypoxia (102), and 
consequent increased perfusion. Interestingly, oxygen 
administration not only attenuated hypoxia but also clinical 
deficits (103).

Outside the acute inflammatory phase of plaque formation, the 
available MRI literature consistently reports hypoperfusion across 
brain regions in all disease stages of MS, wherein a 20% reduction in 
global CBF has been reported in people with MS compared with 
normal aging (104). In fact, normal appearing periventricular WM 
and DGM and CGM areas are particularly affected (105–108) with 
CBF reduction of up to 50% being reported. The reduced global CBF 
has clinical relevance as it correlates with measures of brain atrophy, 
and cognitive and motoric disability (109–111), independent of 
vascular risk factors (109). In early disease stages, CBF hypoperfusion 
has been shown to preferentially occur in juxtacortical and 
periventricular WM areas and associate with severe demyelination 
with relatively sparing of CBF alterations in CGM and DGM areas. It 
has been suggested that secondary hypoperfusion in GM areas due to 
underlying WM injury may contribute to disease progression in later 
disease stages (112, 113) but this warrants further study. Regardless, 
the observation that CBF hypoperfusion occurs at the earliest disease 
stages in normal appearing WM areas further supports the notion that 
CBF alterations are not merely a downstream consequence of MS 
pathology but rather may be an important upstream contributor of 
it (112).

4.2. Neuropathology of vascular 
dysfunction in multiple sclerosis

Vessel-associated inflammatory demyelination is a hallmark 
of MS pathology, especially in WM regions. In recent years, a 
growing body of evidence suggests that vascular changes occur 
outside of WM lesions and affect the vascular tree beyond the 
traditionally blamed venule. The observation that vascular risk 
factors, which are known to impact the arterial system, associate 
with more severe pathology and disease progression supports this 
claim (114). A recent post-mortem study showed that peri-
arterial small vessel disease outside of lesions is increased and 
associates with inflammatory disease activity in progressive 
MS (99).
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4.2.1. Pathology of the BBB and NVU in 
demyelinated plaques

In MS, WM lesion burden associates with the development of 
cognitive deficits thereby pointing to a role for vascular dysfunction 
in cognitive decline (115–117). MRI studies have highlighted the 
importance of BBB alterations in the pathogenesis of WM pathology 
as evidenced by the presence of gadolinium enhancement in acute 
lesions. BBB breakdown occurs at the earliest disease stages and 
associates with extensive perivascular immune cell infiltration in WM 
lesions (118–125). Dysfunctional ECs have been shown to propagate 
the inflammatory response in WM lesions by upregulating membrane 
receptors (e.g., TLR4) (126, 127) and inducing release of 
proinflammatory cytokines (e.g., IFN-γ and TNF-α) by glial cells; 

these changes, in turn degrade TJs and surrounding ECM to form a 
vicious circle of BBB breakdown (118, 128, 129). BBB integrity is 
further compromised in active WM lesions by the detachment of 
astrocyte endfeet from the basal lamina (130). Further support for a 
role for astrocytes in WM lesion pathogenesis is derived from the 
finding of increased astrocyte-derived vasoconstrictive peptide 
endothelin-1 (ET-1, related to reduced CBF) in CSF of MS patients 
(131). The observations support early changes to BBB integrity in the 
pathogenesis of WM lesions.

Surprisingly, little is known about vascular dysfunction in GM 
lesions, despite extensive involvement of GM pathology in MS. In 
contrast to WM lesions, some studies report no alterations in ECs and 
their TJs, as well as no differences in infiltrating lymphocyte numbers 

FIGURE 3

Multiple sclerosis and vascular dysfunction. (A) Periventricular white matter lesions in a typical Dawson’s finger distribution in a person with multiple 
sclerosis on T2 weighted MRI image (FLAIR; case courtesy of Frank Gaillard, Radiopaedia.org, RID: 1067). (B) Perivascular lymphocytic inflammation in 
an acute MS plaque, immunohistochemistry for cluster differentiation 3 (CD3) (scale bar 100 μm). (C) Perivascular fibrinogen deposition is 
demonstrated with immunohistochemistry in the primary motor cortex (frontal cortex), in non-demyelinated gray matter area (figure adapted from 
before renumber no (138) with permission; scale bar 500 μm). (D) Main features of blood–brain barrier and neurovascular unit alterations in multiple 
sclerosis compared with healthy brain (created with BioRender.com; GM, gray matter; WM, white matter; EC, endothelial cells; MS, multiple sclerosis; 
NVU, neurovascular unit).
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in cerebral cortical lesions compared to NAGM (132). These findings 
are challenged by recent neuroimaging and post-mortem studies that 
show loss of BBB integrity in CGM and WM lesions alike and 
extensive inflammatory activity in hippocampal and spinal cord GM 
lesions, respectively (133–137). BBB disruption in both GM and WM 
areas are likely substrates, which highlights the need to consider the 
role of vascular dysfunction in these areas and how they contribute to 
cognitive impairment in MS.

4.2.2. Pathology of the BBB and NVU beyond 
demyelination

The classical view of BBB disruption as only a feature of 
demyelinated lesions in MS is challenged by a body of evidence that 
implicates BBB breakdown in NAWM and NAGM. Extensive 
fibrinogen accumulation, a surrogate of BBB disruption, has been 
detected in NAGM areas in progressive MS; the fact that the extent of 
fibrinogen deposition correlates with neuronal loss, the substrate of 
irreversible disability, adds clinical relevance to this finding (138, 139). 
The mechanism by which fibrinogen, a large molecular weight protein, 
traverses the BBB has attracted studies evaluating the role of various 
constituents of the BBB in fibrinogen egress from the vasculature. A 
mouse model of pericyte-deficiency showing accumulation of 
parenchymal fibrin supports involvement of pericyte dysfunction in 
this process (138, 140). In support of this possibility, EAE rat models 
demonstrate pericyte loss in CGM capillaries with induction of 
PDGFRβ expression associating with overexpression of TJs proteins 
(claudin) and reduction of clinical symptoms (141). Astrocyte 
activation and alterations of aquaporin-4 expression in their end feet 
have been also shown to contribute to vascular alterations even before 
the infiltration of immune cells (142, 143). The accumulation of 
fibrinogen in astrocyte cell bodies and processes in the glia limitans 
and perivascular areas of non-lesional areas further implicate a role of 
astrocyte function and fibrinogen accumulation (138, 139). 
Importantly, fibrinogen is known to initiate and propagate neurotoxic 
microglial activation in EAE mouse models leading to the secretion 
of pro-inflammatory cytokines (e.g., TNF-α, IL-1β) that contributes 
to neurodegeneration (144, 145). This is supported by recent 
neuropathological findings in NAGM cerebral cortical areas 
suggesting that neurotoxic factors, opposing putative microglial-
associated protective factors, are secreted by fibrinogen-stimulated 
microglia in people with HLA-DRB1*15 genetic status, a major risk 
factor for MS, further highlighting a pathologically relevant 
consequence of BBB compromise in the disease (146). Future work 
evaluating the nature and extent of BBB and NVU changes in both 
WM and GM within and outside lesions throughout the MS brain will 
help disentangle their roles in disease pathogenesis.

Overall, these findings demonstrate that changes to the BBB and 
NVU are important features of MS pathology even beyond areas of 
demyelination in both GM and WM and contribute to 
neurodegenerative processes relevant to cognitive impairment in 
MS (99).

5. Alzheimer disease and vascular 
dysfunction

AD is a neurodegenerative syndrome characterized by early 
deficits in working and episodic memory with an increased incidence 

and prevalence as the population ages. There are in excess of 55 
million people living with dementia worldwide and 60–70% of these 
have AD (147). AD is characterized by brain atrophy, neuroaxonal loss 
and accumulation of amyloid-β and Tau, mainly in GM structures. 
However, recent studies also highlight significant WM changes in AD 
pathology. Regional vascular abnormalities are likely important 
contributors to both GM and WM pathology in AD (Figure 4) with 
some features shared with vascular dementia and MS.

5.1. Cerebral blood flow impairment in 
Alzheimer’s disease

Compared to normal aging, reduction of 20–40% of the global 
CBF is common in AD (148). In particular, it is well-established that 
CGM and DGM hypoperfusion, mainly in the temporal lobe, are early 
features of the disease. In MCI and early stages of AD, a wide range of 
studies show reduced CBF in DGM (such as hippocampus, thalamus 
and basal ganglia) (149–154) and CGM (temporal cortex) (155, 156), 
which often associate with progressive cognitive decline and brain 
atrophy. Relative hyperperfusion has also been described in early AD, 
which has been attributed to a transient compensatory response to 
local inflammatory and neurodegenerative mechanisms (157–160). 
With AD progression, hypoperfusion in CGM areas (estimated to 
be  about 20 mL/100 g.min−1 by MRI) (161), such as frontal and 
parietal cortices, relates to hypometabolism, amyloid 
accumulation,and cognitive decline (162–165). The extent to which 
CBF alterations drive or are a consequence of AD pathology requires 
further study.

In addition to GM, changes to CBF in WM have been described, 
especially at more advanced disease stages when subcortical cognitive 
change is a more prevalent feature. In established AD, up to 50% 
reduction of CBF in temporal, parietal and occipital WM areas has 
been shown to be more severe than in their GM counterparts (up to 
40% reduction) (166, 167). These CBF changes relate to WM 
hyperintensities (WMH) often observed in AD (25), which variably 
associate with cognitive impairment (168, 169), especially when 
situated in periventricular and juxtaventricular areas (170). 
Hypoperfusion in the corpus callosum has been described in late, but 
not prodromal, stages of AD highlighting an important temporal 
element to WM involvement in AD pathogenesis (159, 171, 172). In 
fact, such stage-dependent regional CBF alterations in WM in AD are 
hypothesized to disrupt WM integrity and network connectivity 
between GM regions, further exacerbating cognitive decline (173–
175). Studies of the brain connectome will shed further light into the 
relative roles of CBF changes in WM and GM at various stages of 
AD-related cognitive decline.

5.2. Neuropathology of vascular 
dysfunction in Alzheimer’s disease

To date, the unequivocal diagnosis of AD relies on post-mortem 
detection of amyloid and Tau in characteristic brain regions. 
However, amyloid and tau deposition do not fully account for the 
progressive cognitive decline seen in AD, implying that other 
factors, such as vascular pathology, are contributing to AD 
pathology. Reports of either unchanged, reduced or increased 
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vascular densities in the AD brain complicate interpretation of 
vascular changes in AD pathogenesis, although differences in 
methods, AD severity and selected controls may explain these 
discrepant findings. However, there is increasing recognition that 
loss of connectivity between WM and GM regions and vascular 
dysfunction are contributors to cognitive decline and may augment 
other aspects of AD pathology. In that context, more is known in 
AD than any other dementia, wherein it is suggested that vascular 
abnormalities affect both WM and GM through the “two-hit 
vascular hypothesis” (176, 177). The first hit is damage to the 
microcirculation independent of changes to amyloid burden, while 
the second hit is loss of ECs and TJs supplemented by NVU 

alterations that lead to impaired Aβ clearance and subsequent 
amyloid accumulation in the AD brain.

5.2.1. Evidence of white matter pathology in 
Alzheimer’s disease

An increasing body of evidence suggests that WM changes play 
an important role in AD pathophysiology, including WM degeneration 
and demyelination secondary to reduced numbers and function of 
OPCs and oligodendrocytes, disrupted connectivity of WM tracts, 
and amyloid-induced inflammatory damage (178–182). The finding 
that ApoE4 carriers show significant WM degeneration prior to 
emergence of GM atrophy and cognitive dysfunction further 

FIGURE 4

Alzheimer’s disease and vascular dysfunction. (A) Severe and bilateral atrophy of hippocampi is a typical MRI characteristic of Alzheimer disease (T1 
weighted brain MRI scan; case courtesy of Frank Gaillard, Radiopaedia.org; RID: 22196). (B) Immunohistochemistry for β-amyloid demonstrates 
cerebral amyloid angiopathy in the vessel wall of capillaries (black arrow) and in an amyloid plaque, which are both typical features of AD pathology 
(scale bar 50 μm). (C) A vessel with a dilated perivascular space (black arrow) and perivascular fibrinogen deposition (red arrowhead) is demonstrated 
with immunohistochemistry in the deep white matter in the parietal lobe; (Di) Magnified insert show extravasation of fibrinogen in the white matter 
parenchyma (black arrowheads, figure adapted from McAleese et al., 2019 with permission; scale bar 200 μm). (D) Main features of blood–brain barrier 
and neurovascular unit alterations in Alzheimer’s disease compared with healthy brain (created with BioRender.com; GM, gray matter; WM, white 
matter; EC, endothelial cells; TJ, tight junction; AD, Alzheimer’s disease; NVU, neurovascular unit).
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highlights a fundamental role of WM in AD disease pathogenesis 
(183). Advanced MR studies show altered vascular integrity in WM 
areas adding further support to a role vessel-related WM changes in 
AD (176, 184).

Another key aspect of vascular change linked to WM damage in 
AD is cerebral amyloid angiopathy (CAA). CAA is characterized by 
the accumulation of amyloid in the wall of the cerebral vessels and 
occurs in up to 90% of established AD cases (185). CAA is associated 
with prominent ischemic WM damage and atrophy (186, 187) 
secondary to extravasation of immune cells and toxic factors. The 
accumulation of fibrinogen in neurons and vessels in areas of Aβ 
deposition (188) and the formation of Aβ-fibrinogen insoluble clots 
in the parenchyma propagate deleterious inflammatory responses, 
vascular dysfunction, and CAA that contribute to WM change in AD 
(189, 190).

5.2.2. Pathology of the blood–brain barrier in 
Alzheimer’s disease

Macroscopic vascular changes reflect BBB alterations observed in 
AD. Increased numbers of fragmented vessels and branches (191, 
192), vessel tortuosity as well as the presence of non-functional and 
degenerative capillaries are commonly observed in AD (191, 193). 
Intracranial atherosclerosis, especially in the hippocampus and CGM 
areas, mirrors the distribution of the aforementioned CBF changes 
(194, 195). While atherosclerosis in these eloquent areas associates 
with cognitive decline in AD (196), concomitant CBF alterations in 
subcortical WM areas and corpus callosum during disease progression 
may be also to blame.

In AD, BBB breakdown contributes to neurodegeneration, 
amyloid accumulation and neuroinflammation (71). Loss and/or 
degeneration of TJs, EC and pericytes and accumulation of toxic 
factors, such as fibrinogen and immunoglobulins (IgG), are features 
of BBB disruption in AD (197–202). Breakdown of the BBB in the 
hippocampus has been shown to precede behavioral deficits and 
cognitive impairment in AD animal models (203, 204) and AD 
patients (205), respectively, with alterations to endothelial TJs being 
independent of amyloid burden. Similar features are seen in 
periventricular WM, where shortened TJs are commonly observed 
(191, 206). In addition, thickening of the vascular basal lamina is 
thought to play an important role in AD-related neurovascular 
changes with alterations of vessel-associated ECM proteins being a 
culprit (207, 208). Other ECs alterations are postulated to be central 
players in AD pathogenesis, which are reviewed in detail 
elsewhere (209).

NVU alterations mirror the regional and temporal evolution of 
CBF and BBB changes seen in AD. Temporal lobe pathology is a 
consistent, early feature with involvement of other cortical GM and 
subcortical WM regions being seen in later AD stages. In a model of 
adult viable pericyte-deficient mice, BBB breakdown and neuronal 
loss occurred in both GM and WM structures in an age-dependent 
fashion (140). In early AD, pericytes accumulate Aβ in order to 
degrade it, while Aβ oligomers reduce CBF through pericyte-mediated 
capillary constriction, forming a vicious circle of dysfunctional 
clearance and energy supply (210). Pericyte alterations associate with 
BBB breakdown before extensive amyloid deposition in the AD 
hippocampus (205), and are detected in later stages and in other 
cortical regions when amyloid burden is severe (211, 212). Pericytes 
are also affected in subcortical WM during AD progression (9, 52, 

213) Further studies evaluating the nature, timing, and extent of 
pericyte responses to AD-relevant stimuli and how they impact the 
NVU in GM and WM are needed.

Activation of perivascular glial cells, such as astrocytes and 
microglia, are thought to be secondary features of BBB breakdown 
and pericyte alterations in AD. Activation of perivascular astrocytes 
occurs in the vicinity of amyloid plaques and leads to propagation of 
local neuroinflammation in CGM and DGM structures in established 
AD (214–218). Interestingly, a specific subtype of tau-positive 
perivascular astrocytes in the subcortical WM associates with brain 
atrophy (219, 220). Microglial activation and dysfunction are linked 
to oxidative stress that exacerbates neurodegeneration in CGM areas, 
such as frontal, temporal and cingulate cortices, as well as underlying 
WM in AD (221, 222). In addition, microglia are involved in vascular 
remodeling. Microglia amplify and sustain local inflammation in 
response to fibrinogen accumulation in the AD entorhinal cortex 
(223). This is further supported by fibrinogen-mediated microglial 
activation in the spinal cord of an AD mouse model which exacerbates 
neurodegeneration and subsequent cognitive decline, independent of 
amyloid accumulation (224). These findings support an important role 
for glial activation and dysfunction in AD pathogenesis that requires 
further study.

5.2.3. Aβ accumulation impacts blood–brain 
barrier integrity

BBB dysfunction in CGM and DGM contributes to impaired Aβ 
clearance in the AD brain. Aβ can reduce EC-related LRP1 activity, a 
protein known to regulate the clearance of several toxic factors 
including Aβ itself (225, 226). Fibrillar Aβ has been reported to induce 
pericyte loss and apoptosis in the AD hippocampus (227), while 
oligomeric Aβ induces pericyte-mediated hypoperfusion in CGM 
(parietal cortex) (212). Aβ is known to interact with the receptor for 
advanced glycation end-products (RAGE), which mediates the 
accumulation of Aβ from ECs to neurons leading to the release of 
proinflammatory factors and neuronal loss (225, 228, 229). In 
addition, ECs derived from rat cortices subjected to Aβ treatment 
show alterations in TJs through impaired Zo-1 and occludin 
expression (230). Importantly, the contribution of amyloids to 
vascular dysfunction is highlighted by the emergence of amyloid-
related imaging abnormalities (ARIA) in AD patients treated with 
novel amyloid-lowering monoclonal antibodies. ARIA is thought to 
relate to BBB disruption secondary to the mobilization of amyloids 
previously deposited in blood vessels with oedema and hemorrhage 
subtypes being described (231, 232). Altogether, these findings 
provide evidence that Aβ can induce BBB alterations that not only 
reduce its own clearance but also augment subsequent 
neuroinflammation and neurodegeneration, mainly in CGM and 
DGM areas. Very little is known about the relationship between the 
(marginal) amyloid deposition in WM parenchyma and vascular 
dysfunction and should be the focus of future study.

6. The shared landscape of vascular 
dysfunction in WM dementia

We have discussed three diseases largely considered under separate 
sub-specialities of neurology: a vascular disorder (vascular dementia), 
an immune-mediated disorder (MS) and a neurodegenerative disorder 
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FIGURE 5

The shared landscape of vascular dysfunction in WM dementia. Hypothetical maps of regional vascular dysfunction in white matter dementias share 
similar cerebral blood flow and blood–brain barrier alterations. In vascular dementia, early vascular dysfunction is seen in temporal, parietal and 
occipital cortices, subcortical white matter (in particular the corpus callosum) followed by frontal cortex, and deep gray matter structures 
(hippocampus, hypothalamus). Similar to vascular dementia, in multiple sclerosis, early vascular dysfunction in parietal cortex (but also in frontal 
cortex), white matter (in particular the corpus callosum) followed by temporo-occipital cortices and deep gray matter structures (hippocampus, 
thalamus, and caudate nucleus) are features. In addition, vascular dementia and multiple sclerosis share similar early cognitive deficits, including 
impaired executive function, processing speed and attention. In Alzheimer’s disease, early vascular dysfunction is commonly encountered in the 
temporal lobe (including cortical and deep gray matter structures), followed by subcortical white matter (in particular the corpus callosum) and 
frontoparietal cortices. Early cognitive deficits in Alzheimer’s disease affect episodic memory, language and visuospatial processing. For each of these 
diseases, vascular disturbances are suggested to be linked to juxtaventricular areas, where WM damage is consistently observed.

(AD). Cognitive impairment is a unifying feature of these diseases with 
important similarities and differences between them. SIVD and MS 
both show early deficits in executive function, processing speed and 
attention classically termed “subcortical dementia” due to their 
predominant WM involvement. In contrast, AD shows early deficits in 
episodic memory, language and visuospatial processing consistent with 
what is termed a “cortical dementia” with predominant GM 
involvement. However, all three conditions have important WM and 
GM contributions at various disease stages with changes to the 
vasculature being a unifying culprit as highlighted in this review.

A central role for the vasculature in the pathogenesis of vascular 
dementia, MS, and AD is further supported by the influence of 
vascular risk factors upon their incidence and severity. Smoking, in 
particular, is an established risk factor for vascular dementia, MS and 

AD (233, 234). Mid-life vascular risk factors are predictive of dementia 
later in life (235). Whether these risk factors for vascular dysfunction 
are an early primary triggering step for pathological processes or 
whether they reduce the threshold for separate pathological processes 
to manifest clinically is unknown. However, the concept of one 
pathology triggering an accelerated manifestation of another has 
recently been observed in COVID-19, where infection was associated 
with molecular signatures of aging in the human brain (236).

In addition, genetic and “non-vascular” environmental influences 
are reported in WM dementias. Their impact on vascular dysfunction 
is poorly understood, and warrants further investigation, as it may shed 
light on pathological processes common to these diseases. People 
carrying the ApoE4 allele are at high risk of AD and have alterations in 
BBB function (201), and it was recently shown that ApoE4 may predict 
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cognitive decline in CIS and early RRMS patients (237), however not 
directly linked to vascular dysfunction. Furthermore, environmental 
factors such as hypovitaminosis D and obesity, can influence WM 
dementias in terms of incidence and severity. As an example, 
hypovitaminosis D is a risk factor in vascular dementia, MS and AD 
(238–240). Interestingly, in animal models (not of the diseases discussed 
in this review), hypovitaminosis D affects CBF, BBB and NVU (241, 
242). This finding should be explored further in the context of dementia.

The complexity of regional neuroinflammatory and 
neurodegenerative processes during progression (Figure 5) and the 
heterogeneity within and between the different WM dementias 
challenge our understanding of these diseases. Further, once the 
disease is established, the relationships between WM and GM 
degeneration can be distinct (243). The classical view of the regional 
differences in the diseases discussed in this work is that CGM and 
DGM damage are the drivers of AD pathology, while WM damage is 
the predominant process from early onset to late stages in MS and 
vascular dementia pathology. This review discusses a shared and 
fundamental role of vascular dysfunction in WM dementia which 
challenges such dichotomic view (Figure  5), wherein potential 
compensatory mechanisms early in these diseases should be explored. 
This is particularly true in vascular dementia, which occurs alone or 
as mixed dementia with comorbid AD (244). It is therefore important 
to consider the potential causal factors of such alterations, wherein a 
large spectrum of evidence points toward accelerated aging. Whether 
it concerns hypoperfusion, BBB permeability or dysfunctional NVU, 
all these features are observed in normal aging, which are exacerbated 
in the context of WM dementia and must be taken into account when 
trying to understand these diseases independently or jointly.

Despite a growing number of neuroimaging techniques to 
quantify WM and GM vascular properties in human brain, little is 
known regarding the spatial organization, the connectivity variations, 
and the distribution of the cerebral vasculature in different conditions, 
due to their relatively new development. It is complicated by the 
heterogeneity of inter-subject venous and arterial distributions 
wherein the regulation of molecule trafficking by the BBB varies in 
consequence. However, the emergence of new tools to quantify 
longitudinally vascular changes in neurodegenerative disorders, may 
provide an atlas of the human cerebrovascular system, which is of 
crucial relevance (43).

The unifying concept in WM dementia associated with vascular 
dementia, MS and AD, appears to lie within the fabric of the blood 
supply against the backdrop of an aging brain. Though WM 
pathology may not be the primary cause for cognitive decline, it plays 
an important role. The insights from the imaging and pathology 
studies discussed in this review can form the basis of an important 
public health message; identification and treatment of traditional 
vascular risk factors in middle age has the potential to modify 

pathological processes in the brain later in life across a much wider 
spectrum of neurological diseases than perhaps is widely recognized.
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