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Epigenetic mechanisms allow cells to fine-tune gene expression in response to 
environmental stimuli. For decades, it has been known that mitochondria have 
genetic material. Still, only recently have studies shown that epigenetic factors 
regulate mitochondrial DNA (mtDNA) gene expression. Mitochondria regulate 
cellular proliferation, apoptosis, and energy metabolism, all critical areas of 
dysfunction in gliomas. Methylation of mtDNA, alterations in mtDNA packaging 
via mitochondrial transcription factor A (TFAM), and regulation of mtDNA 
transcription via the micro-RNAs (mir 23-b) and long noncoding RNAs [RNA 
mitochondrial RNA processing (RMRP)] have all been identified as contributing 
to glioma pathogenicity. Developing new interventions interfering with these 
pathways may improve glioma therapy.
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1. Introduction

Adult diffuse gliomas are Central nervous system (CNS) tumors arising from glial cells, 
most often astrocytes, oligodendrocytes, and ependymal cells. In 2016, the World Health 
Organization (WHO) published the fourth version of the CNS tumor classification system 
with the underlying concept of a multiple-input or layered diagnostic design based on 
histology, grading, and genomic markers (1). This new, layered classification of diffuse gliomas 
is better suited to clinical practice than earlier ones because it better predicts prognosis and 
the choice of therapies for biologically and genetically similar tumors. Glioblastoma 
multiforme (GBM) is the most prevalent and aggressive primary malignant brain tumor. It 
diffusely infiltrates the surrounding brain and is characterized by poor prognosis, with a five-
year survival rate of 5.5%, despite multimodal therapy (2). Redundant signaling pathways and 
intratumoral heterogeneity contribute to the inability of conventional and targeted therapies 
to achieve remission (3–5). Whereas intratumoral heterogeneity traditionally was thought to 
arise from mutations accumulating and resulting in distinct genotypes, non-genetic 
heterogeneity from variations in regulatory mechanisms also plays a vital role. Of these 
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regulatory mechanisms, the field of epigenetic modifications as they 
contribute to the development and progression of GBM has 
exploded, as shown by this Special Collection.

Epigenetics studies mitotically heritable and stable changes in 
gene expression resulting from DNA replication and transcription 
alterations rather than DNA sequence polymorphisms (mutations). 
Three epigenetic mechanisms have been identified: DNA methylation, 
histone modification, and noncoding RNA (ncRNA) associated gene 
silencing (6). DNA methylation involves adding a methyl group 
directly to a cytosine nucleotide followed by a guanine nucleotide. 
CpG is shorthand for 5’-C-phosphate-G-3′, where the cytosine and 
guanine are separated by only one phosphate group, distinguishing 
this single-stranded linear sequencing from the C-G base pairing for 
double-stranded sequences. CpGs are often surrounded by other 
CpGs forming a CpG Island (CGI). CpGs are commonly located in 
promoter regions because their methylation reduces the interaction 
between DNA and transcription factors (6). Histone modifications 
include acetylation, methylation, phosphorylation, and ubiquitylation 
of histone proteins. Histone modifications alter nucleosome 
DNA-histone interactions and can facilitate or prevent transcription 
(6). Noncoding RNAs (ncRNAs) have function despite not being 
translated into proteins. They participate in DNA methylation, 
histone modification, and direct gene silencing. Small ncRNAs 
consist of <200 nucleotides (nt) and include microRNAs (miRNA; 
17–23 nt) and small interfering RNAs (siRNA; 20–30 nt). Long 
non-coding RNAs (lncRNAs) consist of >200 nt and include linear 
and circular RNAs (7).

Malignant tumors, including gliomas, favor abnormal energy 
production via aerobic glycolysis and show inherent resistance to 
apoptosis (8–10). Mitochondrial dysfunction could contribute to 
GBM pathophysiology by altering metabolic pathways and energy 
production, but these mechanisms are poorly understood. 
Mitochondria have a genome (mitogenome) to direct their function 
and communication with the nuclear genome (11). Recently, it has 
been shown that mitochondrial DNA (mtDNA), like nuclear DNA 
(nDNA), is regulated by epigenetic mechanisms through a process 
referred to as mitoepigenetics (Figure 1) (12).

Traditionally, mtDNA consists of 37 genes: 13 encoding polypeptide 
components of the respiratory chain, 22 tRNAs, and two rRNAs. mtDNA 
also contains a significant noncoding region termed the displacement 
loop (13). However, evidence is emerging that the mitochondrial 
transcriptome also includes mitochondrial-derived ncRNAs (14).

The mitochondrial proteome consists of approximately 1,500 
proteins. nDNA encodes most respiratory chain components and 
proteins required for the synthesis, expression, and regulation of 
mitochondrial genes. The nuclear coding of most mitochondrial proteins 
explains why interest in GBM epigenetics has focused on nDNA rather 
than mtDNA (15). However, given the association between GBM 
pathogenesis and mitochondrial dysfunction, the epigenetic regulation 
of the small 16.6 kb mtDNA genome may be an untapped study area of 
incredible value. This review discusses the complexity of mitochondrial 
epigenetics, highlighting the roles mtDNA methylation, mtDNA 
packing, and ncRNA may play in GBM pathogenesis. We will describe 
epigenetic changes involving mitochondria that could enhance GBM 

FIGURE 1

Epigenetic alterations affecting mitochondrial DNA expression in glioblastoma. Methylation of nDNA genes POLG and TOPIMT reduces production of 
Polymerase γ and Topoisomerase proteins and decreases transport and availability in the mitochondria (anterograde signaling). MiR-23b transcription is 
reduced in gliomas, increasing the expression of TFAM within the nucleus. Transport of IncRNA RMRP to the mitochondria is increased. Reduced 
Polymerase γ and Topoisomerase and elevated TFAM and RMRP alter mtDNA copy number and gene expression. Decreases in mtDNA copy number 
can signal epigenetic modifications of nDNA within the cell nucleus (retrograde signaling). Ultimately, these epigenetic modifications result in reduced 
oxidative phosphorylation capabilities in the mitochondria. In response, the stem cell adopts glycolytic metabolism and a proliferative glioblastoma 
phenotype.
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pathogenicity. These include epigenetic changes to mtDNA directly 
altering mtDNA expression and epigenetic modifications of nDNA 
indirectly affecting mtDNA expression.

2. Mitochondrial epigenetics

Mitochondrial epigenetics is a largely unexplored field, but the 
literature is rapidly growing as our understanding of mtDNA and the 
mitochondrial proteome deepens. The three most common types of 
nDNA epigenetic modification can be applied with some modification 
to mtDNA. Increasing evidence shows mtDNA methylation is 
associated with mtDNA transcriptional regulation and copy number 
(16, 17). Unlike nDNA, mtDNA lacks histones. mtDNA is packaged 
instead into nucleoid structures, in which mtDNA lies in the center 
surrounded by peripheral proteins (18). In 2011, scientists discovered 
ncRNAs inside mitochondria and created the first comprehensive map 
of the human mitochondrial transcriptome (14). We will review the 
three categories of epigenetic alterations in mtDNA (methylation, 
modification of nucleoid proteins, and ncRNA) in the context of 
glioma pathogenesis and potential therapeutic targets.

3. DNA methylation of mitochondrial 
DNA

Methylation of the nuclear genome plays a critical role in 
mitochondrial function through its effect on mtDNA replication and 
copy number. Human embryonic and neural stem cells have extensive 
nDNA methylation in the early stages of development but become 
demethylated as cells differentiate and increase their mtDNA copy 
numbers (19, 20). An adequate copy number of mtDNA is essential to 
produce the machinery needed to engage in oxidative phosphorylation 
and meet ATP demands (21–23). The genome of glioblastoma cells 
stays heavily methylated. Many studies have shown that the mtDNA 
copy number is lower in glioma cells than in healthy cells (24–27). 
Low mtDNA copy number appears to lead glioma cells to rely on 
glycolysis to produce ATP instead of oxidative phosphorylation, 
promoting cell proliferation (28). Therefore, methylation of the 
nuclear and mitochondrial genomes of glioblastoma cells has been 
studied to understand how this epigenetic mechanism impacts 
mtDNA replication and mtDNA copy number (Table 1) (23, 28–30).

3.1. 5-Azacytidine reduces the efficacy of 
DMNT1 and TOP1MT and increases mtDNA 
copy number in glioma cell lines

MtDNA copy number is associated with the methylation of exon 2 
of DNA polymerase gamma, POLG (28, 31). POLG, found on 
chromosome 15q25, encodes the mitochondrial-specific DNA 

polymerase, Pol γ, which is essential in mtDNA replication (32, 33). In 
the HSR-GBM1 model, exon 2 of POLG is highly methylated. However, 
using 5-azacytidine (5-Aza) resulted in significant mtDNA copy number 
increases in the HSR-GBM model (28). 5-Aza irreversibly binds the 
methylating enzyme DNA methyltransferase 1 (DMT1), reducing its 
ability to methylate DNA. Therefore, 5-Aza treatment reduced 
methylation of exon 2 of POLG, increased POLG expression, and 
increased mtDNA copy number (34). The use of demethylating agent 
5-Aza also appeared to induce long-term differentiation of these cells (34).

The TOP1MT gene encodes for the mitochondrial-specific 
topoisomerase, which facilitates replication and transcription of 
mtDNA by relieving tension and supercoiling (35). Exon 8 and intron 
9 of the TOP1MT gene were heavily methylated in the HSR-GBM1 
model. However, TOP1MT expression and mtDNA copy number 
increased in response to the 5-Aza treatment (23). This further 
suggests that the demethylation of mtDNA replication factors leads to 
an increased mtDNA copy number.

3.2. Vitamin C enhances TET1 and 
increases mtDNA copy number in glioma 
cell lines but has unclear benefits in clinical 
application

Vitamin C enhances ten-eleven translocation methylcytosine 
dioxygenase (TET1) activity, which demethylates the 5th position of the 
pyrimidine ring of cytosine on POLG. Like 5-Aza treatments, VitC 
demethylation of POLG increased POLG expression and mtDNA copy 
number. HSR-GBM1 cells given VitC treatment did not differentiate fully 
(36). These studies demonstrated VitC and 5-Aza as potential treatments, 
although inhibition of DNMT with 5-Aza may be more effective than 
Vitamin C in decreasing methylation and upregulating mtDNA copy 
number. 5- Aza and Vitamin C are DNA demethylation agents that 
promote cell differentiation and may affect various cancers (34, 37–39). 
Few studies have examined these agents’ anti-glioma effects. One case 
study demonstrated intravenous vitamin C treatment benefiting a patient 
with GBM, suggesting the broader applicability of Vitamin C for glioma 
therapy (40). However, vitamin C enhanced glioblastoma invasiveness. 
Vitamin C deficiency reduced glioblastoma proliferation in vitro (41, 42). 
5-Aza’s had better outcomes than VitC in the HSR-GBM1 model, 
supporting its testing in other models and potential in clinical trials.

3.3. Global demethylation of nDNA 
increases mtDNA copy number in glioma 
cell lines

Global demethylation of the HSR-GBM1 nuclear genome 
modified tumor-specific genes and critical mtDNA transcription and 
replication factors beyond POLG and TOP1MT (23). Demethylation 
downregulated a subunit of the SEC61 translocon complex (SEC61G) 

TABLE 1 Epigenetic modifications of DNA as therapeutic targets for potential drugs/treatments in gliomas.

Epigenetic modification type Therapeutic target Drug/Treatment

Methylation of DNA Nucleus: POLG and TOP1MT Mitochondria: mtDNA Vitamin C and 5-Azacytidine

Mitochondrial nucleoid modifications Nucleus: TFAM KLF16 and Melatonin

Noncoding RNA Nucleus: RMRP and TFAM siRNAs and miR-23b
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and upregulated the PR domain containing 16 (PRDM16) and serine/
threonine-protein kinase (WNK2). DNA demethylating treatments 
affected cell death, growth, and differentiation pathways (43–45). 
Demethylation treatment upregulated epidermal growth factor 2 
(EGFR2), B-Cell lymphoma 2 (BCL2), telomerase reverse transcriptase 
(TERT), and MYC. These tumor markers interact with mtDNA 
transcription and replication factors. Demethylation regulates cellular 
fate, cellular differentiation, and mtDNA replication (23, 46–49).

3.4. Crosstalk of nDNA and mtDNA and 
methylation of mtDNA in glioma cell lines

Evidence suggests that nuclear and mitochondrial genomic 
modifications contribute to glioma tumorigenesis (29). When mtDNA 
levels were decreased to different extents in HSR-GBM1 cells, cells 
experienced nDNA methylation changes to restore mtDNA copy 
numbers (29). This further exemplifies the importance of considering 
nDNA’s role in mtDNA replication when developing therapies 
targeting mtDNA copy number.

The methylation of mtDNA has not been studied extensively. 
Scientists debated for years on whether mtDNA could be methylated (50, 
51). However, multiple studies have since confirmed mtDNA methylated 
sites (23, 52–54). Furthermore, mtDNA methylation contributed to 
mtDNA copy number and tumorigenesis in GBM. Sun et al. used naïve 
osteosarcoma cells with their original mtDNA (143B143B), and mtDNA 
depleted 143B cell lines repopulated with donor mtDNA from 
HSR-GBM1 cells (143BGBM) and human neural stem cells (143BNSC) (30). 
Each cell population was analyzed at an early and late growth stage. Cell 
lines with mtDNA derived from hNSCs (143BNSC) had higher levels of 
mtDNA methylation than cell lines with mtDNA derived from GBM or 
143B (143BGBM or 143B143B) cell lines, suggesting decreased mtDNA 
methylation is initially necessary to enforce a tumor phenotype (30). The 
mtDNA copy number in 143BGBM and 143B143B cell lines also increased 
significantly from the early to late stages, suggesting that increased 
mtDNA copy number encouraged early tumorigenesis (30, 55). However, 
although mtDNA methylation decreases and mtDNA copy number 
increases as tumors first progress, after tumorigenesis is started by 
sufficient mtDNA copy number, methylation of mtDNA increases. This 
late event in tumorigenesis restricts mtDNA replication and maintains 
mtDNA copy numbers in GBM cell lines lower than in non-tumorigenic 
cell lines (30). This indicates that the mtDNA methylation changes that 
result in abnormal energy production in GBM occur in later stages 
of tumorigenesis.

These results give insight into mtDNA’s role in tumorigenesis. 
They suggest that mtDNA demethylation contributes to increases in 
mtDNA copy number, which could support demethylation therapy for 
GBM. The demethylating agents, 5Aza and VitC, significantly reduced 
mtDNA methylation and could prove helpful as therapies (23). 
Additional studies of demethylating agents will show if they can 
change nDNA and mtDNA epigenetics and tumor pathogenesis in 
glioma and glioblastoma.

4. The nucleoid: mitochondrial DNA 
packaging and expression

Mitochondrial DNA (mtDNA) has no associated histone protein 
like nDNA The mitochondria’s nucleoid contains mtDNA centrally 

surrounded by core and peripheral proteins referred to as core and 
peripheral nucleoid factors (18). Core factors are crosslinked to 
mtDNA and include (1) transcription factor A, mitochondrial 
(TFAM), (2) mitochondrial single-strand binding protein (mtSSB), (3) 
DNA polymerase subunit gamma (POLG), (4) mtRNA polymerase 
(POLRMT), (5) Lon protease, and (6) DNA helicase Twinkle (56). 
Initially, the roles of these factors in transcription, translation, and 
cell-wide signaling were shown. More recently, it has become clear 
that several package proteins epigenetically modulate mtDNA, like 
histones modulate nDNA (57).

4.1. TFAM is upregulated in GBM

Mitochondrial transcription factor A (TFAM) is a 24-kDa protein 
encoded by a nuclear gene on chromosome 10. It was initially 
identified as a transcription factor for mtDNA (58) but is now thought 
dispensable for mtDNA transcription in vitro but crucial for packaging 
mtDNA within the mitochondria (59). TFAM has two high-mobility 
group (HMG) domains. These are DNA binding motifs that, upon 
binding, induce a U-shape confirmation in mtDNA (60, 61). U-turn 
bending recruits mitochondrial RNA polymerase to the mitochondrial 
light strand promoter (LSP) site. It is thought that the degree of 
bending may affect transcriptional activation efficacy (62). The 
mammalian mitochondria contain about 1 TFAM protein per 15–18 
base pairs of mtDNA, making it abundant enough to coat the entire 
mitochondrial genome (63).

Lee et al. explored the association of TFAM with GBM and if 
TFAM antagonism could be an anti-GBM therapeutic strategy (64). 
In their study, a Western blot analysis with an anti-TFAM antibody 
showed markedly increased protein expression of TFAM in GBM cell 
lines, especially U343-MG and U373-MG cells. Quantitative real-time 
PCR (qRT-PCR) showed elevated mRNA levels of TFAM in the 
U251-MG, U343-MG, and U373-MG GBM cell lines. Human GBM 
tissues were also stained with anti-TFAM antibodies. Tumor tissue 
had considerably more TFAM staining than surrounding tissue. The 
differential expression of TFAM in the REMBRANDT cohort was 
analyzed and found to have significantly higher TFAM gene transcript 
levels in GBM, astrocytoma, and oligodendroglioma than normal 
controls (p < 0.0001) (64).

Correia et al. investigated transcript levels of TFAM as they related 
to GBM overall survival time (65). Using QT-PCR to quantify 
expression levels of TFAM, they compared TFAM expression of 
non-neoplastic brain tissue to two GBM subgroups: survival time 
under 12 months and survival time over 24 months. Although both 
GBM subgroups had significantly higher levels of TFAM than 
non-neoplastic brain tissue, the TFAM expression was higher in the 
24-month survivors than the 12-month survivors (65).

Pediatric high-grade gliomas (pHGG) are the deadliest childhood 
CNS cancers. They are characterized by K27M mutations in histones 
H3.1 and H3.3 and G34R mutations in H3.3 (H3.3G34R) (66–68). 
H3.3G34R mutations are almost exclusive to hemispheric pHGG and 
occur in adolescents and young adults (69). Siddaway et al. unexpectedly 
discovered H3.3G34R localizes to the mitochondria at a higher rate than 
wild-type H3.3 (70). Furthermore, TFAM associated exclusively with 
the H3.3G34R mutated histone and not the wild-type histone. The 
authors hypothesized that H3.3G34R had a metabolic effect on the 
pHGG cells. They generated a metabolomic profile of H3.3 wild type 
versus H3.3G34R and showed enriched TCA cycle metabolites and a 
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higher level of mitochondrial metabolism in these cells (70). H3.3G34R 
may be a useful epigenetic marker for TFAM in pHGG.

Although these studies elucidate an association between gliomas 
and TFAM, the mechanism underlying TFAM’s contribution to 
glioma pathogenesis is poorly understood. Levels of TFAM expression 
in GBM patient specimens did not correlate with GBM survival. 
Levels of TFAM and mtDNA transcription efficacy may have a 
complex, non-linear relationship: as TFAM increases, mtDNA 
assumes a more favorable mtDNA conformation for mtDNA 
transcription. However, a specific point may exist when TFAM coats 
mtDNA, reducing transcription efficacy. The best stoichiometry 
between TFAM and template DNA has not been established in GBM.

4.2. TFAM as a therapeutic target

Nonetheless, TFAM may be a strong candidate target for glioma 
therapeutic interventions. Chen et  al. investigated the relationship 
between Kruppel-like factor (KLF) 16 and TFAM in glioma cell 
proliferation (71). KLF members are zinc finger-containing 
transcription factors that regulate oncogenic or tumor-suppressive 
genes by binding GC-rich DNA sequences in gene promoter regions 
(72). The expression of KLF16 was found to be robustly reduced in six 
glioma cell lines and glioma tissues via Western blot studies and real-
time PCR analysis. Furthermore, survival analysis showed glioma 
patients with low KLF16 had a poor prognosis (HR = 2.328, 95% 
CI = 1.387–4.017, p < 0.01). Given these results, KLF16 was postulated 
to have a tumor-suppressive role in glioma progression. Real-time PCR 
indicated TFAM expression was downregulated in KLF16-elevated cells 
and upregulated in KLF16-silenced cells. Using a chromatin 
immunoprecipitation (ChIP) assay, they showed a high binding affinity 
of endogenous KLF16 to the GC-rich basic transcriptional element in 
the TFAM nDNA promoter, indicating KLF16 directly repressed TFAM 
expression and could serve as a potential therapeutic target (71).

The effects of melatonin (N-acetyl-5-methoxytryptamine), a 
hormone synthesized from serotonin, on mitochondria have been 
widely explored, but little is known about how melatonin affects 
mtDNA and TFAM expression. Franco et  al. investigated the 
relationship between TFAM and melatonin using the GBM cell line 
U87MG (73). When melatonin was incubated with these cells, the 
mRNA expression of TFAM and protein levels decreased. The reduction 
of TFAM resulted in reduced gene expression of mitochondrial NADH 
dehydrogenase 1, elevated reactive oxygen species (ROS) production, 
and decreased cell viability. Lastly, they showed that melatonin acts 
synergistically with temozolomide (TMZ). Cell viability was reduced by 
34% by 3 mM melatonin and by 45% by TMZ. Combined treatment of 
melatonin and TMZ reduced viability by 87% (73).

Additionally, the exact epigenetic mechanism that results in 
upregulation of TFAM in GBM is unknown. Characterizing this 
mechanism may be beneficial as it could provide us with targets to 
reduce TFAM expression in GBM to restore a normal phenotype. One 
possible target could be nuclear respiratory factor 1, which has been 
found to suppress the TFAM promoter when methylated in vitro (74). 
However, future studies must look at this effect in GBM models before 
a therapy can be developed.

These studies demonstrate TFAM plays an integral role in the 
structure of mtDNA and transcriptional regulation and may serve as 
a novel epigenetic target for glioma therapy.

5. Noncoding RNAs in mitochondria

Noncoding RNAs (ncRNAs) have regulatory and structural 
functions, not protein template activity. They regulate gene expression 
by adjusting RNA processing and mRNA stability, modification, and 
translation (75). NcRNAs represent 70% of the nuclear genome in 
humans and the third category of epigenetic processes contributing to 
glioma development and progression (76). Advances in deep 
sequencing have revealed that the mitochondrial transcriptome results 
from a complex regulatory, expression, and processing network. 
ncRNAs participate in mitochondrial gene regulation (14). Two types 
of ncRNAs have been found inside mitochondria. The first is nuclear-
encoded ncRNAs (nuclear-ncRNAs) involved in directional signaling 
from the nucleus to the mitochondria (anterograde signaling). The 
second type is the mitochondria-encoded ncRNAs (mt-ncRNAs). The 
study of mt-ncRNAs is groundbreaking because, until recently, the 
mitogenome was thought only to include genes encoding polypeptides, 
tRNAs, and rRNAs.

Several studies mapped many long noncoding RNAs and small 
noncoding RNAs to the mitochondrial genome. Mercer et  al. 
identified 31 novel miRNAs expressed from 17 distinct loci. The 
majority (84%) were derived from tRNA genes (14). Rackham et al. 
identified three lncRNAs with sequences uniquely aligned to the 
mitochondrial genes encoding ND5, ND6, and Cyt b (77). 
Interestingly, ND6 is the least abundant mitochondrial encoded 
protein, perhaps because lncND6 downregulates its expression (77).

Conversely, nuclear-encoded RNAs have been found within the 
mitochondria. They are thought to regulate the mitochondrial genome 
by associating with Argonaute (AGO) proteins, forming the 
RNA-induced silencing complex (RISC) core, and exerting RNA 
interference (78). Thirteen nuclear miRNAs were found within the 
mitochondria associating with AGO and mitochondrial mRNA, 
implying RNAi may regulate mitochondrial biogenesis and function 
(78). Analysis of the mitochondrial transcriptome showed a nuclear-
lncRNA part of the mitochondrial RNA processing endoribonuclease 
(14). Termed RMRP, this RNA part is important for mtDNA 
replication and RNA processing. RMRP helps endonuclease cleave 
mitochondrial RNA at a priming site of mtDNA replication (79). 
Given the growing cohort of ncRNAs and their epigenetic influence 
on mitochondrial expression, several studies have postulated this 
mechanism may contribute to glioma pathogenesis and can 
be targeted with new therapeutic agents.

5.1. RMRP contributes to glioma 
progression and TMZ resistance

The LncRNA RNA component of mitochondrial RNA processing 
(RMRP) was first found to promote carcinogenesis in gastric cancer. 
RMRP expression was recently investigated in low-grade (grade I-II) 
to high-grade (grade III-IV) glioma cell lines and tissues (80). Glioma 
tissues expressed significantly more RMRP than normal brain tissues 
in qRT-PCR experiments (80). Furthermore, lncRNA RMRP 
upregulation is significantly associated with advanced tumor grade 
and low Karnofsky Performance Score (KPS), indicating RMRP 
up-regulation may be involved in glioma progression. Knockdown of 
RMRP significantly decreased the proliferation of glioma cell lines in 
vitro. These findings suggest that reducing the expression of lncRNA 
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RMRP impairs the transcription of mtDNA and inhibits malignant 
phenotypes of glioma cells (80).

Liu et al. performed experiments on lncRNAs, including RMRP, 
to decide if they were involved in regulating the TMZ resistance in 
gliomas (81). The top  100 upregulated lncRNAs in glioma tumor 
tissues were identified, including RMRP. RMRP expression levels were 
higher in tumors isolated from patients with relapsing glioma after 
TMZ treatment than tumors from TMZ-naïve patients. Liu et  al. 
investigated the role of RMRP in TMZ resistance. Three siRNAs were 
synthesized for RMRP knockdown. RMRP knockdown increased the 
cell apoptosis rate 2.6-fold. RMRP depletion weakened the TMZ 
resistance of TMZ-resistant glioma cell lines and TMZ-treated glioma 
xenograft tumors (81). These studies demonstrate RMRP antagonism 
as a potential strategy for increasing the therapeutic efficacy of TMZ 
against glioblastoma.

5.2. TFAM is directly regulated by mIR-23b 
in glioma

As previously mentioned, mitochondrial transcription factor A 
(TFAM) is a core protein within the mitochondrial nucleoid structure 
responsible for creating favorable conformations of mtDNA and 
increasing transcription efficacy (62). TFAM can act alone as an 
epigenetic mechanism in glioma pathogenesis. Its susceptibility to 
miRNA regulation creates an added layer of mitoepigenetic control. 
MiR-23b is a miRNA highly expressed in several cancers and 
associated with tumorigenesis (82). Its role in gliomas was investigated 
using glioma cell lines and tissue specimens. MiR-23b expression 
levels measured by real-time RT-PCR were significantly lower in 
glioma than in normal brain tissue. Like other TFAM studies, this 
study showed that TFAM expression was significantly increased in 
glioma tissues and positively correlated to the malignancy grade. Cell 
lines overexpressing TFAM demonstrated increased proliferation and 
invasiveness. The 3′ untranslated region of TFAM was found to be a 
direct target of mIR-23b. Cell lines overexpressing miR-23b had 
decreased proliferation and invasiveness (80). These results suggest 
TFAM may be  a direct target of epigenetic control via miR-23b 
(Table 1).

5.3. Future clinical development of 
mitochondrial biomarkers and 
mitochondria-targeted glioma therapeutics

Mitochondrial deregulation is a GBM marker (83). Sixty percent 
of solid tumor patients have detectable mtDNA mutations within their 
body fluid cell-free DNA (84, 85). Epigenetic modifications of nDNA 
and mtDNA contribute to the malignant features and treatment 
resistance of glioma patients with nDNA and mtDNA mutations. 
Researchers are testing anti-glioma therapeutic strategies targeting 
epigenetic modifications in tumor cells and animal models. 
Treatments demethylating the POLG, TOP1MT, and TFAM genes 
attempt to increase tumor cell mtDNA copy number, differentiation, 
and apoptosis (83). Potential therapeutic agents targeting the POLG, 
TOP1MT, and TFAM genes include Vitamin C, 5-azacytidine, and 
melatonin. Another epigenetic therapeutic target is lncRNA RMRP 
expression. Reducing lncRNA RMRP expression levels in glioma 

restored the sensitivity of tumor cells to TMZ (Table 1). Inhibiting 
mtDNA transcription may also decrease glioma cell proliferation and 
invasion (80).

Glioblastoma and other malignant tumors manifest metabolic 
reprogramming called the Warburg effect, in which cellular glucose 
uptake is increased, and the glucose metabolite pyruvate is metabolized 
anaerobically to lactate. This effect occurs even in cancer cells with 
functional mitochondria under normoxic conditions (86). Glioblastoma 
also aerobically metabolizes glucose-derived pyruvate and fatty acids in 
the mitochondria in actively proliferating, high-oxygen-consuming 
tumor cells (87, 88). Damaged mitochondria accumulate in tumor cells 
due to impaired mitophagy and produce reactive oxygen species (ROS) 
that damage and mutate genomic and mtDNA and enhance genomic 
instability and oncogenesis (89). Glioblastoma combination therapies 
can be designed to include agents antagonizing the tumorigenic effects 
of the Warburg effect and mitochondrial genetic and epigenetic 
aberrations, like tumor proliferation, invasion, free radical production, 
impaired mitophagy, and reduced apoptosis (90).

6. Conclusion

Mitochondria participate in many biological processes, including 
metabolism, apoptosis, and cellular proliferation. It has been well-
reported that the tumorigenicity of malignant tumors, including 
gliomas, is related to abnormal energy production and inherent 
resistance to apoptosis. Understanding mtDNA’s contribution to these 
processes goes beyond the proteins the mitochondrial genome 
expresses. We are beginning to appreciate how epigenetic mechanisms 
regulate mtDNA expression and contribute to tumor pathogenicity 
(Figure 1). Further understanding of mtDNA methylation, alterations 
in nucleoid packaging of mtDNA, and regulation of mtDNA by 
noncoding RNAs in glioma cell lines and tissue samples will uncover 
novel mechanisms underlying glioma progression that may 
be amenable to targeted therapies.
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