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Research suggests that physical exercise can promote an anti-inflammatory and

neuroprotective state. If so, increasing or optimizing exercise could be considered

a ’disease-modifying intervention’ in neuroinflammatory diseases, such asmultiple

sclerosis (MS). Exercise intervention studies conducted in animal models of MS

are promising. Various aerobic and strength training regimes have been shown

to delay disease onset and to reduce both the clinical and pathological disease

severity in mice. However, fundamental di�erences between the physiology of

animals and humans, the disease states studied, and the timing of exercise

intervention are significant. In animal models of MS, most exercise interventions

begin before disease initiation and before any clinical sign of disease. In contrast,

studies in humans recruit participants on average nearly a decade after diagnosis

and often once disability is established. If, as is thought to be the case for disease-

modifying treatments, the immunomodulatory e�ect of exercise decreases with

advancing disease duration, current studies may therefore fail to detect the true

disease-modifying potential. Clinical studies in early disease cohorts are needed

to determine the role of exercise as a disease-modifying intervention for people

with MS.
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Introduction

Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system
(CNS). The underlying pathological process is a triad of inflammation, demyelination, and
neurodegeneration, with inflammation particularly dominant in early disease (1). Clinically,
MS can be described as ’relapsing remitting MS’ (RRMS), where acute bouts of neurological
deficit are followed by variable recovery and stability, or as progressive MS [primary
progressive (PPMS) or secondary progressive (SPMS)], where insidious accumulation of
disability occurs with less pronounced relapses (2). Highly effective disease-modifying
treatments (DMTs) that target immune cells have revolutionized the management of RRMS
(3, 4). However, despite significantly reducing clinical and radiological evidence of focal
disease activity, the success of DMTs in preventing disease progression has been relatively
disappointing. Progression independent of relapse activity still occurs (5). Prescription of
DMTs in progressive MS remains restricted and their use may also be limited over concerns
of their risk of potentially serious adverse effects. This is particularly true early in the disease
course when patients are often young with minimal disability. Unfortunately, it is at this
point, early in the disease, when DMTs have the greatest potential to impact the long-term
risk of disability (4).
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Exercise as a disease-modifying
intervention

A “disease-modifying intervention” (DMI) describes the act of
altering a modifiable trait or state with the aim of delaying, slowing
or lessening disease progression. In MS, DMIs might include
smoking cessation (6), reducing obesity (7), or changes to diet (8).
DMIs are a separate entity from disease-modifying treatments and
should be considered in all patients with MS (pwMS), irrespective
of DMT status.

Exercise is defined as a purposeful, effortful physical activity
performed to promote or maintain health or fitness. Exercise
can take numerous forms but can be broadly characterized
as resistance training or aerobic activity. Resistance training
strains the neuromuscular system, boosting anaerobic endurance,
increasing muscle strength, and enhancing bone health (9).
Aerobic exercise taxes the cardiovascular system, increasing aerobic
capacity (9). Aerobic capacity is a strong health predictor and is
associated with lower all-cause mortality (10).

Research conducted in animal models of MS suggests that
exercise may modulate the systemic immune system to promote
an anti-inflammatory and neuroprotective state within the CNS
(11). If so, exercise might also be considered a DMI (12, 13).
However, whether the immunomodulatory effects of exercise in
rodents translate to humans, and, if so, how such effects might be
maximized in the care of pwMS, is unknown.

Methods

To better understand whether the disease modifying effects
of exercise seen in animal models of MS are potentially
clinically translatable, we conducted a literature review comparing
preclinical and clinical exercise intervention studies. As this was
a literature review, no priori review protocol or search strategy
were implemented. Based on our findings, we then conduced
systematic reviews of the timing of exercise intervention in the
most commonly employed animal model of MS (experimental
autoimmune encephalomyelitis – EAE) and in people with MS.
We developed illustrative figures based on these results. The search
strategies are depicted in Table 1. All statistics were calculated using
GraphPad Prism version 8.4.3. Data were not normally distributed
and are depicted as median and interquartile range. Figures were
created using GraphPad prism and BioRender.com.

Exercise intervention studies are
conducted too early in animal models
of MS

Animal models of MS enable exercise intervention studies to
be conducted over short periods of time, at clearly defined points in
the disease, and to link clinical outcomes with pathological analysis;
and results are promising. Both aerobic and resistance training
regimes have been shown to delay disease onset and reduce both
clinical and pathological disease severity (14–18). These outcomes
are thought to primarily arise through modulation of the systemic

immune system; however, the specific mechanism of modulation
appears to differ depending on the type and intensity of exercise.

Experimental autoimmune encephalomyelitis (EAE) is the
most employed animal model of MS. EAE can be induced
by immunization with myelin proteins (usually myelin
oligodendrocyte glycoprotein, MOG, or proteolipid protein,
PLP) or through adoptive transfer of autoreactive T cells. Different
models result in different EAE phenotypes. For example, PLP-
induced EAE is reported to be milder, with a remitting-relapsing
course, compared with the chronic disease course of MOG-induced
EAE (19). Spontaneous EAE models also exist. In chronic EAE
models (where mice develop a chronic motor deficit), strength
training has been shown to upregulate peripherally circulating
regulatory T cells (Tregs), whereas endurance training had a
greater effect on restoration of blood-brain-barrier (BBB) integrity
(15). High-intensity interval training has been shown to reduce
populations of pro-inflammatory T helper (Th) cells (Th1 and
Th17) specifically, whereas high-intensity continuous training led
to a more general reduction in T cell populations (20). Studies in
different animal models, such as the Cuprizone and lysolecithin-
induced demyelination models, suggest that exercise may also exert
effects directly within the CNS through limitation of microglial
activation (18) and increase of local anti-oxidant responses (21).

There are of course limitations in drawing conclusions from
animal models. Animal models only partly mimic the pathology
of MS; rodent stamina, activity levels, and innate drive to exercise
differ significantly from humans; and certain training regimes,
such as forced exercise, cannot be recapitulated and the effect
of stress may independently alter the disease course (22). In
addition, we noted that most studies in animal models begin the
training regime prior to initiation of the disease state, Figure 1 and
Supplementary Table 1.

Few studies have examined the effects of an exercise
intervention delivered after induction of EAE, and those that
have report mixed results. Klaren et al. (23) found no significant
effect of exercise intervention on clinical disability scores when
animals exercised during remission after initial disease onset
in a PLP-induced relapsing remitting EAE model. In contrast,
Le Page et al. (14) found that 2 days of severe exercise after
transfer of encephalitogenic T cells delayed disease onset (but
not ultimate disease severity), whereas the same exercise regime
prior to induction of adoptive EAE did not change the disease
course (14). Finally, Shahidi et al. (16). showed that aerobic
exercise reduced clinical and pathological severity of EAE equally,
regardless of whether mice started training before EAE induction
or after the clinical onset of disease. Variability in results from
these studies may reflect the relatively short window (two-three
weeks) between disease initiation and animal sacrifice. Beginning
an exercise intervention only after initiation of disease reduces the
duration of training (and potentially also the training intensity),
and as such may underestimate potential beneficial effects (22).

Exercise intervention studies are
conducted late in people with MS

In healthy humans, moderate-intensity exercise (in
particular) has been shown to promote an anti-inflammatory
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TABLE 1 Systematic search strategy to determine the timing of exercise interventions in animal models of MS compared with clinical studies in MS

cohorts.

The timing of exercise intervention studies in animal models of MS

Date January 13, 2023

Search strategy
Pubmed (Title/Abstract)

“Experimental autoimmune encephalomyelitis” AND “exercise” AND “mice”

Total hits 23

Abstracts reviewed
and excluded

2

Full text reviewed
and excluded

1

Included in final analysis 20 (see Supplementary Table 1)

Inclusion/exclusion criteria Studies were restricted to the EAE rodent models of MS (19 mouse and 1 rat). Both active immunization and passive transfer
EAE models were included. Studies of mechanisms and actions of drugs were excluded. Studies assessing the impact of exercise
on pain were excluded. Exercise regimes could be voluntary (enriched environment) or forced, and could include running,
climbing, swimming etc.

The timing of exercise intervention studies in clinical studies in MS cohorts

Date January 9, 2023

Search strategy: Pubmed
(Title/Abstract)

“Meta-analysis” AND “Multiple sclerosis” AND “exercise”

Total hits 81

Abstracts reviewed and excluded 52

Full text reviewed and excluded 18

Included in final analysis 11 (see Supplementary Table 2)

Inclusion/exclusion criteria Studies were excluded if the exercise intervention was vestibular rehabilitation, respiratory muscle training, sexual function
rehabilitation or massage therapy. Studies that measured purely psychiatric outcomes, autonomic reflexes, flexibility, pain
measures, standing time, falls risk or spasticity measures were excluded. Studies that involved a component of inpatient
rehabilitation were also excluded.
Exercise regimes could include any activity that was deemed to have an active component, such as home or group-led circuit
training, aerobic or resistance/strength training, swimming, sports climbing, robot-assisted training, virtual reality and
video-game-led exercise (Wii etc), yoga or Pilates.
Most meta-analyses analyzed the impact of the exercise intervention on more than one outcome, for example, “the effect of
exercise on lower limb physical function and perceived fatigue.” In such cases, studies were included only once, in whichever
was thought to be the primary outcome.

and neuroprotective state through multiple pathways (24).
Myocyte release of interleukin-6 (IL-6) upregulates the release
of anti-inflammatory cytokines (such as IL-10 and IL-1 receptor
alpha) and downregulates the release of pro-inflammatory
cytokines (such as TNF-α and IFN-γ) (24–26). Proliferation of
naive cell subsets alongside apoptosis of quiescent and exhausted
cells alters circulating cell profiles (24, 26). Exercise has also been
shown to enhance expression of neurotrophins, such as brain
derived neurotrophic factor (BDNF), that regulate neurogenesis,
neuronal function and survival (27). Finally, exercise may also
modulate glia cell phenotype and function (28).

However, whether biological and physiological responses to
exercise differ in the context of immune dysregulation is not
clear. For example, one meta-analysis found that, in contrast with
controls, neither acute nor regular exercise led to a significant
change in peripherally circulating IL-6 in pwMS (29). Moreover,
whether the immunomodulatory changes that occur in the context
of exercise might have a clinically meaningful impact on the disease
course in MS requires specific studies.

The literature on exercise intervention studies in pwMS
is expansive, with huge heterogeneity in participant cohorts,
training regimes, study durations and endpoints. It is notable
however that the majority of studies are conducted in MS cohorts

with long disease durations and established disability, Figure 2,
Supplementary Table 2. This is perhaps unsurprising, given the
traditional view of exercise as rehabilitation (13). For example,
studies of upper limb strength training tend to recruit individuals
with arm weakness or for whom upper limb function is particularly
important, such as wheelchair users. Such cohorts are likely to have
long disease durations and high disability scores [measured by the
Expanded Disability Status Scale (EDSS)], as demonstrated in a
systematic review by Neira et al. (30) in which participants across
eight studies of upper limb strength training had average disease
durations between 9 and 27 years, and EDSS scores between 3.5
and 9.

Exercise intervention studies of lower limb function or
aerobic capacity may have lower average EDSS scores, but are
often heterogeneous. Langeskov-Christensen et al. (31) analyzed
the effects of aerobic training on aerobic capacity across 17
randomized control trials of participants with an EDSS range of
0 to 8. A significant effect in favor of exercise intervention was
found, but heterogeneity between results was thought to reflect
variability between study cohorts. One potential explanation posed
was that deconditioning in higher EDSS groups may limit the
degree of improvement in aerobic capacity over a short study
period (31).
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FIGURE 1

Violin plots showing point of initiation of exercise intervention in (A) an animal model of MS and (B) people with MS. (A) Summary of twenty studies

assessing the impact of exercise on clinical, immunological, and pathological outcomes in EAE (15–17, 20, 23, 53–67). Animals began training a

median of 28 days prior to EAE induction (denoted as day 0). The inter-quartile range was −42 to 0 days. Fourteen studies (70%) initiated and/or

completed the exercise intervention prior to EAE induction. One study initiated the exercise intervention on day 0 (63). Of the five studies that started

the exercise intervention after induction of EAE, three began the exercise programme on day 1 (prior to the animals developing clinical signs of

disease) (53, 61, 62) and two had subgroups that began exercise at the point the animals developed clinical signs of disease (day 12 and day 18)

(16, 23). (B) Summary of 117 studies from eleven meta-analyses assessing the impact of exercise interventions on clinical and immunological

measures in pwMS (30, 31, 34, 35, 50, 51, 68–72). Study participants had a median disease duration of 8.8 years. The inter-quartile range was

6.2–11 years.

FIGURE 2

Disease duration (A) and EDSS (B) of MS participants from 166 di�erent exercise intervention studies that were summarized in 11 meta-analyses

(30, 31, 34, 35, 50, 51, 68–72). Disease duration and EDSS are reported as median (years), and interquartile range. Immune markers: Disease duration

8.4 (5.8–12), EDSS 3 (2.1–3.9) (35, 72); Aerobic capacity: Disease duration 11 (6.8–13), EDSS 2.6 (2–3.3) (31); Fatigue: Disease duration 9.6 (6–13),

EDSS 3.8 (3–5) (50); General health perception and quality of life (QoL): Disease duration 11 (8.5–13), EDSS 3.1 (2.7–4) (34, 51, 70);Participation and

cognition: Disease duration 19 (12–25), EDSS 5.6 (4.5–5.9) (68, 71); Lower limb function: Disease duration 8.1 (5–11), EDSS 2.9 (2.4–4) (69); Upper

limb function: Disease duration 9.3 (6.6–13), EDSS, 3.7 (2.9–5.1) (30); Summary: Disease duration of overall cohort (from 117 separate studies) 8.8

(6.2–11), EDSS of overall cohort (from 166 separate studies) 2.7 (2–3.5).

Studies across the entire clinical spectrum of MS are needed
to understand the specific effects of exercise at different disease
stages. However, if, as is thought to be the case for DMTs, the
immunomodulatory potential is greatest in early disease, current
exercise studies may miss the “window of opportunity” in which to
exert a clinically meaningful effect on the disease course (4, 32). To
date, few clinical studies have been conducted specifically in early

disease cohorts (32).

Can evidence from animal studies
inform the design of exercise studies
in pwMS?

Animal models provide important mechanistic insights. For
example, results suggest that various types of exercise have the

potential to induce immunomodulatory effects, and that future
exercise intervention studies might not need to restrict participants
to a specific modality or regime. Preclinical studies have provided
valuable insights into the anti-inflammatory effects associated with
exercise. Although few preclinical studies have investigated the
effect of exercise intervention after disease onset, those that have
suggest the role of exercise as DMI is worth pursuing in clinical
studies (16).

Human studies, in “real-world” cohorts (and ideally in early
disease) are required to learn how to optimize exercise regimes in
order to maximize therapeutic effects. Real-world clinical studies
are also required to identify measures or biomarkers that could be
employed in the monitoring of an exercise activity or the response
to exercise, and then linked with long-term clinical outcomes.

Wearable biosensor technologies could be employed tomonitor
exercise adherence and provide an estimate of exercise intensity
(33). Depending on the exercise intervention, quantification of
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VO2max (31), “1 rep max” strength (34), grip strength (30) or
timed walk test could be used as a measure of the overall physical
effects of exercise. The identification of a specific fluid biomarker
that might best reflect an individual’s immune response to exercise
is more difficult. Changes in circulating cell profiles are found pre-
clinic studies, but results are heterogeneous, and analysis expensive
to perform and labor intensive. Protein biomarkers may be most
easily adapted to clinic studies (and thus clinical practice).

BDNF is a member of the neurotrophin family. Neurotrophins
play an essential role in neuro-regeneration and neuroprotection
(27, 35). In pwMS, blood BDNF levels have been reported to
increase during relapse (potentially as a compensatory mechanism)
and normalize during remission (35). A recent meta-analysis of
13 studies found that physical activity in pwMS significantly
increased baseline serum BDNF levels (35), as has been previously
described in healthy populations. However, when broken down
into subgroups, no significant differences were identified related
to exercise type or duration. Although the study was unable
to identify a direct connection between exercise intensity or
duration with BDNF alterations, it is possible that variations in
study designs, the small size of study groups, diverse patient
backgrounds, and different BDNF measurement techniques might
obscure the potential effects of specific exercises and their duration
on BDNF levels.

IL-6 is a pleotropic cytokine that has been shown to have
both pro and anti-inflammatory effects, possibly depending on
the source of the cytokine (29). IL6 secreted by B cells, T cells
and macrophages, induces synthesis of acute phase proteins, and
stimulates antibody production and effector T cell development
(36). IL-6 is upregulated in myocytes during exercise in response
to a fall in muscle glycogen content and in proportion to exercise
intensity (24). IL-6 released from myocytes may upregulate the
release of anti-inflammatory cytokines (such as IL-10 and IL-1
receptor alpha) and downregulate the release of pro-inflammatory
cytokines (such as TNF and IFN-γ) (24–26, 37).

IL-6 has been studied as a biomarker of the immune effects of
exercise in athletes, controls and disease populations (24). Studies
in pwMS show inconsistent results. Some report an increase in
IL-6 in both pwMS (RRMS) and controls (38), whereas, others
reporting no significant acute or long-term change in IL-6 in pwMS
(progressive MS) following training (39). One potential reason for
discrepancy may be variability in the exercise regimes or intensity
achieved between RRMS and progressive MS populations.

TNF is another pleiotropic cytokine that is thought to exert
both pro- and inti-inflammatory effects and play a role in immune
dysregulation, neuroinflammation and demyelination in MS (40).
In post-mortem studies, high TNF levels are found in close
proximity of MS lesions (40). Several studies have demonstrated
elevated TNF levels in blood or CSF, with some showing a
correlation with disease progression or disease activity (29, 38, 40).

In healthy controls, TNF concentrations have been shown to
increase immediately following resistance training and recover
within 24 h (41). Similar responses have been reported in pwMS
(38). Interestingly, one study found that whilst resting levels
of cytokines (including TNF) did not differ between sedentary
and trained pwMS, sedentary pwMS show a blunted cytokine
response to exercise compared with trained pwMS (42). However,
in contrast, meta-analysis of 11 studies reported that baseline TNF

levels in the blood of pwMS decreased after regular exercise (29),
suggesting that regular exercise may have an anti-inflammatory
effect on blood TNF levels in pwMS.

Protein biomarkers of axonal damage, such as neurofilament
light chain (NfL), or astroglial activation, such as glial fibrillary
acidic protein (GFAP) may serve as ‘endpoint’ biomarkers. In
one randomized control trial (RCT), 38 individuals with RRMS
who participated in an 8-week aerobic training programme had
significantly lower serum NfL and GFAP levels post-training
compared with pre-training. No significant changes in either
biomarker were observed in the control group (43). However,
another RCT of 89 pwMS found no significant change in either NfL
or GFAP over a 16-week aerobic training period (44).

Whilst there are many potential confounders (including
age; sex; genetics; co-morbidities; concurrent infection; type,
duration and effort of exercise; and timing of blood-draw in
relation to exercise), the identification of biomarkers that provide
insight into an individual’s immunomodulatory responsiveness to
exercise could enable “personalized prescription” of exercise as a
component of precision medicine (45). This would be a significant
shift from the current status quo where exercise is viewed as a
tertiary therapy for rehabilitation, to exercise as a therapy for
secondary (13, 32), or possibly even primary prevention (13, 46,
47).

Human studies cannot replicate preclinical models in initiating
an exercise intervention prior to clinical disease onset. However,
several retrospective analyses of physical activity and risk of MS
have been conducted to study the potential primary preventative
effects of exercise in humans.

A large case-control study across several European countries
found that vigorous physical activity in adolescence was inversely
associated with risk of MS, with an odds ratio of 0.74 after adjusting
for confounders such as outdoor activity, body size, smoking and
infective mononucleosis (48). Another study analyzed a historical
cohort who undertook mandatory conscription at age 19 years and
found a similar inverse relationship between aerobic fitness and
MS risk, with an adjusted relative risk of 0.69 (46). Directionality
of causality is always a consideration, however results remained
significant when men who developed MS within 10 years of
conscriptions were excluded from analysis (46). These studies raise
the question whether greater physical fitness truly protects against
developing MS, or, as is seen in animal models, postpones clinical
presentation (13, 47); and if so, whether postponement occurs
because the disease course has been modified, or simply because
a greater physical reserve might better mask disability.

Promoting exercise as routine clinical
care for all pwMS

Exercise has a low-risk profile and is safe for pwMS. In addition
to the physical gains in endurance, balance and strength, positive
effects on fatigue and mood can improve quality of life and work
outcomes (49–52). This is significant as symptoms such as fatigue
are common, intrusive, and difficult to treat; and DMTs have little
impact. For these reasons, the general health benefits of exercise
should be promoted to all pwMS, but further research is required
before we can advocate the disease modifying effects.
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Conclusion

Research conducted in animal models suggests that exercise
has the potential to modify the disease course of MS, particularly
if prescribed early and alongside DMTs (11, 17). However, the
substantial discord between preclinical research and “real-world”
clinical studies limits our ability to determine whether exercise
regimes that produce immunomodulatory effects in animals are
feasible, practical, and clinically translatable. Clinical studies,
specifically in early disease cohorts, are needed to determine
whether exercise could have a role as a disease modifying
intervention for people with MS.
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