
TYPE Original Research

PUBLISHED 08 August 2023

DOI 10.3389/fneur.2023.1185447

OPEN ACCESS

EDITED BY

Jean-Claude Baron,

University of Cambridge, United Kingdom

REVIEWED BY

Songqiao Liu,

Southeast University, China

Jing Qi,

Central South University, China

*CORRESPONDENCE

Song Zeng

zengsong@hospital.cqmu.edu.cn

†These authors have contributed equally to this

work and share first authorship

RECEIVED 21 April 2023

ACCEPTED 18 July 2023

PUBLISHED 08 August 2023

CITATION

Huang J, Chen H, Deng J, Liu X, Shu T, Yin C,

Duan M, Fu L, Wang K and Zeng S (2023)

Interpretable machine learning for predicting

28-day all-cause in-hospital mortality for

hypertensive ischemic or hemorrhagic stroke

patients in the ICU: a multi-center retrospective

cohort study with internal and external

cross-validation. Front. Neurol. 14:1185447.

doi: 10.3389/fneur.2023.1185447

COPYRIGHT

© 2023 Huang, Chen, Deng, Liu, Shu, Yin,

Duan, Fu, Wang and Zeng. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Interpretable machine learning
for predicting 28-day all-cause
in-hospital mortality for
hypertensive ischemic or
hemorrhagic stroke patients in
the ICU: a multi-center
retrospective cohort study with
internal and external
cross-validation

Jian Huang1,2†, Huaqiao Chen3†, Jiewen Deng4†, Xiaozhu Liu5,

Tingting Shu6, Chengliang Yin7, Minjie Duan8, Li Fu9, Kai Wang10

and Song Zeng1*

1Emergency Department, The Second A�liated Hospital of Chongqing Medical University, Chongqing,

China, 2The Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning, China,
3Department of Cardiology, The First A�liated Hospital of Chongqing Medical University, Chongqing,

China, 4Department of Neurosurgery, Xiu Shan People’s Hospital, Chongqing, China, 5Department of

Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China, 6Department

of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University),

Chongqing, China, 7Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao

SAR, China, 8College of Medical Informatics, Chongqing Medical University, Chongqing, China, 9Key

Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental

Engineering, Hangzhou Dianzi University, Hangzhou, China, 10Department of Neurology, The Second

A�liated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China

Background: Timely and accurate outcome prediction plays a critical role in

guiding clinical decisions for hypertensive ischemic or hemorrhagic stroke patients

admitted to the ICU. However, interpreting and translating the predictive models

into clinical applications are as important as the prediction itself. This study

aimed to develop an interpretable machine learning (IML) model that accurately

predicts 28-day all-cause mortality in hypertensive ischemic or hemorrhagic

stroke patients.

Methods: A total of 4,274 hypertensive ischemic or hemorrhagic stroke

patients admitted to the ICU in the USA from multicenter cohorts were

included in this study to develop and validate the IML model. Five machine

learning (ML) models were developed, including artificial neural network (ANN),

gradient boosting machine (GBM), eXtreme Gradient Boosting (XGBoost), logistic

regression (LR), and support vector machine (SVM), to predict mortality using

the MIMIC-IV and eICU-CRD database in the USA. Feature selection was

performed using the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm. Model performance was evaluated based on the area under the curve

(AUC), accuracy, positive predictive value (PPV), and negative predictive value

(NPV). The ML model with the best predictive performance was selected for

interpretability analysis. Finally, the SHapley Additive exPlanations (SHAP) method

was employed to evaluate the risk of all-cause in-hospital mortality among

hypertensive ischemic or hemorrhagic stroke patients admitted to the ICU.
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Results: The XGBoost model demonstrated the best predictive performance,

with the AUC values of 0.822, 0.739, and 0.700 in the training, test, and external

cohorts, respectively. The analysis of feature importance revealed that age,

ethnicity, white blood cell (WBC), hyperlipidemia, mean corpuscular volume

(MCV), glucose, pulse oximeter oxygen saturation (SpO2), serum calcium, red

blood cell distribution width (RDW), blood urea nitrogen (BUN), and bicarbonate

were the 11 most important features. The SHAP plots were employed to interpret

the XGBoost model.

Conclusions: The XGBoost model accurately predicted 28-day all-cause in-

hospital mortality among hypertensive ischemic or hemorrhagic stroke patients

admitted to the ICU. The SHAP method can provide explicit explanations of

personalized risk prediction, which can aid physicians in understanding themodel.

KEYWORDS

machine learning, hypertensive, stroke, all-cause mortality, interpretable prediction

model, SHAP

1. Introduction

Stroke is the second most common cause of death and the

third leading cause of disability worldwide, imposing a substantial

economic burden in terms of healthcare costs and reduced

productivity (1, 2). Low- and lower-middle-income countries bear

the majority of the global stroke burden, accounting for 86% of

stroke-related fatalities (2). The incidence of cerebral ischemic

stroke is significantly higher than that of hemorrhagic stroke,

with ischemic stroke being the more prevalent type. Ischemic

stroke accounts for ∼87% of all stroke cases, while intracerebral

hemorrhage and subarachnoid hemorrhage contribute to 10 and

3% of strokes, respectively (3). Hypertension is the most prevalent

modifiable risk factor for stroke in both industrialized and

developing nations (4). It is an indicator of poor prognosis in 70%

or more of individuals with acute ischemic or hemorrhagic stroke

(5). Moreover, the intricate interaction between hypertension

and other modifiable risk factors, including smoking, high body

mass index, diabetes mellitus, and high cholesterol, substantially

increases the overall risk of cardiovascular and cerebrovascular

diseases in individuals (4).

The prevalence of patients with hypertension among stroke

patients is high, and there is no prediction model for predicting 28-

day in-hospital mortality for hypertensive ischemic or hemorrhagic

stroke patients in the ICU. Precise and adaptable assessment

tools play a crucial role in the early identification of high-

risk patients in the ICU. Conventional approaches, such as the

Cox proportional hazard model, are inefficient in examining the

intricate non-linear relationships within the data (6, 7). Machine

learning (ML) is increasingly utilized in medicine to quantify risk,

identify predictors, and develop highly accurate prediction models

for diagnosis and prognosis (8, 9).

In the present study, five ML models, including artificial neural

network (ANN), gradient boosting machine (GBM), eXtreme

Gradient Boosting (XGBoost), logistic regression model (LR),

and support vector machine (SVM), were constructed to explore

the risk factors of hypertensive ischemic or hemorrhagic stroke

patients in the ICU and to support clinical decision-making based

on clinical characteristics. Additionally, an interpretable machine

learning (IML) approach was employed to predict the 28-day

in-hospital mortality of hypertensive patients with ischemic or

hemorrhagic stroke who were admitted to the ICU, using SHapley

Additive exPlanations (SHAP) values and feature significance.

2. Materials and methods

2.1. Data source

Data for this study were collected from the Medical

Information Mart for Intensive Care IV (MIMIC-IV) database

(https://mimic.physionet.org/, certification ID: 42039823) and

the Collaborative Research Database (eICU-CRD, https://eicu-

crd.mit.edu/). The MIMIC-IV database is a publicly accessible

intensive care database that comprises de-identified clinical

data from over 70,000 ICU hospitalizations in the USA from

2008 to 2019 (10). The eICU-CRD database is a multi-center

intensive care database that is made available to the public by

Philips Healthcare in collaboration with the MIT Laboratory

for Computational Physiology. It contains de-identified clinical

data for over 200,000 patients who were admitted to the ICU

from 2014 to 2015 (11). The de-identified health information of

patients was collected, and informed consent was not required for

this study.

2.2. Study population and outcome

Hypertensive ischemic or hemorrhagic stroke patients in the

last ICU stay were enrolled in the study cohort. Ischemic or

hemorrhagic stroke and hypertensive patients were found to use

diagnosis codes from the International Classification of Diseases,

Ninth Revision (ICD-9). The screening process of the patients

included in this study is shown in Figure 1. The exclusion

criteria of this study include the following: (1) <24 h of ICU

stay; (2) more than 28 days of ICU stay; (3) patients <18
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FIGURE 1

The flow chart of patient selection. The study included 2,526 patients with hypertension and hypertension ischemic stroke.

years of age; and (4) patients with missing data (death). The

primary outcome of this study is 28-day in-hospital mortality in

the ICU.

2.3. Data extraction and preprocessing

Clinical data of all participants were collected from the

eICU-CRD and MIMIC-IV database based on previously

published literature with relevant topics (12, 13). A total

of 41 predictor features consisting of demographics,

laboratory tests, and co-morbidities were analyzed. Features

with missing values of more than 30% were excluded to

guarantee a higher accuracy of the outcome, and the k-

Nearest Neighbors (kNN) imputation was applied to impute

the missing values. The R package “DMwR2” was used for

kNN imputation.

2.4. Construction of the machine learning
model

In our study, models were developed to predict the 28-day

in-hospital mortality of hypertensive ischemic or hemorrhagic

stroke patients using five widely used algorithms, including ANN,

GBM, LR, XGBoost, and SVM. All continuous variables were

rescaled to have a distribution with a mean of 0 and a standard

deviation of 1 using scale transformation to increase the stability

of the prediction models. To choose the optimal prediction model

for each algorithm with various tuning parameters, 5-fold cross-

validation was applied to the ML models that needed tuning. The

accuracy or receiver operating characteristic (ROC) was chosen as

the metric during the search procedure. The testing set was solely

utilized for model evaluation after concluding the complete model

selection and training procedure. It was not employed during

model tuning.
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TABLE 1 Baseline characteristics, laboratory parameters, vital signs, and statistical results of patients with hypertension and ischemic stroke in the

training and testing sets.

Variables Total (n = 2,526) Train set (n = 2,031) Test set (n = 495) P

Hemorrhagic stroke, n (%) 0.75

No 1,269 (50) 1,024 (50) 245 (49)

Yes 1,257 (50) 1,007 (50) 250 (51)

Gender, n (%) 0.812

Female 1,256 (50) 1,007 (50) 249 (50)

Male 1,270 (50) 1,024 (50) 246 (50)

Ethnicity, n (%) 0.229

Non-white 955 (38) 780 (38) 175 (35)

White 1,571 (62) 1,251 (62) 320 (65)

Age, years 71.2 (60.91, 81.6) 71.27 (61.26, 81.67) 70.55 (58.76, 81.31) 0.32

HR, per minute 80 (70, 92) 80 (70, 92) 80 (70, 93.5) 0.473

SBP, mmHg 140 (125, 155) 140 (125, 155) 138 (123, 154) 0.302

DBP, mmHg 74.5 (63, 86) 74 (63, 86) 75 (64, 87) 0.493

DBP, mmHg 92.5 (81, 104) 93 (81, 103) 92 (83, 104.5) 0.686

RR, per minute 18 (15, 21) 18 (15, 21) 18 (15, 22) 0.774

Temperature, ◦C 36.78 (36.5, 37.06) 36.78 (36.44, 37.06) 36.78 (36.5, 37.06) 0.372

SPO2 , % 98 (96, 100) 98 (96, 100) 98 (96, 100) 0.798

INR 1.1 (1, 1.2) 1.1 (1, 1.2) 1.1 (1, 1.3) 0.139

PT, second 12.3 (11.4, 13.8) 12.3 (11.4, 13.7) 12.3 (11.4, 14.25) 0.274

APTT, second 27.9 (25.3, 31.5) 27.9 (25.4, 31.5) 28 (25.2, 31.3) 0.823

WBC, ∗109/L 10.2 (7.8, 13.5) 10.2 (7.9, 13.4) 10.2 (7.55, 13.6) 0.729

RBC, 109/L 4.25 (3.8, 4.65) 4.26 (3.8, 4.65) 4.23 (3.79, 4.66) 0.862

Hemoglobin, g/L 128 (114, 140) 128 (114, 141) 127 (112, 140) 0.448

Hematocrit, % 38.6 (34.6, 42) 38.6 (34.6, 42) 38.8 (34.35, 41.95) 0.68

MCH, pg 30.3 (28.9, 31.6) 30.3 (29, 31.6) 30.2 (28.9, 31.5) 0.358

MCHC, g/L 332 (323, 342) 333 (323, 342) 332 (322, 342) 0.43

MCV, fl 91 (87, 94) 91 (87, 94) 90 (87, 94) 0.306

RDW, % 13.6 (13, 14.6) 13.6 (13, 14.5) 13.6 (13, 14.7) 0.451

Platelets, ∗1011/L 215 (169, 268) 215 (170, 266) 217 (166, 274) 0.535

Anion gap 15 (13, 17) 15 (13, 17) 15 (13, 17) 0.34

Creatinine, mg/dL 0.9 (0.7, 1.1) 0.9 (0.7, 1.1) 0.9 (0.7, 1.1) 0.81

BUN, mg/dL 17 (13, 22) 17 (13, 22) 16 (13, 22) 0.377

Calcium, mg/dL 8.8 (8.4, 9.2) 8.8 (8.4, 9.2) 8.85 (8.4, 9.2) 0.525

Potassium, mmol/L 4 (3.7, 4.4) 4 (3.7, 4.4) 4 (3.7, 4.4) 0.288

Sodium, mmol/L 139 (137, 141) 139 (137, 141) 139 (137, 141) 0.816

Chloride, mmol/L 103 (100, 106) 103 (100, 106) 103 (100, 106) 0.713

Bicarbonate, mmol/L 24 (21, 26) 24 (21, 26) 24 (22, 26) 0.246

Glucose, mg/dL 130 (108, 163) 130 (108, 162) 133 (105, 169) 0.517

MI, n (%) 0.772

No 2,257 (89) 1,817 (89) 440 (89)

Yes 269 (11) 214 (11) 55 (11)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 2,526) Train set (n = 2,031) Test set (n = 495) P

CHF, n (%) 0.564

No 2,271 (90) 1,822 (90) 449 (91)

Yes 255 (10) 209 (10) 46 (9)

Dementia, n (%) 0.581

No 2,398 (95) 1,931 (95) 467 (94)

Yes 128 (5) 100 (5) 28 (6)

COPD, n (%) 0.366

No 2,117 (84) 1,695 (83) 422 (85)

Yes 409 (16) 336 (17) 73 (15)

Diabetes, n (%) 0.057

No 1,927 (76) 1,566 (77) 361 (73)

Yes 599 (24) 465 (23) 134 (27)

Stroke, n (%) 0.68

No 1,718 (68) 1,377 (68) 341 (69)

Yes 808 (32) 654 (32) 154 (31)

AF, n (%) 0.276

No 1,788 (71) 1,448 (71) 340 (69)

Yes 738 (29) 583 (29) 155 (31)

Hyperlipidemia, n (%) 0.707

No 1,226 (49) 990 (49) 236 (48)

Yes 1,300 (51) 1,041 (51) 259 (52)

APSIII 37 (27, 50) 37 (27, 50.5) 36 (27, 49) 0.457

GCS (minimum) 12 (8, 14) 12 (8, 14) 13 (9, 14) 0.196

Death, n (%) 0.749

No 2,036 (81)

Yes 490 (19)

All continuous variables are presented as median (Q1, Q3).

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiratory rate; SpO2 , peripheral oxygen saturation; INR, international normalized ratio; PT, prothrombin time;

APTT, activated partial thromboplastin time; WBC, white blood cell; RBC, red blood cell; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV,

mean corpuscular volume; RDW, red cell distribution width; BUN, blood urea nitrogen; MI, myocardial infarction; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease;

AF, atrial fibrillation; APSIII, Acute Physiology Score III; GCS, Glasgow Coma Score.

2.5. Model assessment

The confusion matrix metrics of accuracy and area under

the receiver operating characteristic curve (AUROC) were used

to assess the final models. Based on the prediction probabilities,

the ROC curves were developed. Then, the model with the best

predictive performance was identified by comparing the AUC

values of the models in the testing data set.

2.6. Interpretation analysis

2.6.1. Feature importance
Feature ranking evaluation refers to a method of measuring

the significance of each feature in the feature set based

on its impact on the final classification outcome. Feature

importance was measured using the “shapviz” package,

which describes any classifier’s predictions understandably

and faithfully by learning an understandable model locally

around the prediction. Relative variable importance was

computed and presented to seek out the effect of features on

the predictive models.

2.6.2. Shapley additive explanation (SHAP) value
The SHAP value of features was evaluated using the

“shapviz” package. We selected SHAP summary, SHAP

force plot, and SHAP waterfall to evaluate the SHAP value

of features, which would increase the clinical utility of the

predictive models.
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FIGURE 2

The result of the Least Absolute Shrinkage and Selection Operator (LASSO) method for filtering variables. (A) Coe�cients of all predictors gradually

returning to zeros by used 10-fold cross-validation. (B) 11 predictors with non-zero coe�cients at the rightmost dashed line.

TABLE 2 Assessment of each model by accuracy (95%CI), PPV, and NPV in the training and testing sets.

Train set Test set

ANN GBM LR Xgboost SVM ANN GBM LR Xgboost SVM

Accuracy 0.833 0.874 0.814 0.822 0.871 0.802 0.808 0.804 0.818 0.816

Lower 95% CI 0.816 0.858 0.797 0.804 0.856 0.764 0.771 0.766 0.781 0.779

Upper 95% CI 0.849 0.888 0.831 0.838 0.885 0.836 0.842 0.838 0.851 0.849

PPV 0.713 0.846 0.589 0.754 0.947 0.439 0.474 0.428 0.600 0.600

NPV 0.842 0.877 0.828 0.824 0.865 0.835 0.836 0.826 0.825 0.821

ANN, artificial neural network; GBM, gradient boosting machine; LR, logistic regression; xgboost, eXtremeGradient Boosting; SVM, support vector machine; CI, confidence interval; PPV,

positive predict value; NPV, negative predict value.

2.7. Statistical analysis

The original dataset was randomly divided into the training

set (n = 2,031) for developing the models and the testing set

(n = 495) for evaluating the models’ performance, based on a

ratio of 8:2 in the eICU-CRD database. External validation was

performed using the MIMIC-IV database. In the training set,

testing set, and MIMIC-IV database, continuous data with normal

distribution were demonstrated as the mean with standard errors,

continuous data with non-normal distribution were demonstrated

as the median with interquartile range (IQR), and categorical

data were demonstrated as the frequency (percentage). A chi-

squared test was performed to compare the qualitative features.

To regularize the results of the statistical analysis for potential

confounding factors, LASSO regression analysis was performed to

predict 28-day in-hospital mortality in hypertensive patients with

ischemic and hemorrhagic stroke. This enhances the prediction

accuracy and the interpretation ability of a statistical model and

is appropriate for high-dimensional data reduction. To guarantee

minimized autocorrelation, features having non-zero coefficients

were chosen for the additional analysis in the LASSO regression

model. R 4.1.3 and Rstudio 1.1.463 were used for all statistical

analyses. The R package “caret” was used to pre-process the data,

tune the parameters, and train the model. The R package “shapviz”

was used to evaluate the SHAP value and feature importance. The

R package “rcs” was used to evaluate the cutoff value of features.

A forest plot was performed using the package “forestplot.” The

LASSO and logistic regression analyses were performed using

the R package “glmnet.” To evaluate the effectiveness of each

model, the ROC curve analysis and the AUC were computed

using the “pROC” and ggplot2 packages. All P-values were

two-sided, and features with a P-value of <0.05 were deemed

statistically significant.

3. Results

3.1. Patient characteristics

This study comprised 2,526 hypertensive ischemic or

hemorrhagic stroke patients who were admitted to the ICU. Patient

characteristics are shown in Table 1. In total, the median age was
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FIGURE 3

The receiver operator characteristic (ROC) curves for the ML models predict all-cause mortality in patients with hypertension and ischemic stroke

(the training, testing, and external validation sets). The ROC curves of the nine ML models predicting all-cause mortality in the testing (A), training (B),

and external validation sets (C), respectively.

FIGURE 4

Calibration plots of the XGBoost model in the training (A) and testing sets (B).

71 years, and 1,256 patients (50%) were women. Furthermore,

269 (11%) patients had myocardial ischemia (MI), 255 (10%) had

chronic heart failure (CHF), 128 (5%) had dementia, 409 (16%) had

chronic obstructive pulmonary disease (COPD), 599 (24%) had

diabetes, 738 (29%) had atrial fibrillation (AF), and 1,330 (51%)

had hyperlipidemia. The baseline characteristics of the training

and testing sets did not differ significantly. In this study, 490 (19%)

patients experienced in-hospital death. Baseline data for external

validation sets are shown in Supplementary Table 1.

3.2. Selection of predictors

In the LASSO method, the penalty on the β-coefficients was

controlled by the tuning parameter λ (λ= 0.02574252; lambda.1se;

Figure 2). Eleven features with non-zero coefficients were selected,

including ethnicity, age, peripheral oxygen saturation (SpO2), white

blood cell (WBC), mean corpuscular volume (MCV), red blood

cell distribution width (RDW), bicarbonate, blood urea nitrogen

(BUN), calcium, glucose, and hyperlipidemia.

3.3. Model performance

Five models including ANN, GBM, LR, XGBoost, and SVM

were developed. Each model was evaluated by the AUROC

and accuracy. All models had accuracy values of 0.80 and

above in the testing set. The accuracy of the ANN, GBM, LR,

XGBoost, and SVM in the testing (training) set was 0.802 (0.833),

0.808 (0.874), 0.804 (0.814), 0.818 (0.822), and 0.816 (0.871),
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FIGURE 5

The model’s interpretation: (A) the importance ranking of the top 11 variables according to the mean (SHAP value) in the XGBoost model and (B) the

importance ranking of the top 11 risk factors in the LR model. The higher the SHAP value of a feature, the higher the risk of death for the patient.

FIGURE 6

(A) Scatter plot of feature values and SHAP values. (B) Consent waterfall plot showing an example of interpretability analysis for a patient. The yellow

part of the feature value represents a higher value. The purple part of the feature value represents a lower value.

respectively (Table 2). The AUROCs of the ANN, GBM, LR,

XGBoost, and SVM in the testing set were 0.720, 0.738, 0.723,

0.739, and 0.719, respectively. The ROC curves and AUROC of

different models in the testing and training sets are shown in

Figures 3A, B. Meanwhile, the AUROCs of the Acute Physiology

Score III (APS III) and Glasgow Coma Scale (GCS) scoring

were 0.766 and 0.695 in the testing set, and the AUROC

of the XGBoost model was 0.700 in the MIMIC-IV database

(Figure 3C). Figure 4 shows that the prediction of the XGBoost

model in the training and testing sets is in good agreement

with the actual outcome, and the model calibration performance

is good.

3.4. Feature importance

The 11 most important features of the best ML model

were calculated, as shown in Figure 5A. The characteristics
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FIGURE 7

A scatter plot of variable values vs. SHAP values. Glucose (A); Age (B); SpO2 (C); WBC (D); Ca (E); BUN (F); MCV (G); RDW (H); Bicarbonate (I).

of the laboratory test, including glucose, WBC, calcium,

BUN, MCV, RDW, and bicarbonate, vital signs, such as

SpO2, and comorbidity, such as hyperlipidemia, significantly

affected most predictive models. Demographic characteristics

including age and ethnicity also significantly affected most

predictive models.

Meanwhile, the 11 most important features of the LR model

in the ascending order were age, ethnicity, WBC, hyperlipidemia,

MCV, glucose, SpO2, calcium, RDW, BUN, and bicarbonate, as

shown in Figure 5B. There were similarities in the most important

features between the XGBoost and the LR model (Figure 5).

3.5. SHAP values of features

The SHAP values of features are summarized in Figure 6A. The

SHAP values of patients’ features, including RDW of 14%, calcium

of 8.5 mg/dL, BUN of 27 mg/dL, ethnicity of 0, glucose of 162

mg/dL, age of 82.4 years, SpO2 of 100%, MCV of 101 fl, WBC of

11.7∗109/L, bicarbonate of 20 mmol/L, and hyperlipidemia of 1,

are shown in Figure 6B. Furthermore, the features based on their

contribution to the model are glucose, age, SpO2, WBC, ethnicity,

calcium, BUN, MCV, RDW, bicarbonate, and hyperlipidemia, in

descending order. Figure 7 shows that glucose, age, WBC, BUN,
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FIGURE 8

RCS showing the cuto� values of features, including SpO2 of 98%, age of 71.27 years, MCV of 91 fl, RDW of 13.6%, bicarbonate of 24 mmol/L, BUN of

17 mg/dL, calcium of 8.8 mg/dL, and glucose of 130 mg/dL.

MCV, and RDW are positively correlated with SHAP values,

suggesting that the higher their levels, the greater the SHAP values,

which is conducive to the occurrence of outcome events.

3.6. Cuto� values of features

The RCS showed the cutoff values of features, including

SpO2 of 98%, age of 71.27 years, MCV of 91 fl, RDW of

13.6%, bicarbonate of 24 mmol/L, BUN of 17 mg/dL, calcium

of 8.8 mg/dL, and glucose of 130 mg/dL after adjustment for

covariates (Figure 8). These cutoff values were consistent with

the tendency of SHAP values (Figure 7). The calibration plot

showed a high degree of predictability between the actual and

predicted probabilities (Figure 4). Univariate adjusted RCS analysis

of the relationship between SpO2 and the outcome showed that

the cutoff value was 92.6%, which indicated a low level of

oxygen saturation.

3.7. Subgroup analysis of ischemic stroke
and hemorrhagic stroke

Important features such as ethnicity, SpO2, age, MCV,

RDW, BUN, calcium, glucose, hyperlipidemia, and WBC were

independent risk factors in the ischemic stroke subgroup.

Furthermore, important features such as ethnicity, age, MCV,

RDW, calcium, hyperlipidemia, and WBC were independent risk

factors in the intracerebral hemorrhage group (Table 3).

TABLE 3 A subgroup analysis of ischemic stroke and hemorrhagic stroke.

Ischemic stroke Hemorrhagic stroke

OR (95% CI) P OR (95% CI) P

Age 1.04 (1.03–1.06) 0 1.03 (1.01–1.04) 0

Ethnicity 0.51 (0.36–0.72) 0 0.51 (0.36–0.73) 0

SpO2 1.14 (1.06–1.22) 0 1.14 (0.98–1.10) 0.227

Glucose 1.01 (1.00–1.01) 0 1.00 (1.00–1.01) 0.051

WBC 1.09 (1.05–1.13) 0 1.06 (1.03–1.09) 0

MCV 1.06 (1.03–1.09) 0 1.03 (1.00–1.06) 0.030

RDW 1.18 (1.04–1.32) 0.007 1.12 (1.01–1.23) 0.029

BUN 1.03 (1.01–1.05) 0.012 1.01 (1.00–1.03) 0.060

Calcium 0.74 (0.59–0.93) 0.009 0.72 (0.57–0.91) 0.007

Bicarbonate 1.00 (0.95–1.05) 0.994 0.97 (0.93–1.02) 0.218

Hyperlipidemia 0.62 (0.44–0.88) 0.009 0.65 (0.46–0.92) 0.014

OR, odds ratio; CI, confidence interval; SpO2 , peripheral oxygen saturation; WBC, white

blood cell; MCV, mean corpuscular volume; RDW, red cell distribution width; BUN, blood

urea nitrogen.

4. Discussion

This is the first study to develop and validate an explicable

ML-based prediction model to identify risk factors for 28-day in-

hospital mortality of hypertensive ischemic or hemorrhagic stroke

patients admitted to the ICU by using data from the eICU-CRD

and MIMIC-IV databases. The XGBoost model showed excellent
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performance (AUC > 0.7) in this study and had good consistency

with the LR model in terms of feature importance. Furthermore,

the features were segmented into value ranges, making them

more suitable for predicting 28-day in-hospital mortality for

hypertensive ischemic or hemorrhagic stroke patients admitted to

the ICU.

In our study, the 28-day in-hospital mortality was 490 (19%)

for hypertensive ischemic or hemorrhagic stroke patients in the

eICU-CRD database, which was similar to another cross-sectional

study conducted in the USA from 2007 to 2016 (mortality:

21.6%) (14). In our prediction model, the glucose level was the

most crucial indicator of in-hospital death, and higher blood

glucose levels were associated with increased 28-day in-hospital

mortality for hypertensive ischemic or hemorrhagic stroke patients

in the ICU. Diabetes is a well-known risk factor for stroke

(15, 16). The direct effects of hyperglycemia on brain tissues

are possible, but it can also cause microvascular alterations due

to an increase in glucose flux, the disruption of intracellular

second messenger pathways, an imbalance in the production and

scavenging of reactive oxygen species, and advanced glycation

of crucial functional and structural proteins (17). In addition to

studying the relationship between diabetes and stroke, more and

more researchers are paying attention to the relationship between

prediabetes and stroke. In the study byWang et al. (18), prediabetes

(plasma glucose concentration between 100 and 125 mg/dL) was

significantly associated with the risks of total stroke [hazard ratio

(HR) 1.33, 95% confidence interval (CI) 1.18–1.52, P = 0.0147]

and ischemic stroke [HR 1.33, (95% CI 1.16–1.54), P = 0.0413].

In our model, the cutoff value of glucose was 130 mg/dL, which

was slightly higher than the normal reference value. Sometimes,

clinicians may ignore this slightly elevated blood glucose level.

Therefore, our predictive model emphasized this point, which

can alert physicians of the severity of the disease for better

glycemic management.

Excessive intake of high-cholesterol diet results in elevated

blood lipid levels, which causes hyperlipidemia. Numerous studies

have shown that hyperlipidemia is a major risk factor for stroke,

myocardial infarction, sudden cardiac death, cerebrovascular

accidents, and other conditions (19, 20). Studies during the last

decade suggest that hyperlipidemia is associated not only with

the occurrence of stroke but also with the prognosis of patients

after stroke (21–23). This is probably because patients with

hyperlipidemia tend to have lower white matter hyperintensity

volumes, which have been shown to forecast the progression of

infarcts after stroke and result in less favorable clinical outcomes

(21, 24). In our prediction model, the risk of death was higher

in hypertensive stroke patients with hyperlipidemia, which is

consistent with previous studies (23).

According to the model’s feature importance, age significantly

influenced predictive models. Stroke primarily affects older adults,

particularly those over 65, and age significantly affects their

prognosis (25). Multiple studies have shown that older adult

patients have a higher mortality rate and a lower quality of life

following stroke than younger patients (26). In our study, when

age was higher than 71. 27 years, it indicated an adverse outcome.

In addition, another demographic indicator, ethnicity, also played

an important role. Our model, as well as other pieces of evidence

(27, 28), suggested that genetic studies could help differentiate

stroke subtypes and even assist in patient management.

In this study, several laboratory tests, such as WBC,

calcium, MCV, RDW, BUN, and bicarbonate, played important

roles in our prediction model. Specifically, WBC is often

associated with inflammation. Neuroendocrine hormones that are

discharged during an immediate stressful situation can cause

an immunological response in stroke patients with an elevated

WBC count (29). Zheng et al. (30) found that elevated WBC

on admission was associated with death and major disability at

3 months after acute ischemic stroke, and the association was

linear (P for linear trend = 0.001). However, in another study,

the association between WBC count and death at 3 months

was not significant (P = 0.426) in patients with intracerebral

hemorrhage after adjusting confounding factors such as age, sex,

and glucose. In our subgroup analysis, an elevated WBC count was

associated with increased in-hospital mortality both in ischemic

and hemorrhagic stroke. Emerging data about calcium indicate

that abnormalities in blood calcium are associated with the risk

of stroke (31) and mortality in patients with coronary heart

disease (32, 33). In our model, when the serum calcium was <8.8

mg/dL, it indicated an adverse outcome. Furthermore, MCV, RDW,

BUN, and bicarbonate substantially contributed to our model.

Elevated MCV, RDW, and BUN levels have been associated with

increased in-hospital mortality. Additionally, lower bicarbonate,

which may suggest metabolic acidosis, indicated a higher risk

of mortality.

The characteristics of vital indicators such as SpO2 were

observed to also affect most predictive models. Specifically, SpO2

is a crucial physiological metric for determining how much oxygen

is supplied to the human body. It quantifies the proportion of

oxygenated hemoglobin to the total hemoglobin. In our prediction

model, the cutoff value was 98%, which is generally considered

clinically normal. Moreover, in the subgroup analysis, SpO2 was

not significant in the intracerebral hemorrhage group. Therefore,

further research is required in this area in the future.

In this study, to precisely identify 28-day in-hospital mortality

for hypertensive ischemic or hemorrhagic stroke patients admitted

to the ICU, supervised ML models, such as the ANN, GBM,

LR, SVM, and XGBoost, were employed. However, the ML

model’s operation is in a black box state. In this study, the

model with the best average prediction performance on the

testing set was considered the best model. This study developed

an IML model based on the XGBoost model. Therefore, by

developing an interpretable ML model using the shapviz and caret

packages, we established the model’s ability to depict key features

and constructed a high-accuracy mortality prediction model for

hypertensive ischemic or hemorrhagic stroke patients admitted to

the ICU. The interpretation of feature importance was illustrated

by plotting for feature importance and SHAP value. The 11 most

important features in descending order were glucose, age, SpO2,

WBC, ethnicity, calcium, BUN, MCV, RDW, bicarbonate, and

hyperlipidemia in the XGBoost model, which mainly resembled

the important features of the LR model. Meanwhile, the multi-

dimensional correlations between the characteristics of the patients

and their outcomes were addressed through regularization and

normalization before developing the ML model. These approaches
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helped generate the ML model that could significantly improve the

accuracy of determining mortality risk in hypertensive ischemic or

hemorrhagic stroke patients.

This study has several limitations. First, this was a retrospective

study using publicly available data; therefore, prospective studies

are still needed to further verify our findings. Second, the cutoff

values of the most important features were found in this study, but

further research is needed to segment the feature values according

to the degree of risk. Third, patients with liver disease, renal failure,

or respiratory failure were not included in this study; therefore,

the prediction model may not be applicable to ischemic and

hemorrhagic stroke patients complicated with these conditions.

5. Conclusion

This study developed an IML model for predicting 28-day in-

hospital mortality in hypertensive ischemic or hemorrhagic stroke

patients in the eICU-CRD and MIMIC-IV databases. The 11

most important features in the ICU, including glucose, age, SpO2,

WBC, ethnicity, calcium, BUN, MCV, RDW, bicarbonate, and

hyperlipidemia, were applied in the XGBoost model. The value of

these features in predicting the mortality of hypertensive ischemic

or hemorrhagic stroke patients was deemed worthy of clinicians’

attention. The ML model developed in this study has potential in

clinical practice, in that it can help personalize the prevention and

strengthen therapeutic strategies.
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