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Background: Segmentation and evaluation of infarcts on medical images are

essential for diagnosis and prognosis of acute ischemic stroke (AIS). Computed

tomography (CT) is the first-choice examination for patients with AIS.

Methods: To accurately segment infarcts from the CT images of patients

with AIS, we proposed an automated segmentation method combining the

convolutional attention mechanism and residual Deformable Transformer in this

article. The method used the encoder-decoder structure, where the encoders

were employed for downsampling to obtain the feature of the images and the

decoder was used for upsampling and segmentation. In addition, we further

applied the convolutional attention mechanism and residual network structure

to improve the e�ectiveness of feature extraction. Our code is available at:

https://github.com/XZhiXiang/AIS-segmentation/tree/master.

Results: The proposed method was assessed on a public dataset containing 397

non-contrast CT (NCCT) images of AIS patients (AISD dataset). The symptomonset

to CT time was less than 24 h. The experimental results illustrate that this work had

a Dice coe�cient (DC) of 58.66% for AIS infarct segmentation, which outperforms

several existing methods. Furthermore, volumetric analysis of infarcts indicated a

strong correlation (Pearson correlation coe�cient = 0.948) between the AIS infarct

volume obtained by the proposed method and manual segmentation.

Conclusion: The strong correlation between the infarct segmentation obtained

via our method and the ground truth allows us to conclude that our method could

accurately segment infarcts from NCCT images.

KEYWORDS

Transformer, convolutional attention mechanism, infarct segmentation, volumetric

analysis, acute ischemic stroke, non-contrast CT

1. Introduction

Stroke refers to sudden brain dysfunction caused by cerebral blood circulation disorder

and is one of the most prevalent fatal illnesses. Stroke can be grouped into two types:

ischemic and hemorrhagic stroke. These are caused by blockage or rupture of cerebral

blood vessels, respectively. Most patients with stroke suffer from acute ischemic stroke (AIS)
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(1). Due to the fast speed and low expense of CT, it has become

the first-choice imaging technique for diagnosis and prognosis of

stroke (2). In addition, the comparative analysis of the infarct

volume in non-contrast CT (NCCT) images before and after

treatment can facilitate judgment of the effectiveness of treatment.

NCCT imaging is one of the essential methods for AIS diagnosis

(3), and rapid segmentation of infarcts is crucial for AIS diagnosis.

Manual segmentation is mainly utilized in clinical practice to

ensure segmentation accuracy. However, problems exist with this

method, such as excessive reliance on prior knowledge in the

medical field and human evaluation errors (4). Therefore, the

segmentation of medical images can be challenging in medical

image analysis (5). Many methods have treated the segmentation

of AIS infarcts as an anomaly detection task, determining the

differences between the infarct and surrounding tissues (6).

Nevertheless, detecting the infarct can only provide a rough

assessment of AIS, which cannot effectively guide diagnosis or the

development of corresponding treatment plans. To segment AIS

infarcts frommedical images, several machine learning (ML)-based

(7) segmentation methods, such as SVM and random forest (8),

have been proposed. For example, Kuang et al. (9) proposed a

convex optimization method based on random forest classification.

In order to enhance the segmentation performance,

segmentation methods based on deep learning (DL) (10) have

been proposed. The CNN-based AIS infarct segmentation method

achieved impressive performance (11). A full convolutional neural

network (FCN) removed the fully connected layers in CNN and

elevated image segmentation from image-level to pixel-level.

Zhang et al. (12) combined 3D FCN with dense connections

to automatically segment AIS infarcts. Compared to ordinary

images, medical images have a wide grayscale range and unclear

boundaries. To address these issues, U-Net (13) based on FCN

was proposed. U-Net employs an encoder-decoder architecture

with skip connections between downsampled and upsampled

information to improve segmentation accuracy. U-Net has been

refined through advancements such as U-Net++ (14) and Res-

UNet (15), and these improvements have yielded noteworthy

outcomes in numerous image processing domains. Ni et al. (16)

proposed a novel asymmetry disentanglement network (ADN),

where asymmetric disentanglement of the input NCCTs is first

conducted to produce various 3D asymmetric maps. Subsequently,

a synthesized intrinsic asymmetry-compensated pathologically

enhanced NCCT volume is created and utilized as the input for

the segmentation network to segment the AIS infarct, achieving

good performance. The backbone of ADN is 3D ResidualUnet,

which leverages convolutions as the fundamental operations to

perform feature extraction and encoding on the NCCT. However,

the limited receptive field of convolutional operations constrains

their ability to capture global dependencies (17). Therefore, many

studies have explored the use of Transformers in image analysis,

which are known for their strong global modeling capabilities.

A typical example is the Vision Transformer (ViT) (18), which

utilizes a pure Transformer structure to process image patches

and demonstrated remarkable achievements in image recognition

tasks. SETR (19) employs a Transformer as the encoder and a

CNN architecture as the decoder to create a superior-performing

segmentation model. The encoder in TransUNet (20) connects

CNN with the Transformer and employs the latter to process the

final layer features produced by the CNN, resulting in remarkable

performance and effectiveness. However, the complexity of

training a Transformer for image tasks is considerable and requires

high-performance computers.

Therefore, to solve the above problems, we aimed to develop

an automatic segmentation method in this work to accurately

segment infarcts from NCCT images of AIS patients. Our

method is distinguished by the following four characteristics:

(1) by combining CNN and a Transformer, we optimize their

performance by mitigating their limitations and enhancing their

advantages; (2) to improve the efficiency of local feature extraction,

the convolutional block attention module (CBAM) is used to direct

attention to the key areas of segmentation; (3) to simplify the

Transformer for image tasks and to improve the efficiency of

model training, deformable multi-heads self-attention (DMSA) is

introduced to distribute attention to a few key points around the

sampling points instead of to all points in the feature map; (4)

given the information loss during transmission via the Transformer

layer, we integrate a residual connection before and after the

Transformer encoder to enhance the information and achieve

better segmentation.

2. Materials and methods

We conducted the experiment on the AIS dataset (AISD) (21)

in this study. It consists of 397 NCCT scans of acute ischemic

strokes acquired within 24 h of the patient’s symptom onset. In

addition, patients had a diffusion-weighted MRI (DWI) within

a day of receiving the CT scan. The NCCT scans had a slice

thickness of 5 mm. Labels were manually annotated by a doctor

and carefully checked by another senior doctor. According to

the data division in the original article, 345 scans of patients

were employed for model training and parameter tuning, and

the remaining 52 NCCT scans were employed for evaluating the

proposed method.

We employed the Z-score method to normalize the

contextual feature information of the original NCCT dataset.

Image normalization can optimize the efficiency of DL in

segmentation tasks (22). To avoid overfitting problems caused

by the limited training data, we used data augmentation methods

to diversify it. The methods used include random rotation, Flip,

zoom, adding Gaussian white noise, Gaussian blur, adjusting

accuracy and contrast, gamma transform, and simulating

low resolution.

The segmentation method proposed in this work consisted

of two encoders and a decoder, including a CNN Encoder,

Transformer Encoder, and Decoder. The encoders obtained the

features, and the feature maps were passed to the Decoder for

upsampling. They were restored to the same resolution as the

source image and segmentation was finally achieved. The CNN

Encoder extracted the local features of the image and then modeled

global dependency on them via the Transformer Encoder. In

addition, the CNN Encoder used CBAM to direct attention to the

feature maps. In the Transformer Encoder, DMSA was used to

make it simpler, and a residual connection was employed before
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FIGURE 1

Pipeline of the proposed infarct segmentation method. The structure of the CNN Encoder is shown in the left part of the figure, the middle part

shows the Transformer Encoder, and the right part shows the structure of the Decoder. The gray rectangle in the figure is the CNN block, the yellow

circle is the convolutional block attention module, and the green rectangle is the Deformable Transformer layer. The CNN Encoder extracts the

image’s local features, connects the last two layers of features, and passes them into the Transformer Encoder for global relationship modeling. Then,

the local and global features are sent to the decoder for processing and segmentation.

and after the Transformer Encoder to enhance the information.

The structure is shown in Figure 1.

2.1. CNN Encoder

The CNN Encoder encoded the input image with multiple

convolutional layers, similar to convolutional pyramids. It

extracted the local features of the image, in which the CBAM (23)

was used to compute effective local attention maps, strengthen the

influence of the infarct area, and reduce feature redundancy for

segmentation.

The CNN Encoder contained a Conv-IN-ReLU block and

three residual convolutional blocks (ResConvBlock). The Conv-IN-

ReLU block comprised a convolutional layer with a large kernel and

followed processes with instance normalization (IN) (22) and ReLU

activation. The intermediate feature map was obtained after the

Conv-IN-ReLU block. The given input image was x ∈ RC×D×H×W .

D, H, W, and C individually represented depth, height, width, and
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FIGURE 2

Detailed structure blueprint of the CNN Encoder (A), Decoder (B), and CBAM (C). The blue “3D Conv” in the CNN Encoder consists of a 3D

convolutional layer and processes with IN and ReLu activation. The detailed structure of the yellow “CBAM” is shown in (C), consisting of the CAM and

SAM. The specific structure of the green “3D ResConv” is shown in (D). The orange “3D Conv” is a 3D convolutional layer. The gray “TransposeConv”

is a 3D transposed convolutional layer. The blue arrows represent the skip connections. The numbers in the convolutional blocks indicate the

convolution kernels and stride, and those in the residual convolutional blocks denote the convolution kernels, stride, and convolutional layers.

channels. After each ResConvBlock, D, H, and W were halved.

The ResConvBlock downsampled the upper-layer feature maps

to high-level and coarse-resolution. The CBAM was employed to

integrate channel and spatial attention at local levels, allowing the

CNN encoder to effectively capture significant features and their

locations, leading to improved performance.

The detailed layout of the CNN Encoder is shown in Figure 2A

and contains a Conv-IN-ReLU block, three CBAM blocks, and

three ResConvBlock, which consisted of three, three, and two 3D

residual convolution operations, respectively. The specific structure

of ResConvBlock is shown in Figure 2D.

2.2. CBAM

CBAM consisted of a channel attention module (CAM),

followed by a spatial attention module (SAM; as illustrated in

Figure 2C). Channels can be deemed to be feature detectors in

feature maps so that the CAM can pay attention to features with

greater importance. The intermediate feature map served as the

input for the CAM, with feature information aggregated along

the spatial axis using global average pooling and max pooling.

Following that, the two pooled features were forwarded to a shared

feed-forward network, resulting in a 1D channel attention map. It

can be formulated as follows:

CAM(M) = σ (MLP(AP(M))+MLP(MP(M)))

= σ (K1(K0(M
c
avg))+ K1(K0(M

c
max))),

(1)

where M is the intermediate feature map, AP and MP represent

the average and max pooling,Mc
avg andM

c
max represent two pooled

features on the spatial axis, respectively, and CAM(M) denotes the

obtained channel attention map.

The channel attention map was fused with the intermediate

feature map by element-wise multiplication, and the formulation

is as follows:

M′ = CAM(M)⊗M, (2)

where⊗ represents element-wise product andM′ is the featuremap

with channel attention.

The SAM used M′ as the input. Similar to the operations

of the CAM, M′ was aggregated in the direction of the channel

axis using average-pooling and max-pooling operations, which

can emphasize the location information of essential features (24).

Then, the two-pooled information was concatenated and a spatial
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attention map in 2D was produced using a convolution operation.

The formulation of this is as follows:

SAM(M′) = σ (k7×7([AP(M
′));MP(M′)]))

= σ (k7×7([M
s
avg;M

s
max])),

(3)

where MS
avg and MS

max represent the two pooled features on the

channel axis, and the generated spatial attention map is denoted

by SAM(M′).

The SAM(M′) was fused with the obtained features of CAM

to focus on essential features and locations. The formulation is as

follows:

M′′ = SAM(M′)⊗M′, (4)

whereM′′ represents the final refined output.

2.3. Transformer Encoder

Since the receptive field of CNN was limited, it was difficult

for convolution operations to capture the global dependency

of the feature map (17); therefore, a Transformer Encoder was

introduced. The Transformer achieved outstanding results in

natural language processing. Its self-attention could obtain global

dependency, making each word pay attention to other words

at all positions in the sentence. However, in image tasks, slow

convergence and high computational complexity would result if

each point focused on other points in all positions. We used

deformable self-attention (DSA) (25) to concentrate on a limited

number of key points around each reference point to solve this

problem and to improve model efficiency.

The results of the CNN Encoder served as the source

information for the Transformer encoder. Since the Transformer

is a sequential model, we need to convert the feature maps

into a sequence. However, the process of feature serialization

would cause the loss of position information; therefore, we used

position embedding in the Transformer to complete the 3D

position information. The following formula obtains the position

embedding:

{

Em{D,H,W}(P, 2k) = sin(P · w)

Em{D,H,W}(P, 2k+ 1) = cos(P · w),
(5)

using the sine and cosine functions alternately to obtain

the position embedding, where {D,H,W} represent different

dimensions, EmD, EmH , and EmW form the 3D position

embedding of the position P with k dimension, and w =

1/10, 0002k/
C
3 . We added the position embedding to the serialized

CNN encoding using the corresponding element summation

method before being fed into the Transformer Encoder.

The Transformer Encoder used the multi-layer features of the

CNN encoder, and the position embedding was different at the

same position of each layer. Therefore, L represents the layers of

the feature map, and fl denotes features in the l-th layer. Zq is the

feature of the query q, and pq represents the 3D position of the

reference point; thus, the DMSA can be formulated as:

DeformAttn =

M
∑

m

Wm{

L
∑

l

K
∑

k

Amlqk •W
′
mfl[σ (pq)+ 1pmlqk]},

(6)

whereM is the number of heads of the self-attention, K represents

the quantity of key sampled points, σ (•) denotes the Sigmoid

function that adjusts pq to the feature of l-th level, 1pmlqk is the

offset of the sampled point, and Amlqk represents the attention

weight and is in the range of [0, 1].

The Transformer Encoder consisted of six stacked Deformable

Transformer layers. One Deformable Transformer layer contained

a DMSA layer and two normalization operations, followed by a

feed-forward network. In addition, the input of the Transformer

Encoder was residually added to the output to enhance the

local information and to compensate for the loss caused by the

transmission of information in the Transformer Encoder.

2.4. Decoder

The Decoder used the pure transposed convolution operations

to restore the encoded feature maps and gradually upsampled

them to D × H × W, the same as the input size. The output

sequence was re-formed into the feature maps. After that, the

transposed convolution operations were performed. The skip-

connection between a certain level of the CNN-Encoder and the

corresponding level of the Decoder added fine details to make the

segmentation more accurate. The 3D residual convolutions were

utilized to enhance the upsampled feature maps.

Figure 2B illustrates the Decoder’s detailed structure, which

contains four upsampling blocks. In the first three up-sampling

blocks, the feature map was subjected to a transposed convolution

operation and refined by a 3D residual convolution operation. The

Decoder was skip-connected with the CNN Encoder. The last block

contained an upsampling layer and a 3D convolutional with a

kernel size of 1–1, which mapped the features to the number of

categories for classification.

2.5. Loss function

Dice loss (26) was used to evaluate the correlation between two

regions. It shows outstanding performance when the positive and

negative samples are unequal in the data. CrossEntropy loss was

used to find the overall average loss. We combined the Dice loss

and CrossEntorpy loss (27) in our model, calculated as follows:

ε(Y , P) = Dice_loss+ CrossEntropy_loss

= −
1

N

C
∑

c=1

N
∑

n=1

(yn,clogpn,c +
2yn,cpn,c

y2n,cp
2
n,c

),
(7)

where Y , P, C, and N represent the infarct ground truth (GT), the

infarcts segmented by the proposed module results, the number of

categories, and the number of pixels, respectively.
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2.6. Implementation details

During the model training phase, we randomly cropped

patches with a size of 16×32×320 from NCCT scans as input

images. The model underwent 350 epochs of training and

250 iterations per epoch. The learning rate was configured

to 0.001, the stochastic gradient descent method was used

to adjust it, and the momentum value was assigned to 0.99.

According to the experiments, we set the number of 3D residual

convolution layers contained in the three ResConvBlock stages

to three, three, and two, the key points (K) to four, the

heads (H) to six, and the number of layers in the Deformable

Transformer (L) to six. The implementation and evaluation of our

method were conducted on a server equipped with an NVIDIA

A40 GPU.

The sliding window approach was employed for testing,

and the window size was the same as the patch size in

the training phase. To evaluate the effects of all compared

infarct segmentation methods, we calculated the Dice score

to assess the regional correlation between them; the range of

possible values for the Dice score is [0, 1]. Furthermore, we

calculated the F1-score, Recall, and Precision to evaluate the

infarct level.

3. Results

3.1. Comparison with existed methods

We contrast the proposed method with several already existing

methods, as follows: Unet (13) using a CNN architecture purely,

an image-level method (Unet-IM) (28), a feature-level method

(Unet-FT) (29), a method using a 3D convolutional block as the

basic encoding block (HybridUnet) (30) and its implementation

at the image-level, pixel-level (HybridUnet-IM, HybridUnet-FT),

TABLE 2 Statistical test results (p-value) between the proposed method

and six compared methods.

Metrics p-value

Unet 2.27× 10−8

Unet-IM 4.68× 10−5

Unet-FT 1.73× 10−3

HybridUnet 1.34× 10−5

HybridUnet-IM 1.69× 10−2

HybridUnet-FT 1.79× 10−2

TABLE 1 Quantitative comparison of our proposed method with seven baselines for AIS infarct segmentation, where M = 1,024 – 1,024, h represents

hours, and s represents seconds.

Method Params (M) Train time (h) Test time (s) Dice (%) F1 score Recall Precision

Unet 39.57 8.7 11.5 45.88 0.5105 0.5019 0.5196

Unet-IM 40.14 13.3 13.8 50.35 0.5457 0.5318 0.5603

Unet-FT 44.85 19.4 17.3 53.54 0.5720 0.5655 0.5786

HybridUnet 45.04 22.6 25.4 49.52 0.5433 0.6105 0.4895

HybridUnet-IM 46.61 24.7 25.4 54.37 0.5992 0.5581 0.6471

HybridUnet-FT 50.32 26.9 30.0 55.77 0.6015 0.5431 0.6742

SEAN - - - 57.84 0.6218 0.5880 0.6597

Ours 58.62 30.9 35.8 58.66 0.6298 0.6319 0.6278

The bold values indicate the optimal performance of the metric in the experiment.

FIGURE 3

Visual qualitative comparisons of the six compared methods with the proposed method for two AIS cases.
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and a Symmetric Enhanced Attention Network (SEAN) (21).

Table 1 presents the number of parameters, running time, and

segmentation effectiveness of these methods. It can be observed

that the Dice score and recall of our method are 58.66% and

0.6319, respectively, which are better than the existing methods. In

addition, our method produces better results than the compared

methods in terms of the F1-score (0.6298), although our method

did not achieve the best result on precision. Since our method

jointly considers the local features and global relationships of

images, it could better process the detailed and overall information

of the image so that the segmentation results are more similar to

the GT. There was an increase in the number of parameters and

running time for our method because of the Transformer encoder;

however, the use of deformable self-attention rendered this increase

TABLE 3 Quantitative results for evaluation of the ISLES2018 dataset.

Method Dice (%) F1 score Recall Precision

Unet 35.94 0.3816 0.2871 0.5689

Unet-IM 38.03 0.4419 0.35801 0.5771

UNet-FT 40.59 0.4802 0.4150 0.5698

HybridUNet 41.81 0.4944 0.4326 0.5769

HybridUNet-IM 42.88 0.4990 0.4382 0.5795

HybridUNet-FT 4324 0.5065 0.4688 0.5509

Ours 46.67 0.5242 0.4724 0.5888

The bold values indicate the optimal performance of the metric in the experiment.

TABLE 4 Volumetric analysis results between VS and VM.

Metrics Result

1Vdiff (cc) −2.82± 44.12

|1Vdiff |(cc) 19.86± 39.40

Correlation 0.948

Values are represented as the mean± one standard deviation.

within an acceptable range. Moreover, our method achieved the

best segmentation performance. Two segmentation examples, the

Dice score of the proposed method, and six compared methods for

the AISD infarct segmentation task are shown in Figure 3.

To statistically analyze the AIS infarct segmentation results, we

conducted pair-wise comparisons (based on the Dice score) using

the Wilcoxon rank-sum test between the proposed method and the

six compared methods. When the p-value < 0.05, this suggests a

statistically significant difference between the two methods being

tested. Table 2 presents the results of the statistical analysis, which

demonstrate that the proposed method outperformed the six

compared methods in AIS infarct segmentation. The differences

were statistically significant (all p-values < 0.05). Thus, the

proposed method significantly improved the segmentation of

AIS infarcts.

To evaluate the effectiveness and generalizability of our method

on different datasets, we also compared our method with six

other methods for infarct segmentation using the ISLES2018

(31, 32) training set. The ISLES2018 training dataset consists of

multi-modal CT image data from 94 ischemic stroke patients, of

which we only used CT and OT data. We trained and tested

the method using five-fold cross-validation. As shown in Table 3,

our method achieved a Dice score of 46.67%, an F1 score of

0.5242, a recall of 0.4724, and a precision of 0.5888, all of

which outperformed the other methods and effectively segmented

the infarcts, demonstrating the generality of our method on

other datasets.

3.2. Volumetric analysis

We calculated the AIS infarct volume segmented based on

the proposed method (VS) and the manually segmented infarct

volume (VM). Pearson correlation calculations of VS with VM

were performed and Bland-Altman plots were used to analyze

the volumes. Furthermore, we calculated the volume difference

between VS and VM : 1Vdiff = VS − VM and the absolute volume

FIGURE 4

Results of volumetric analysis. (A) Pearson correlation plot of method segmentation versus manual segmentation of the infarct volume, where the

abscissa and ordinate represent the infarct volume segmented manually and using the proposed method, respectively. (B) Blad-Altman plot for the

two segmentation methods, where the x-axis is the average of VS and VM and the y-axis is the 1Vdi�.
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difference: |1Vdiff | = |VS−VM|. Additionally, to show the clinical

relevance of our results, we performed dichotomization, with 70 cc

as the cut-off value in our analysis of the AIS infarct volume. We

evaluated the dichotomization analysis using Accuracy, Kappa, and

Specificity as metrics.

Table 4 displays the volumetric analysis results. The average

volume difference between VS and VM is 2.82 cc and the absolute

average volume difference is 19.86. The volume correlation between

TABLE 5 Classification performance when using 70 cc as the infarct

volume cut-o� (95% confidence interval is shown in parentheses).

Methods Accuracy (%) Kappa Specificity

Unet 86.5 (77.6–92.1) 0.64 (0.45–0.78) 0.84 (0.73–0.90)

Unet-IM 88.4 (80.6–93.2) 0.68 (0.50–0.80) 0.86 (0.77–0.92)

Unet-FT 90.4 (83.8–94.4) 0.72 (0.56–0.83) 0.88 (0.80–0.93)

HybridUnet 88.2 (80.2–93.1) 0.67 (0.49–0.80) 0.85 (0.76–0.91)

HybridUnet-IM 92.3 (86.9–95.5) 0.77 (0.63–0.86) 0.91 (0.85–0.95)

HybridUnet-FT 94.2 (90.1–96.7) 0.82 (0.71–0.89) 0.93 (0.88–0.96)

Ours 96.2 (93.4–97.8) 0.88 (0.79–0.93) 0.95 (0.92–0.97)

The bold values indicate the optimal performance of the metric in the experiment.

TABLE 6 Ablation study results of our method for the AISD dataset.

Method Dice (%) F1 score Recall Precision

Baseline 55.57 0.6024 0.6099 0.5951

Baseline+CBAM 56.13 0.6101 0.6273 0.5939

Baseline+ResTrans 56.75 0.6120 0.6313 0.5940

Ours 58.66 0.6298 0.6319 0.6278

The bold values indicate the optimal performance of the metric in the experiment.

VS and VM is r=0.948 (95% confidence interval: 0.916–0.972,

p < 0.001), reflecting the excellent correlation between them, see

Figure 4A. The average volume difference between VS and VM is

shown in the Bland-Altman diagram in Figure 4B, from which

it could be seen that they have good consistency. The excellent

correlation and consistency of VS and VM verify the utility of

our method. Table 5 illustrates the results of the dichotomization

analysis, with the cut-off set at 70 cc, for our method and six other

compared methods. We can see from Table 3 that our method

achieves an accuracy of 96.2% (95% confidence interval: 93.4–

97.8), a Kappa of 0.88 (95% confidence interval: 0.79–0.93), and a

Specificity of 0.95 (95% confidence interval: 0.92–0.97), surpassing

the performance of other methods.

3.3. Ablation study

In this study, CBAM was added to direct attention to the CNN

Encoder and a residual connection was used on the Transformer

encoder to enhance the detail features. To prove the effectiveness

of these two methods, we conducted baseline experiments on

the method with only CBAM added and the method with only

residual structure added. As shown in Table 6, both structures

enhance the segmentation efficiency of the baseline method, and

the integration of these two operations can achieve better results.

Two segmentation examples of each method and the Dice score in

the AISD infarct segmentation task are shown in Figure 5.

4. Discussion

In the AIS infarct segmentation task of AISD, our proposed

method achieved a Dice score of 58.66%, surpassing previous

methods. The experimental results show that the fusion framework

FIGURE 5

Two segmentation examples obtained in the ablation study.

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1178637
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu and Ding 10.3389/fneur.2023.1178637

of CNN and Transformer effectively captured both local and

global information from NCCT scans. Ablation studies highlight

the contributions of CBAM and the residual structure of

the Transformer Encoder improving segmentation efficiency.

Volumetric analysis reveal a strong correlation between our

method and manually segmented infarcts. Furthermore, our

method achieves the best performance in a dichotomization

analysis, with a cut-off value of 70 cc, demonstrating its accuracy

in classifying infarct volumes. These results indicate the potential

of our method to provide valuable infarct information for clinical

diagnosis and practice.

5. Conclusion

To achieve automatic and accurate segmentation of AIS

infarcts, we proposed a segmentation method in this study

based on the convolutional attention mechanism and Deformable

Transformer. Our method used a CNN Encoder to extract these

features, augmented by the CBAM to enhance the importance of

these features. Additionally, a Deformable Transformer Encoder is

used to model the global dependencies and reduce complexity. We

incorporated residual connections before and after the Transformer

Encoder to enhance the local features. The segmentation results

for AISD demonstrates the superior performance of our method,

offering a novel solution for AIS infarct segmentation and

improving segmentation accuracy.
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