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A wearable device for at-home
obstructive sleep apnea
assessment: State-of-the-art and
research challenges
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Faculty of Electronics and Telecommunication, VNU University of Engineering and Technology, Hanoi,

Vietnam

In the last 3 years, almost all medical resources have been reserved for the screening

and treatment of patients with coronavirus disease (COVID-19). Due to a shortage

of medical sta� and equipment, diagnosing sleep disorders, such as obstructive

sleep apnea (OSA), has become more di�cult than ever. In addition to being

diagnosed using polysomnography at a hospital, people seem to pay more attention

to alternative at-home OSA detection solutions. This study aims to review state-of-

the-art assessment techniques for out-of-center detection of themain characteristics

of OSA, such as sleep, cardiovascular function, oxygen balance and consumption,

sleep position, breathing e�ort, respiratory function, and audio, as well as recent

progress in the implementation of data acquisition and processing and machine

learning techniques that support early detection of severe OSA levels.
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1. Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by repeated
interrupted upper airflow during sleep. Previous studies have reported that sleep disorders, such
as OSA, are associated with heart disease (1), diabetes type 2 (2, 3), stroke (4, 5), and depression
(6). Sleep apnea affects the quality of life and working performance and is associated with other
diseases; however, it does not lead to death by stopping breathing. This may be why OSA is
underestimated as not many people are aware of or diagnosed with it.

The prevalence of OSA has been rising and affecting all countries. An investigation by
Benjafield AV presents a global prevalence and burden that OSA may cause (using AHI and
AASM 2012 criteria), in which “936 million [95% confidence interval (CI) 903–970] adults aged
30–69 years (men and women) may have mild to severe OSA and 425 million (95% CI 399–450)
adults aged 30–69 years may have moderate to severe OSA globally” (7). In Vietnam, ∼8.5% of
adults, which is equivalent to ∼5.9 million persons, have an AHI of >15 (8), especially those
with systemic hypertension and chronic obstructive pulmonary disease (9, 10).

Despite the negative impact of OSA on health and its increasing prevalence, poor awareness
about OSA has been reported in many countries, such as Singapore (11), Saudi Arabia (12),
Pakistan (13), and, unfortunately, even worse in mid-and low-income countries. Currently,
polysomnography (PSG) is the gold standard for evaluating sleep apnea/hypopnea (14). PSG can
record multiple parameters of a person, such as brain waves [electroencephalography (EEG)],
nasal–oral airflow, thoracoabdominal effort, and snoring, within the 8 h sleeping at a hospital
(Figure 1).

During the COVID-19 pandemic, almost all resources were reserved for testing, diagnosing,
and treating patients with COVID. Hospitals did not have sufficient facilities or human resources
for other diseases, even in emergencies. This has led tomore people with OSA not being screened
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and diagnosed, resulting in a long waiting queue of people who
wish to meet the physician for a diagnosis at the laboratory. During
the post-COVID period, countries prioritized some urgent diseases,
such as cardiovascular diseases, cancers, hepatitis B, and dengue
fever, which increased the number of OSA cases and the severity.
This may be why people seem to be paying more attention to
alternative home OSA detection solutions. Therefore, early diagnosis
of OSA and suitable proposed therapies for patients have interested
many companies.

This study aims to review the possible impact of the SARS-CoV-2
virus andOSA and summarize state-of-the-art assessment techniques
for out-of-center detection of the main characteristics of OSA, such
as sleep, cardiovascular function, oxygen balance and consumption,
sleep position, breathing effort, respiratory function, and audio. The
study also aims to review recent progress in the implementation of
data acquisition and processing andmachine learning techniques that
support the early detection of severe OSA levels.

2. Association between COVID-19 and
OSA

The SARS-CoV-2 virus causes the infectious COVID-19, which
affects the respiratory system. It can cause lung complications;
therefore, it affects the airflow of patients, particularly those with OSA
which is usually characterized by upper airway obstruction at night.

Maas et al. evaluated 5,544,884 patient records, of which 9,405
were COVID-19-infected cases, to identify possible links between
OSA and the risk of COVID-19 infection and the severity of the
disease. The study found that among patients with COVID-19,∼34%
were hospitalized and 19% were diagnosed with respiratory failure.
The prevalence of hospitalized patients with OSA was higher than
that of those without OSA [15.3 vs. 3.4%, p < 0.0001; odds ratio
(OR) 5.20, 95% CI (4.43, 6.12)]. A similar result was found regarding
respiratory failure rate [OR, 1.98; 95% CI (1.65, 2.37)] (15).

Labarca et al. conducted a study of COVID-19-infected people
(≥18 years of age) to determine the association of OSA with long-
term symptoms and inflammatory cytokines (4 and 12 months after
the COVID treatment). The OSA group demonstrated poor effects
on insulin resistance levels, metabolic change, cytokine levels, and
symptoms compared with the non-OSA group (16).

A study by Alemohammad et al. in 2021, conducted with
275 (adult) participants diagnosed with OSA, reported that pro-
inflammatory characteristics of OSA may increase the risk of
COVID-19, and severe OSA was associated with higher COVID-19
prevalence among patients with OSA (17).

The prevalence of SARS-CoV-2, being a respiratory disease virus,
is thought to be associated with comorbid conditions, including age,
male sex, hypertension, elevated body mass index/obesity, diabetes,
and chronic obstructive lung disease. In addition, previous studies

Abbreviations: AASM, American Association of Sleep Medicine; AHI, Apnea–

hypopnea index; AI, Artificial intelligence; CNN, Convolutional neural

network; ECG, Electrocardiogram; EEG, Electroencephalogram; EOG,

Electroocoulogram; EMG, Electromyography; FFT, Fast Fourier transform;

HST, Home Sleep Testing; KNN, K-nearest neighbor; LR, Logistic regression;

OOC, Out-of-center; OSA, Obstructive sleep apnea; RF, Random forest; SVM,

Support vector machine; PSG, Polysomnography; PCB, Printed circuit board;

SpO2, Saturation of peripheral oxygen.

FIGURE 1

OSA patient is diagnosed using a multi-electrode PSG at a sleep

laboratory.

found that OSA was independently associated with an increased risk
of developing severe COVID-19; however, OSA may be a risk factor
for severe COVID-19 (18–20).

COVID-19 has not yet been completely controlled because it will
take years for humans to fully understand and synthesize specific
drugs for such a disease. Furthermore, much work should be done
to improve OSA screening and achieve more effective treatment.

3. Detection of main characteristics of
OSA

The early diagnosis of OSA and the development of suitable
therapies for patients have interested many companies. To date, PSG
has been the gold standard for evaluating sleep apnea/hypopnea (14).
PSG can record multiple parameters of a person, such as brain waves,
nasal-oral airflow, thoracoabdominal effort, and snoring, within at
least 8 h sleeping in a sleep laboratory. With the continuous support
of a technician, sleep is continuously recorded, and other sleep
conditions may be observed. However, the PSG test requires a person
to go to a sleep laboratory and stay overnight for an entire test,
which makes one feel uncomfortable and inconvenient. In addition,
costly PSG will limit the number of patients tested, especially those
in mid- and low-income countries. Therefore, the development of
alternatives, such as out-of-center sleep tests, allowing a person to
evaluate and predict a possible OSA at home [Home Sleep Testing
(HST)] plays an important role and will help more people access such
healthcare solutions and services.

Sleep studies in engineering, especially developing portable or
wearable mobile devices for evaluating OSA at home, have received
considerable attention from research groups worldwide. The studies
in the literature focused on six main topics summarized as SCOPER
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TABLE 1 Commercial HST devices.

Device Company Electrode Data storage (GB) Data recording
time (hours)

Reference

Nox T3s Nox Medical Breathing effort, respiratory
sound, gravity, position,
flow, snore, PWA; pulse,
SpO2; heart rate

4 built-in 24 with 1 AA battery noxmedical.com

ApneaTrak
Type 3 HSAT

Cadwell Industries Inc. Thoracic/abdominal effort,
snore sensor, thermistor,
SpO2, pulse rate, body
position.

0.1 built-in 18 cadwell.com/apneatrak

BWMini HST
Compass

Neurovirtual USA Inc. Effort, pressure transducer,
SpO2, pulse,
plethysmography, body
position, luminosity sensor

3.2 built-in 12 with 1 AA battery neurovirtual.com

Zmachine
Synergy

General Sleep Corporation EEG, respiratory effort
(RIP), snore, SpO2, pulse
rate, body position

8.0 built-in 300 with Lithium Ion 3.7
VDC

generalsleep.com

Somté Compumedics USA Nasal pressure, snoring,
thoracic and abdominal
effort, body position, SpO2,
pulse rate, limb movement,
EEG, EOG, EMG, ECG

Inserted card 36 compumedics.com

MediByte Jr BRAEBONMedical Airflow, snore, SpO2, pulse
rate, chest effort, body
position, CPAP pressure,
PPG

0.2 built-in 18 with 1 AA battery www2.braebon.com

Alice NightOne Philips Flow, snoring, thoracic
effort, SpO2, heart rate,
body position,
plethysmogram.

0.4 built-in 10 with 1 AA battery usa.philips.com

Cerebra Sleep
System

Cerebra Brain waves (EEG), Eye
movements (EOG),
Respiratory data, Pulse
oximetry, Heart rate (ECG),
Chin and leg activity
(EMG), Body position,
Snoring, Oxygen saturation
(SpO2).

0.3 built-in 13 with 1 AA battery cerebra.health

categorization (21): Sleep; Cardiovascular; Oximetry; Position; Effort;
and Respiratory.

HST is an attractive alternative to PSG for insurance companies
and patients because it is affordable. For a patient, having a sleep test
at home is much more convenient than spending a whole night in a
remote room and being monitored during sleep at a laboratory. In
addition, with HST, one does not need to book a bed in the presence
of a sleep technologist to monitor the sleep parameters.

This potential market for commercial HST devices has attracted
many investors (Table 1). The HST devices are normal full-fill type
II, III, and IV levels of sleep study, among which type II approaches
full PSG measurements outside the laboratory. The main difference
from type 1 devices is that the sleep study is performed without
a medical technician. The HST device usually is built-in with an
internal memory that allows 300 h data storage with a disposable
or rechargeable battery. The weight of the HST device (including
the battery) does not exceed 350 g. In addition, the user (patient or
medical doctor) can refer to the test results at home (Table 1).

In the research and development phase, many research
groups study SCOPER parameters to introduce more products to
manufacturers, focusing on reducing the number of sensors and
improving measurement accuracy.

Sleep parameters can be studied using electrooculography (EOG),
EEG, and electromyography (EMG) to acquire sleep data. The
sensors can be placed on the scalp, the forehead, the ear, or the
chest (22–25).

Shustak et al. proposed an ambitious project for an in-home
OSA detection system using temporary-tattoo EEG, EOG, and EMG
electrode arrays (26). They demonstrated that a polyurethane film-
based electrode array allowed for the simultaneous monitoring
of EMG, EOG, and EEG signals during napping and night
sleep. The electrode array was interfaced with a built-in low-
energy Bluetooth and an Intan SoC PCB for data collection
and processing.

A simple configuration of microphones (Earthworks M23,
Behringer ECM8000) was used to record snoring sounds during sleep
using a combination of a convolutional neural network (CNN) and
a recurrent neural network (RNN), as reported by Xi Long et al.
Overall, accuracy of 95.3 ± 0.5%, sensitivity of 92.2 ± 0.9%, and
specificity of 97.7± 0.4% were obtained in the study (27).

OSA can be studied by combining multiple approaches, such
as an electrocardiogram (ECG), EEG, and sPO2. Each approach
demonstrated the possibility of developing advanced devices for
OSA detection.
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FIGURE 2

A signal is detected by a transducer and converted into digital form, processed, and displayed on a user interface.

4. Data acquisition and processing

In general, a non-electric stimulus signal is converted into an
electrical signal by a transducer in analogic form, which is then
transformed into digital form using an ADC and finally to analogic
form again, enabling the user to see the result of the measurement
(Figure 2). However, the input data are disturbed by existing noise in
the measuring environment.

The signal-to-noise ratio can be improved using both hardware
and software. For example, in a sleep apnea study, one should select
the frequency range in which the data will be collected, and naturally,
the out-of-range ones are filtered out. As a result, the developer will
probably define the specific characteristics of the selected sensors for
specific purposes (Table 2). Furthermore, selecting suitable sensors
characterized within a limited time will also be effective for the
calibration step.

In addition to the hardware approach, the Fast Fourier Transform
(FFT), a means of mapping a signal, either in the time or space
domain, to its spectrum in the frequency domain, is usually
utilized in sleep apnea studies. FFT allows the computation of
discrete Fourier transform (DFT) of a sequence with high efficiency.
Therefore, the system may require less performance hardware and
significantly reduce computation time. For example, Belhaouari et al.
implemented an ECG using FFT to diagnose sleep apnea with 100%
accuracy (36). In addition, overnight breath recording data were
collected, conditioned by the FFT, and learned using random forest
(RF) and support vector machine (SVM), which offer an overall
accuracy of >90% (37).

The sleep stage was evaluated using brainwave signals from
EEG and FFT to improve accuracy (∼96.54%), and the performance
of automated sleep classification was reported by Delimayanti
et al. (38). FFT can also monitor non-invasive respiration using
ECG-derived respiratory (EDR) signals. A combination of FFT
preprocessing, linear and quadratic Discriminant (LD and QD)
models, K-nearest neighbor classifiers (KNN), SVM, and an
artificial neural network (ANN) offered an evaluation with 100%
accuracy (39).

The acquired and processed data can be deposited on the cloud
using various options. For example, the developer can either select
private or public, free or paid, or hybrid clouds from different
providers such as Amazon, Google, Microsoft, Alibaba, Oracle, IBM,
Digital Ocean, and Dropbox (Figure 3).

5. Machine learning in OSA study

The wearable device has fewer sensors for at-home sleep
apnea detection than the HST (commercially available). In
addition, machine learning and artificial intelligence (AI) are used
after data processing to improve the accuracy and precision of
the measurement.

RF, SVM, Logistics Progression, and Naive Bayes classifier are
the models typically used in sleep studies. Each model may be
suitable for one or two different signal types. For example, regularized
logistic regression (LR) appears faster for tracheal breathing sounds
than RF. In contrast, RF seems better than LR in blind-testing
accuracy, specificity, and sensitivity; therefore, both are good for OSA
research (40).

Álvarez et al. conducted research with 303 patients with OSA on
adult sleep apnea screening for >2 years at home using airflow and
SpO2 sensors. The study implemented SVM as a machine-learning
model and showed that the accuracy was >95% using both SpO2 and
airflow data (41).

Usually, a sleep study involves more than one machine learning
model to improve accuracy, specificity, and sensitivity. For example,
Gallo et al. implemented ML, KNN, RT, SVM-R, LR, and Adaboost
in their research to determine the optimal one in an OSA study (42).
In the study by Wu et al., RF, KNN, and SVM classifiers were used to
classify sleep apnea using EEG signals with an average accuracy rate
of 88.99% after 10-fold cross-validation (43).

Research groups have implemented deep learning in OSA studies.
Deep learning is a particular type of machine learning that can handle
different types of data, such as images, videos, and raw data. Deep
learning processes a large dataset. This requires more computing
power than human intervention.

Yue et al. reported the multi-resolution residual network (Mr-
ResNet) detecting nasal pressure airflow signals from a PGS
at sleep laboratories. According to the authors, the Spearman
correlation for AHI between the obstructive sleep apnea smart
system (proposed by the research group) and the registered
polysomnographic technologist score was 0.94 (p < 0.001) and 0.96
(p < 0.001), respectively. Furthermore, Cohen’s kappa scores for
classification obtained by the two technologists were 0.81 and 0.84,
respectively (44).

The 1D CNNmodel was used in the study by Lin et al. to develop
a sleep apnea system. The proposed model was composed of 10
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TABLE 2 Frequency range and selected sensors used in sleep apnea.

Sensor Measurement Range Reference

Accelerator Wake and sleep periods 0.1 Hz−0.4Hz (28)

Acoustic sensor Respiratory sounds 100–1,400Hz (29)

Acoustic sensor Tracheal sound 100–3,000Hz (30)

Acoustic sensor Sound transmission in respiratory
system

150–500Hz (31)

Pressure sensor Pressure 0.06–1.7Hz (32)

Captive microphone Respiratory sound 30–126Hz (33)

Captive microphone Respiratory sound 20–6,000Hz (34)

Acceleration sensor Actigraphy, body position 1–4Hz (35)

identical CNN-based feature extraction layers, one flattened layer,
four identical classification layers, and a softmax classification layer.
The ECG data were extracted from two sleep laboratories to train the
model. For the per-recording classification, the accuracy was 97.1%,
specificity was 100%, and sensitivity was 95.7% (45).

Recent research reported by Nguyen et al. demonstrated a
head-based sleep-aid system for promoting fast falling into sleep
and improving the accuracy of sleep tracking. Using a multi-
sensor configuration (accelerator, PPG sensor, and bioelectrodes)
for EEG, EOG, sleep posture, breathing, and heart rate, the author
implemented a set of algorithms to achieve great agreement with
results obtained by a PSG (46).

6. Discussion

Home OSA assessment has many advantages; however, some
challenges must be overcome to make such alternative solutions
more popular and accepted by patients, physicians, and medical
insurance companies.

Existing out-of-center OSA assessment devices employ fewer
components than a PSG; however, they still have complicated moving
parts that may not be convenient for patients with backgrounds
such as chronic obstructive pulmonary disease, congestive heart
failure, and neuromuscular diseases. In addition, to our knowledge,
the average price of an HST device is >2,500 USD. However,
a patient can sometimes hire an HST device for ∼300 USD
per night.

6.1. Challenges for HST development

HST, as discussed earlier, has many advantages for patients;
however, there are challenges that solution and product developers
must overcome to make such testing methods more prevalent
for patients, physicians, and medical insurance companies. A
review of the literature reveals the following key challenges for
device developers.

6.1.1. Accuracy improvement
HST uses less hardware on board; therefore, assessments

may miss important information about OSA. HST does

not record sleep, but only breathing and/or a stop in
breathing; therefore, the accuracy needs to be improved by
combining two or three sensors on a board. Accuracy can
be improved by implementing suitable machines and deep
learning techniques.

6.1.2. Limit of the tested population
Existing HST devices employ fewer components than

PSG; however, they still have complicated moving parts
such as pumps, electrodes, and control panels. Such a
configuration may not be suitable for patients with chronic
obstructive pulmonary disease, congestive heart failure, or
neuromuscular disease. For the patient’s convenience, the
system configuration must be simpler and more comfortable.
Two or three types of sensors on a small board may be
sufficient to collect two or three types of signals associated
with OSA characteristics.

6.1.3. Collaboration with physicians
To date, most studies on system development, including devices

and software, for OSA detection and diagnosis have been reported
by technical teams; however, technology and solutions must be
reviewed and revised by physicians from sleep laboratories. A
loose collaboration with physicians may lead to the number
of samples (tested participants) not being large enough for a
sustainable evaluation of the device and solution. The strong
support of physicians will guide the engineering team in the
right and shortest path for medical equipment that patients
will accept. In addition, this support can help increase the
number of tested participants according to different variants (age,
sex, or medical history compatible with existing solutions and
services) to improve the accuracy of the algorithms and machine
learning techniques.

6.2. The trend in OSA device development

The trend in developing mobile devices for OSA detection
is a smart combination of a simple hardware configuration
that integrates two or three kinds of sensors on a small PCB.
Suitable data acquisition and processing should be applied
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FIGURE 3

The data can be deposited on a service cloud.

to remove artifacts and enhance the signal-to-noise ratio.
Furthermore, the data of a study should be sufficiently large to
implement machine or deep learning models and to enhance the
accuracy, sensitivity, specificity, and precision. Importantly, data
mining should be conducted in a case–control study using the
PSG method.

Data processing and storage appear to benefit from the
development of the information and electronics industries.
Advanced battery technology allows a wearable sleep-testing
device to operate for 10 h or more with a compact rechargeable
lithium-ion polymer battery. Developers can also choose wire
or wireless charging modes for their solution. The cutting-edge
technology with Bluetooth Ultra Low Energy and nano-range
energy consumption integrated circuits and sensors make it
possible for the device to work a whole night without recharging.
Machine learning models can run on a Chip, Edge Device, or
Service Cloud.

7. Conclusion

Today, digital transformation in healthcare is taking advantage
of cutting-edge technologies and innovations to deliver sustainable
service and medical solutions to patients, medical staff, and
healthcare bodies. Home sleep apnea test (HSAT) is a promising and
alternative sleep study solution for people with OSA that may help to
save time and money while enabling improved interaction between
physicians and patients. HSAT involves almost all major digital
transformation trends in healthcare including health wearables, AI
screening, disease history analysis, e-doctor, and data aggregation.
However, to popularize such an advanced solution to one-seventh

of the world’s adult population (∼1 billion people, especially people
in mid- and low-income countries), great efforts of the developers,
medical staff, patients should be made to simplify the hardware
with a smaller number of sensors, to improve the accuracy of
the test, to use with ease, and to reduce the service cost of
the solution.
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