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Background: Intracranial aneurysm (IA) is a nodular protrusion of the arterial wall

caused by the localized abnormal enlargement of the lumen of a brain artery,

which is the primary cause of subarachnoid hemorrhage. Accurate rupture risk

prediction can e�ectively aid treatment planning, but conventional rupture risk

estimation based on clinical information is subjective and time-consuming.

Methods: We propose a novel classification method based on the CTA images

for di�erentiating aneurysms that are prone to rupture. The main contribution

of this study is that the learning-based method proposed in this study leverages

deep learning and radiomics features and integrates clinical information for a

more accurate prediction of the risk of rupture. Specifically, we first extracted the

provided aneurysm regions from the CTA images as 3D patches with the lesions

located at their centers. Then, we employed an encoder using a 3D convolutional

neural network (CNN) to extract complex latent features automatically. These

features were then combined with radiomics features and clinical information.

We further applied the LASSO regression method to find optimal features that are

highly relevant to the rupture risk information, which is fed into a support vector

machine (SVM) for final rupture risk prediction.

Results: The experimental results demonstrate that our classification method

can achieve accuracy and AUC scores of 89.78% and 89.09%, respectively,

outperforming all the alternative methods.

Discussion: Our study indicates that the incorporation of CNN and radiomics

analysis can improve the prediction performance, and the selected optimal feature

set can provide essential biomarkers for the determination of rupture risk, which is

also of great clinical importance for individualized treatment planning and patient

care of IA.

KEYWORDS
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1. Introduction

Intracranial aneurysm (IA) is a localized weak or thin spot on a brain artery, which
generally balloons or bulges out and is filled with blood. Intracranial aneurysms (IAs) are
commonly believed to result from a combination of genetic and environmental factors.
Congenital defects in the arterial wall, including thinning or weakening of the vessel walls,
can increase the risk of an aneurysm forming (1–3). The bulging aneurysm presses on
brain nerves or tissues, which may burst or rupture and lead to hemorrhage. The ruptured
aneurysm can cause serious health problems such as hemorrhagic stroke, brain damage,
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coma, and even death (4). For example, subarachnoid hemorrhage
(SAH) caused by a ruptured aneurysm is life-threatening with
a fatality rate of above 40% and can cause life-long cognitive
impairment (5).

Current medical imaging methods for cerebral IA diagnosis
include digital subtraction angiography (DSA), magnetic resonance
angiography (MRA), and computed tomography angiography
(CTA). Although DSA is still considered the gold standard for
IA diagnosis, CTA has been proven to be an efficient method
with lower cost and easier access for most patients in the actual
clinical scenario (6, 7). 3D-CTA can provide detailed visualization
of the anatomical structures of blood vessels in the brain and
can characterize the relationship between the aneurysm and its
surrounding spatial structure more comprehensively.

Although doctors can detect intracranial aneurysms based on
the CTA images, it remains challenging for predicting if they are
prone to rupture. It may cause difficulties in choosing preventive
or conservative treatments as the former may face high surgical
risk while the latter has the risk of cerebral hemorrhage caused by
ruptured aneurysms. Therefore, an accurate aneurysm rupture risk
prediction method is highly in demand for the treatment planning
and patient care of aneurysms.

Several statistical studies have investigated risk factors for
the rupture of IA, which include the aneurysm’s morphology,
hemodynamics, and patient-specific factors (8–13). Furthermore,
Greving et al. (14) conducted a systematic review and pooled
individual data analysis from 8,382 participants with subarachnoid
hemorrhage as the outcome. The practical risk score assessment
named PHASES was developed based on their findings. It has
become one of the major assessment methods for predicting the
5-year rupture risk of unruptured IAs. In addition, some common
biomechanical and hemodynamic methods have also been used for
IA rupture risk estimation. Meng et al. (15) proposed an image-
based computational fluid dynamic model, which demonstrated
the association between hemodynamics and the rupture risk
of IA.

Recently, many attempts have also been made to construct
the IA rupture risk prediction models using machine learning
(ML) technologies such as K-nearest neighbors (KNN) (16, 17),
random forest (RF) (18, 19), support vector machine (SVM) (20),
and neural networks (21). For example, An et al. (16) used five
distinct classification models (XGBoost, KNN, RF, SVM, and LR)
for IA rupture risk prediction with multi-dimensionally fused
features. Zhu et al. (22) also adopted multiple ML methods (SVM,
RF, and ANN) for IA stability assessments based on clinical
features and morphological features from 3D DSA. Shi et al. (23)
integrated clinical, morphologic, and hemodynamic features to
build a composite model and compared the performance between
several ML models (SVM, RF, LR, and multilayer perceptron)
on the rupture risk prediction task of small aneurysms using
CTA. To enhance the assessment of lesion characteristics in
medical imaging, radiomics has been introduced to offer more
comprehensive features such as shape and texture. The extracted
radiomics features are then fed into machine learning algorithms
for analysis. For example, Alwalid et al. (24) conducted a radiomics
analysis on CTA images of patients with ruptured aneurysms
and selected the most important features to construct a logistic
regression model.

Recently, there have been significant improvements in medical
image processing using deep learning technology. Deep learning
methods such as convolutional neural network (CNN) can learn
complex features from medical images and construct models with
advantageous performance. Several studies have demonstrated the
effectiveness of deep learning for diagnosing and predicting the
progression of brain diseases (25–28). For instance, Jnawali et al.
(29) proposed a fully automated deep learning framework that
learns to classify brain hemorrhage cases based on cross-sectional
CT images. Dai et al. (30) applied deep learning to facilitate the
detection of cerebrovascular aneurysms on CTA scans. Bizjak et al.
(31) proposed a deep-shaped feature extraction model that uses
PointNet++ architecture to predict the growth and rupture risk of
the aneurysm using CTA and MRA images. Li et al. (32) proposed
a deep learning method that can directly apply to 3D CTA data
without the need for manually measured features. Turhon et al.
(33) proposed a deep learning model based on multi-omics factors.
These studies indicate that deep learning methods can effectively
extract key features from medical images for the diagnosis of
brain-related diseases. However, it is essential to note that deep
learning methods require a substantial amount of training data
to create an effective encoder for feature extraction. As collecting
a large number of medical image samples is often expensive
and challenging, it is also crucial to develop robust classification
methods that can make use of comprehensive features without the
need for a large quantity of training data.

In this study, we proposed a novel framework for estimating
the risk of cerebral aneurysm rupture. To achieve this, we proposed
to extract features from CNN, radiomics, and clinical information.
In turn, we applied a feature selection method to obtain an
optimal feature set that is highly correlated with the patient’s
IA rupture information. Finally, we employed SVM to perform
the final classification. The proposed method utilizes complex
feature extraction techniques such as deep learning, radiomics,
and machine learning to extract intricate features from IA images
and clinical information. Our model offers better adaptability
for classification in situations with limited datasets and realizes
effective feature fusion that combines radiomics information, CNN
information, and machine learning to improve the performance of
aneurysm rupture risk prediction.

The main contributions of this study can be summarized
as follows:

(1) We proposed a framework that integrates deep
learning, radiomics, and clinical features to estimate
the rupture risk of intracranial aneurysms from a more
comprehensive perspective.

(2) We proposed a method that combines deep learning
techniques with machine learning to achieve better
classification performance.

2. Materials and methods

2.1. Materials

There were two datasets used for model construction and
validation in our study.
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The 301 dataset was collected from the Cooperative Beijing
301 Hospital. The 301 dataset has 239 CTA images with their
corresponding segmentation of the aneurysm. After data cleaning,
a total of 106 IA cases were included in the analysis due to
incomplete patient information in some CTA images. The ground
truth of UIA/RIA was based on the follow-up of the patients’
statuses, and IAs were manually segmented by the clinical experts.
Note that informed consent was obtained from all patients for the
use of their information including clinical records and CTA images.

The Large IA Segmentation Dataset (LIASD) (https://doi.org/
10.5281/zenodo.6801398) (28) is an open-source dataset containing
1338 CTA images with the corresponding segmentation and follow-
up information.

The clinical information for the two datasets mainly includes
gender, age, and the risk status of the aneurysm. Detailed
demographic patient information can be found in Table 1. Each
aneurysm can be either unruptured IA (UIA) or ruptured IA (RIA).

Figure 1 shows examples of rupture and unruptured
aneurysms, and it is difficult to distinguish if they are UIA or
RIA directly from the image. In this way, we pre-process the
images to make them more convenient to use. Since the raw
CTA images have different voxel spacing, we rescaled all of them
to the same physical size. Specifically, each voxel in the image
should correspond to its appropriate physical size, by rescaling all
CTA images to 0.39 × 0.39 × 0.39mm3. Based on the provided
aneurysm segmentation annotations, we extracted the bounding

TABLE 1 Demographic and clinical information of all samples in the two

datasets.

Category 301 dataset LIASD dataset

Age (years): Mean ± Std 57.3± 12.3 57.7± 12.9

Gender: male/female (%) 28/78 (35.9) 571/767 (74.4)

UIA/RIA∗ 78/28 822/516

∗UIA and RIA stand for unruptured and ruptured IA, respectively.

box of each aneurysm in all CTA images. We extracted a patch
for each aneurysm by setting the center of the patch as the center
of the corresponding bounding box. We extracted each patch as
a 3D cube of 64 × 64 × 64 in voxel space. This method ensures
that the extracted 3D patch contains sufficient information on
the vascular structure while avoiding the degradation of the
performance caused by the extract’s excessive size. Examples of the
CTA images with their extracted patches are shown in Figure 2. We
also normalized the image intensity by setting CT window width
(WW) to 110Hu and window level (WL) to 40Hu based on clinical
experience.

2.2. Methodology

To predict the risk status of IA, we proposed a novel
classification framework that combines CNN and radiomics
technology as shown in Figure 3. Note that CNN is used to
quantitatively describe the highly sophisticated image features,
while radiomics is used to quantitatively describe the traditional
image features. Therefore, the main idea is to obtain both the
radiomics and CNN visual features from the collected images
with the annotated region and incorporate the patient’s clinical
information for constructing the overall feature vector. Then, we
used the LASSO regression method to find the optimal subset of
features that are highly correlated with the prediction outcome.
This can eliminate redundant information and simplify the model
for preventing overfitting issues. Finally, the selected features were
used to train the required classifier through SVM.

2.2.1. CNN feature extraction
Deep convolutional neural networks have the ability to extract

deep features from images. Our 3D CNN architecture has been
developed from the ResNet network (34), which is a classical
deep convolutional neural network for analyzing images. Since

FIGURE 1

Examples of rupture and unruptured aneurysms.
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FIGURE 2

Example of preprocessed CTA image. The red color represents the IA segmentation mask from the extracted 3D patch.

FIGURE 3

The proposed classification framework for IA rupture risk estimation. The input of this classification network is clinical information and CTA images,

and the output is the prediction of risk status.

ResNet has different configurations according to their layer number
settings, we use ResNet-18 as the backbone to extract CNN features,
which is sufficient to extract image features. As the input data were
three-dimensional, and ResNet was originally designed for two-
dimensional images, we replaced the 2D convolutional layer and
2D pooling layer of ResNet-18 with a 3D convolutional layer and
3D pooling layer. The input of ResNet-18 is the preprocessed 3D
patch with the aneurysm lesion, and the output is the predicted

rupture risk. In the process of feature fusion, we used the trained
model to extract CNN features by extracting the deep feature
vectors before fully connected layers. Note that we also tried VGG
as the backbone in the experiments, which is also widely applied
for extracting deep learning features. However, its performance was
not comparable with that of ResNet. In addition, we used random
flipping for data augmentation to guarantee the robustness of the
trained model.
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2.2.2. Radiomics feature extraction
We used PyRadiomics (35) to extract radiomics features from

the 3D patch and the segmentation map. PyRadiomics is an open-
source Python package for medical image processing, analysis, and
interpretation. These features can be sub-divided into seven classes:
First Order Statistics, Shape (3D), Gray Level Co-occurrenceMatrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM).
We hypothesize that these features can provide helpful additional
information for predicting the risk of rupture since these contain
relatively deep morphology and texture features of the aneurysm.

2.2.3. LASSO feature selection
After feature extraction, we had a total of 650 features,

including 512 CNN features, 136 radiomics features, and 2 clinical
features (age and gender). Among these features, some may not
be relevant to rupture risk prediction. Therefore, we used the
least absolute shrinkage and selection (LASSO) regression to select
features that have a strong correlation with rupture risk and to
prevent the issue of overfitting while constructing the classifier. The
LASSO regression is a model in which the L1 norm constraint term
is added to the cost function of the linear regression model. The
optimization goal can be represented as Equation (2.1). It conducts
variable screening and complexity adjustment through the penalty
coefficient λ:

min
w

=

m∑

i=1

(yi − wTxi)
2
+ λ||w||1. (2.1)

2.2.4. SVM-based risk status prediction
In this study, we used SVM to predict the risk of aneurysm

rupture after feature extraction and selection. SVM is one of the
most popular supervised learning algorithms in classification and
regression problems. The algorithm is lightweight and efficient and
has an excellent performance in high-dimensional vector space,
which is more suitable in the scenario where the dataset has limited
image samples. Note that in experiments, we also compared its
performance with the fully connected layers of the ResNet. Each
IA image has a selected feature vector with its ground truth of
UIA/RIA labels, which is used to train the classifier via SVM.

3. Experiments and results

Since the 301 dataset is relatively small (106 cases total) for
training an aneurysm rupture risk prediction task, the model is
easy to be overfitted during the training process and hard to obtain
acceptable performance (accuracy = 70.83% on the 301 test set).
Therefore, we first used the large dataset, which is the LIASD
dataset to train our baseline model (ResNet-18) and obtained
the pre-trained model. Based on the pre-trained model, we used
the 3-fold cross-validation to finetune and evaluate our proposed
model. Deploying pre-trained models designed for larger datasets
on smaller counterparts is beneficial as it provides a plausible
solution to the issue of limited sample size.Moreover, we conducted

an ablation analysis to ascertain the significance of the techniques in
our framework toward the enhancement of rupture risk prediction.

Specifically, we have three types of features during the
experiment: features extracted from the CTA image patch using
ResNet-18 (Deep Features); radiomics features extracted from the
original CTA image and the corresponding aneurysm masks using
PyRadiomics (Radiomics Features); and clinical information of
patients includes gender and age (clinical features). To evaluate
the improvement of our approach, we conducted our cross-
validation experience using the following five methods with
different configurations:

(1) ResNet: Fine-tune the pre-trained ResNet-18 with only the
CTA images to obtain the final classification.

(2) ResNet + SVM: Feed deep features to the SVM classifier to
generate the final classification results.

(3) FCB-ResNet (feature concatenate before FC layer):
Concatenate deep features, radiomics features, and clinical
features before fully connected layers of ResNet-18, and then
obtain the prediction result of ruptured IA.

(4) FC-SVM (feature concatenate + SVM): First, feed the
concatenate deep features, radiomics features, and clinical
features, and then feed the fusion feature vector to the SVM
classifier to generate the final classification results.

(5) FC-LSVM (feature concatenate + LASSO + SVM, the
proposed method): Feed the concatenate deep features,
radiomics features, and clinical features. Then, select features
of high importance using LASSO regression, and finally, feed
the fusion feature vector to the SVM classifier to generate the
final classification results.

The experimental platform of our study is the Debian 5.16.12
operating system. We performed all experiments on an NVIDIA
3090 Ti GPU.

The F2 score is the weighted harmonic mean of the precision
and recall, which gives more weight to recall than to precision.
For the task of predicting rupture risk, false-negatives are
considered worse than false-positives. Therefore, the F2-score is
also considered the main evaluation metric besides accuracy in
this study.

The experimental results are shown in Table 2, in which
ResNet-18 is our baseline method as previously mentioned. It can
be observed from Table 2 that the SVM classifier performs better
than the original fully connected layers in the ResNet-18 model,
with an improvement of 9.40% in accuracy compared with the
baseline model. As envisioned earlier, the clinical information of
patients and the radiomics features have offered more information
for the rupture risk evaluation task since the accuracy rises by 6.84%
compared with the baseline model just by adding these features
before the fully connected layer. However, when operating the
two lifting facts at the same time, we did not observe a further
increase in accuracy, and the recall rate decreased significantly by
over 10%. In addition, although SVM is good at handling high-
dimensional information, its performance is highly dependent on
the quality of the feature vectors, whichmeans toomuch redundant
information may instead reduce the performance. Table 2 shows
that the proposed method with feature selection obtained the
best performance with an accuracy of 89.78 ± 4.79% and an
F2-score of 79.06 ± 5.70%. The area under the curve (AUC) of
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TABLE 2 The 3-fold cross-validation results of the five alternative methods.

Accuracy Recall Precision F2-score AUC

ResNet 0.7778 0.8222 0.7302 0.7006 0.8291

ResNet+SVM 0.8718 0.6297 0.8333 0.6587 0.8301

FCB-ResNet 0.8462 0.7778 0.5556 0.5727 0.8667

FC-SVM 0.8590 0.5926 0.7889 0.6047 0.8576

FC-LSVM 0.8978 0.7963 0.8139 0.7906 0.8909

FIGURE 4

The ROC curves of the 5 alternative methods.

the receiver operating characteristic (ROC) curve can measure the
quality of the classification model, and a higher AUC represents
better performance. The corresponding ROC curve is presented in
Figure 4.

Note that by using LASSO regression, we eliminated numerous
redundant features and discovered that 61 features are highly
correlated with the risk of aneurysm rupture. The 61 features can be
grouped into three categories: clinical features, radiomics features,
and CNN features. Table 3 provides specific measurements of the
dimensions of the three groups of features. We elaborate on both
the name and the characteristics of each clinical and imaging
feature to aid in interpreting the features. Note that we do not
provide further information for the selected CNN features since
they are extracted from the constructed model and their feature
representations are generally impractical to explore.

We then used the Delong test to observe the significance of
different methods, and the P-values are listed in Table 4. Although
our model performs best in terms of performance, there is no
statistical difference between the different models.We consider that
the high p-value is caused by the small size of the dataset and the
imbalance of sample numbers.

We also compared ourmethod with the alternative study by Liu
et al. (3) and Li et al. (32). Liu et al. extractedmorphological features
manually and combined them with data distribution features

extracted using PyRadiomics and CNN network and tried both
XGBoost and FCN for final classification. Li et al. proposed a deep
learning method called TransIAR net that can be directly applied
to 3D computed tomography angiography (CTA) data without
manually measured features. The method used a multiscale 3D
CNN and a transformer encoder to extract the structural patterns
and spatial dependence of the aneurysm and its neighborhood. The
comparison results are shown in Table 5, in which our method
improves accuracy by 3.3% (compared to 0.865), recall by 9.6%
(compared to 0.700), and the F2-score by 6.2% (compared to 0.729).
However, themethod proposed by Liu et al. showed better precision
(0.875). Overall, we still consider that our method outperformed
the work of Liu et al. as accuracy and the F2-score are more
important in the rupture prediction scenario.

4. Discussion

In summary, we proposed a novel feature fusion framework
for aneurysm rupture risk prediction. Our approach combines the
features extracted by CNN with the radiomics features and clinical
information of patients, filters the features using LASSO regression
to provide high-quality input to the SVM classifier, and finally
achieves high accuracy (0.8978 ± 0.0479) and F2-score (0.7906 ±

0.0570). The importance of the selected features in assisting the
diagnosis of aneurysms is later discussed in this section.

We successfully addressed the problem of overfitting during
model training and poor generalizability due to the limited size (106
cases totally) and uneven distribution of the 301 dataset using a pre-
training approach on the larger LIASD dataset, followed by fine-
tuning on the 301 dataset. By using this strategy, the classification
accuracy of our model on the 301 dataset improved by 18.95%
(89.78% vs. 70.83%). We further analyzed the selected features in
experiments and summarized the advantages and disadvantages of
our approach. As previously mentioned, we finally obtained the
61-dimensional feature vector for each aneurysm to predict the
rupture risk, which is considered to have high correlations with the
rupture risk. The optimal 61-dimensional feature vector contains
three types of vectors:

(1) 1-dimensional vector concerning the clinical information of
the patient

(2) 9-dimensional vector concerning the radiomics features
(3) 51-dimensional vector extracted by ResNet.

We focused on age and gender as clinical factors since previous
studies have indicated their association with the rupture risk of
intracranial aneurysms. For the two clinical features, gender is
finally selected, indicating that there is a high correlation between
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TABLE 3 Overview of features after the LASSO regression feature selection process.

Feature group Feature name Description

Clinical features
(1-dimensional)

Gender The gender of the patient

Radiomics features
(9-dimensional)

Diagnostics Mask Original Volume Num The number of aneurysms of a patient (image)

Original Shape Maximum 3D Diameter The maximum 3D diameter of the aneurysm

Original Shape Sphericity The measure of the roundness of the shape of the aneurysm region relative to a sphere.

Original Shape Surface Area The surface area of the aneurysm

Original GLCMMCC The maximal correlation coefficient (MCC), a measure of the complexity of the texture

Original GLSZM Small Area Low Gray
Level Emphasis

Small Area Low Gray Level Emphasis (SALGLE) measures the proportion in the image of the
joint distribution of smaller size zones with lower gray-level values

Original GLSZM Zone Entropy Zone entropy (ZE) measures the uncertainty/randomness in the distribution of zone sizes and
gray levels. A higher value indicates more heterogeneity in the texture patterns.

Original GLSZM Zone Percentage Zone percentage (ZP) measures the coarseness of the texture by taking the ratio of the number
of zones and number of voxels in the ROI

Diagnostics Mask Original Bounding Box The location of the aneurysm in the brain

CNN features
(51-dimensional)

Features extracted by ResNet-18 Part of the features in the feature map extracted by ResNet-18

TABLE 4 P-values of Delong’s test.

ResNet ResNet+SVM FCB-ResNet FC-SVM FC-LSVM

ResNet 0.832 0.247 0.556 0.652

ResNet+SVM 0.832 0.465 0.380 0.584

FCB-ResNet 0.247 0.465 0.601 0.556

FC-SVM 0.556 0.380 0.601 0.774

FC-LSVM 0.652 0.584 0.556 0.774

gender and rupture risk. In our dataset, more patients are female,
and women had a lower risk of aneurysm rupture than men. One
study has shown that UIAs are more common in women than
men (36). Differences between genders in the incidence of SAH
have been consistently concerned since SAH disproportionally
affects women. A prospective study of SAH in Texas between 2000
and 2006 showed that women have an age-adjusted risk ratio of 1.74
compared to men (37). It should be noted that, despite previous
research suggesting that the risk of IA increases with age (38), the
feature on age was excluded during feature selection. We attribute
it to the fact that the age range of the two datasets is concentrated
between 50 and 65 (the patients’ age in the LIASD and 301 datasets
is 57.7 ± 12.9 and 57.3 ± 12.3), which undermines its influences
on the rupture risk prediction work.

Morphological features selected from the radiomics feature
group for analysis primarily describe the morphological
characteristics of aneurysms, including their shape, size, and
surface area. These features are relatively easy to interpret and
are essential for accurate diagnosis and treatment planning. It is
generally believed that aneurysm size is the most significant factor
affecting the risk of aneurysm rupture. It is widely recognized that
the likelihood of aneurysm rupture has a linear relationship with
the diameter of the aneurysm (39). The shape, size, and surface

TABLE 5 Comparison with other rupture risk prediction methods.

Accuracy Recall Precision F2-score

XGBoost 0.652 0.700 0.583 0.673

FCN 0.826 0.700 0.875 0.729

TransIAR 0.865 0.667 0.740 0.670

FC-LSVM 0.898 0.796 0.814 0.791

area of the aneurysm may combine to reflect the pressure of blood
on the aneurysm wall, suggesting hemodynamic characteristics
near the aneurysm. Studies have also shown that systolic blood
pressure (SBP) is a strong predictor of aneurysm rupture (40, 41).
These characteristics reflect the possibility of aneurysm rupture
from the aspect of biomechanical factors.

In addition tomorphological features, features that describe the
gray-level information of the original CTA image were also selected.
These features describe the contribution and co-occurrence of gray
levels, providing valuable insights into the context and location
information of the aneurysm. We believe that the heterogeneity
and coarseness of the texture could indicate the malignancy of
an aneurysm. According to a multivariate analysis published by
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Lacent, aneurysm location is a predictor of brain hemorrhage.
The most frequent site of aneurysm rupture is the tip of the
basilar artery, followed by the cavernous artery and posterior
communicating artery as the reference group (42). In conclusion,
the abovementioned features selected from the clinical feature
group and the radiomics feature group were consistent with clinical
experience and prior explorations.

CNN features were selected from the feature map generated
by ResNet-18. As a classical deep convolution network, ResNet-
18 can extract more comprehensive features that can characterize
the properties of the target lesions. Furthermore, the deep
features extracted by CNN from images, the radiomics information
describing the morphological and texture features of the aneurysm
and its contextual environment, and the patient’s personal
information such as gender are complementary to each other in the
aneurysm rupture risk prediction task.

As a limitation of our study, it should be noted that the clinical
information of patients in the two datasets only contains the age
and gender, and more information can be collected in the future
to further explore if they can contribute to the improvement
of the rupture risk prediction task. Additionally, although the
current feature fusionmethod is proved effective via experiments, it
remains simple and more investigations can be made for designing
the feature fusion strategy to further improve the performance of
our approach.

5. Conclusion

In this study, we propose a novel classification framework
to predict the risk status of IA. Specifically, image features
are extracted using both CNN and radiomics and combined
with patients’ clinical information for predictions. Our proposed
framework outperforms all other methods, with the highest
measures of accuracy, F2-score, and AUC of ROC. In future work,
we will investigate the use of domain adaptation techniques to
enhance the robustness and accuracy of our proposed method for
application in multi-site scenarios.
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