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Objective: Today, cerebrovascular disease has become an important health hazard.

Therefore, it is necessary to perform a more accurate and less time-consuming

registration of preoperative three-dimensional (3D) images and intraoperative

two-dimensional (2D) projection images which is very important for conducting

cerebrovascular disease interventions. The 2D–3D registration method proposed in

this study is designed to solve the problems of long registration time and large

registration errors in 3D computed tomography angiography (CTA) images and 2D

digital subtraction angiography (DSA) images.

Methods: To make a more comprehensive and active diagnosis, treatment

and surgery plan for patients with cerebrovascular diseases, we propose a

weighted similarity measure function, the normalized mutual information-gradient

di�erence (NMG), which can evaluate the 2D–3D registration results. Then, using a

multi-resolution fusion optimization strategy, the multi-resolution fused regular step

gradient descent optimization (MR-RSGD) method is presented to attain the optimal

value of the registration results in the process of the optimization algorithm.

Result: In this study, we adopt two datasets of the brain vessels to validate and

obtain similarity metric values which are 0.0037 and 0.0003, respectively. Using the

registration method proposed in this study, the time taken for the experiment was

calculated to be 56.55s and 50.8070s, respectively, for the two sets of data. The results

show that the registration methods proposed in this study are both better than the

Normalized Mutual (NM) and Normalized Mutual Information (NMI).

Conclusion: The experimental results in this study show that in the 2D–3D

registration process, to evaluate the registration results more accurately, we can

use the similarity metric function containing the image gray information and spatial

information. To improve the e�ciency of the registration process, we can choose the

algorithm with gradient optimization strategy. Our method has great potential to be

applied in practical interventional treatment for intuitive 3D navigation.

KEYWORDS

2D–3D registration, weighted similarity measure function, multi-resolution fusion

optimization strategy, pyramid convolution, treatment of cerebrovascular diseases

1. Introduction

In the surgical navigation treatment of cerebrovascular diseases, an accurate identification of

the lesion location is one of the important factors that determine the operation plan. Improving

the level of multimodal data analysis and image processing technology is an important step in

surgical navigation treatment.
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Preoperative 3D scanning images can visualize the lesion and

provide 3D data information, but they cannot be obtained in real

time during surgery, while 2D images cannot provide an accurate

3D navigation information. If both 2D and 3D images are aligned,

it can provide an accurate navigation information and improve

the success rate of surgery. Multimodal 2D–3D image registration

is the key technology. Image registration is the integration of

image information gathered from different times or conditions. The

goal of image registration is to find the conversion relationship

between different images at the same location to obtain an integrated

information of two images (1–3).

Multimodal image registration plays an important role in clinical

nursing, mainly by including computed tomography angiography

(CTA) and digital subtraction angiography (DSA), shown as the CTA

image in Figure 1A and DSA image in Figure 1B. In the whole 2D–

3D registration process, two types of images, namely, the floating

image and the reference image, are required as data sources (4),

and the spatial position transformation operation of floating image

is required to align it with the reference image to complete the

registration (5). However, the registration accuracy of both CTA

images and DSA images is low at present, while the time spent on

registration is long, which may reduce the surgical efficiency.

At present, for evaluation of the results of the 2D–3D image

registration, the selected similarity measurement function includes

only the gray-level information of a single image and lacks the

spatial information of the image as an aid, resulting in large errors

in the results of the final similarity evaluation, such as Normalized

Mutual (NM) and Normalized Mutual Information (NMI) (6, 7). In

the 2D–3D registration process, the selected optimization algorithm

considers only the optimal value and it does not consider improving

the registration efficiency, such as Powell and Gradient Descent (GD)

(8, 9).

We propose a weighting function with normalized mutual

information and gradient difference, considering the grayscale and

spatial information of the image, and applying Regular Step Gradient

Descent (RSGD) as a means to find the optimal value of the

optimization function, reducing the step size by changing the

direction of each iteration, avoiding the local optimal value, and

improving the speed of registration. The multi-resolution strategy

used in this study is the Gaussian pyramid convolution algorithm

(10). After the input image is convolved by a layer of convolution,

it is sent to the Gaussian pyramid for multi-resolution sampling

processing. The pyramid algorithm samples according to the

resolution of the input image, and divides the whole sampling process

into coarse resolution and fine resolution. The image resolution is the

degree of quantization of the image in the horizontal and vertical

directions, refers to the degree of image detail that can be shown

(11–14). Low resolution image is used to analyze larger structures or

the overall content, while high resolution image is used to analyze

detailed characteristics. A multi-scale strategy is used to observe

continuous images at different scales which helps to understand the

image content (15, 16). By applying a Gaussian kernel for multi-

scale changes (17), the multi-resolution strategy proposed in this

study can enhance the robustness of the algorithm and improve the

registration efficiency.

This study makes the following contributions.

1. The 2D–3D registration method proposed in this study

optimizes the efficiency of the registration process and the accuracy

of the registration results compared to those of the traditional

registration methods.

2. We propose normalized mutual information-gradient

difference (NMG) as a weighting similarity metric function for

the registration results, which includes both grayscale and spatial

information of the images.

3. The proposed method chooses multi-resolution fused regular

step gradient descent (MR-RSGD) as an optimization algorithm

strategy to avoid inefficiency and the local optimal value of

the registration result. The proposed method divides the coarse-

resolution and fine-resolution images into two sampling processes.

Regular step gradient descent (RSGD) can find the optimal

value to avoid falling into local extremes, and the result of the

objective function is kept constant as a condition for stopping the

iterative optimization.

2. Related work

In multimodal image registration, the manual manipulation of

2D–3D registration is often limited by the amount of time and

expertise required to register segmented data to an image. To

be able to reduce the errors introduced by subjectivity, a new

intensity-based 2D–3D registration method is proposed, which can

exploit all forms of visual information, including not only variations

in image intensity but also the apparent contours of structures.

However, it uses only information about the grayscale values of

pixels without taking into account their surface characteristics

(18). A method is proposed that allows to pre-compute all time-

intensive steps, entwining spatial information from 3D volumes and

2D projections.

The main work in the actual registration task is reduced to a

simple resampling of pre-computed values, which can be performed

on the graphics processing unit (GPU), but requires a 3D Radon

transformation of the input image, which leads to an increase in

computational effort, is also susceptible to image distortion, and can

only be applied if the object undergoes a planar to flat transformation

(19). A globally optimal method is proposed that iteratively searches

the transformation space, constraining the objective function at each

stage and discarding parts of the transformation space for which no

solution is possible, but only for points, lines, or a combination of

both (20).

A new probabilistic 2D–3D vessel registration method that

extends the Gaussian Mixture Model (GMM) to 2D–3D registration

and integrates orientation information throughout the registration

framework is proposed. The final evaluation obtained is based on the

2D projection error, but the out-of-plane orientation error estimate

is much larger due to the planar setting (21). A comprehensive

landmark-based 2D–3D registration method that uses X-ray images

of the object and a 3D reference model to reconstruct the object’s

3D pose is proposed. The aforementioned method incorporates an

automated 3D landmark extraction technique and a deep neural

network for 2D landmark detection, but considers only the limb

of one animal sample, ignoring the presence of muscle and other

types of soft tissue in other real animal models, complicating the

2D landmark detection, performing noise simulations that do not

take into account the model of the X-ray source the response of the

detector (22).

The 2D–3D registration based on a convex optimization

procedure is applied to a 3D central model of a coronary artery with a

pair of perspective images, and the proposed optimization procedure

jointly optimizes the correspondence between points and projections,
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FIGURE 1

A comparison of three-dimensional computed tomography angiography (3D CTA) image and two-dimensional digital subtraction angiography (2D DSA)

image presentation, where (A) 3D CTA image is a floating image, and (B) 2D DSA image is the reference image.

as well as the relative transformations. However, the ability to include

translations through centrality is limited, the design of a fast solver

for the convex procedure is not considered, and the exact recovery

is guaranteed only when there is no noise in the image (23). Biplane

2D–3D registration was used to measure the 3D joint motion, relying

primarily on an automated 2D–3D registration procedure based

on computed tomography (CT) and magnetic resonance imaging

(MRI) images used together to quantify joint motion, but the study

was limited to passive shoulder motion and the accuracy of the

registration method was limited by the bone quality, speed of motion,

and shoulder orientation in the biplane fluoroscopic field of view,

and therefore could not be generalized to motion with significant

deviations in this area (24).

The use of 2D–3D catheter-based continuous wayfinding fusion

of preoperative or intraoperative images in liver surgery can add

relevant information to navigated procedures, and the proposed

real-time registration of 3D rotational angiographic images in the

operative period with intraoperative single-plane 2D fluoroscopic

images can improve the guidance of surgical interventions; however,

this method deals only with 2D image catheters and the accuracy of

the results is low (25).

The choice of the similarity measure function plays an important

role in the accuracy of the final result. The statistical method

mutual information (MI) (26, 27), which uses the joint probability

distribution images tomeasure the strength of statistical relationships

between images, is well adapted to images of different modalities

and is therefore used widely in multimodal medical registration.

When using mutual information as a similarity metric in the

registration framework, mutual information can show a high

performance if the recovered displacement is small and it is difficult

to obtain a larger displacement, which highlights the advantages

of fast global optimization of mutual information. To enhance

the fast computation of mutual information and its robustness,

many improved algorithms based on the MI have been proposed,

introducing normalized mutual information processing (NMI) for

sensitivity overlap (28, 29), optimizing the computation of joint

distribution, and combining with other intensity-based similarity

metrics to form a new metric (30). However, the mutual information

calculates only the gray value of each pixel of the image and does not

take the spatial features into account, so the spatial information is

missing, resulting in a slightly lower registration efficiency.

After choosing the similarity metric function, the choice of

optimization algorithm also affects the results of final registration.

Powell is mostly used for a local search of optimal values, which

has the features of simple calculation, fast convergence, and

high accuracy, but it is easy to fall into the local optimal point

when searching for the registration parameters, resulting in

an insufficient accuracy of the registration. GD can reduce

the iterative optimization time to iterate in the direction

of the fastest change of the objective function value (31),

which can improve the speed of the algorithm, but it does

not guarantee to find the global optimal solution that meets

the requirements because of the limitation of each iteration

step (32–34).

3. Methods

The essence of 2D–3D registration is the mathematical problem

of iteratively solving the optimal value of an objective function, first

adjusting the spatial position of the 3D floating image, then projecting

the 3D floating image to generate the 2D projection image, then

sampling the projection image and the reference image by multi-

resolution strategy, and relying on the optimization algorithm to

iteratively find the optimal value, so that the similarity between

the two images is maximized, as shown in the 2D–3D registration

flowchart in Figure 2.

In the process of 2D–3D registration, we need to first solve the

problem of different dimensions of the registration image, using a

projection algorithm to project the 3D preoperative image to produce

a 2D projection image, the process is the digitally reconstructed

radiograph (DRR) algorithm, so that the whole 2D–3D registration
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FIGURE 2

The framework of the proposed two-dimensional three-dimensional (2D–3D) registration method, from the very first input 3D image and 2D image, 3D

image is projected to generate 2D image digitally reconstructed radiograph (DRR), 2D image and DRR are processed by pyramidal multi-resolution, then

the optimization algorithm regular step gradient descent (RSGD) finds the optimal value of similarity measure function to attain the best registration e�ect.

is converted to 2D–2D registration. Unlike the shadow formed by

ordinary light, the DRR technology is a rendering operation for 3D

images, which are converted according to the formation principle of

X-ray images. By performing the DRR operation on a 3D object, the

corresponding projection image of the object can be obtained, also

called the DRR image. The process of DRR generation is shown in

Figure 2.

3.1. The normalized mutual
information-gradient di�erence

In the 2D–3D image registration process, different similarity

metric functions have different abilities to capture image information,

and the registration results are dependent on factors such as image

morphology, tissue class, and feature information. The proposed
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function in this experiment is a weighted normalized mutual

information-gradient difference metric function.

To improve the accuracy of the registration, this study improves

on the two aforementioned similarity metric functions by assigning

a coefficient to each of them and combining them to form a new

similarity metric function called the NMG, which combines the

information of NMI and GD, so that it can take advantage of the

normalized mutual information in multimodal image registration

and complement the lack of gradient information. Its definition is

shown in Equation (1) in Appendix.

The α1 and α2 of Equation (1) in Appendix are the weights of

NMI and GD, respectively, and their sum is 1. In this experiment,

α1 and α2 are both taken as 0.5. Both mutual information (MI)

and normalized mutual information (NMI) are based on image

information, thus building statistical models based on discrete

random variables, and MI represents the information common

between two variables. It evolved from Shannon’s entropy (Shannon’s

entropy) theorem (35, 36), while normalized mutual information

is a further improvement over the former. Mutual information is

widely used in image registration, especially in multimodal image

registration. The Shannon entropy formula for image A is shown in

Equation (2) in Appendix.

The joint entropy formula for image A and image B is shown in

Equation (3) in Appendix.

The A and B in all Appendix Equation are pixels in the two

images, the P(Ai) and P(Bj) of Equation (2) in Appendix are

edge probability distributions, and the p(Ai,Bj) of Equation (3) in

Appendix is a joint probability distribution. The mutual information

is expressed, as shown in Equation (4) in Appendix.

The normalized mutual information makes a change based on

mutual information by removing the joint entropy of the images by

the sum of the Shannon entropy of the two images. It is defined as

shown in Equation (5) in Appendix.

Gradient difference (GD) is to first obtain the gradient images of

two images separately, then perform the gradient image subtraction

operation to obtain the difference image, and use the difference image

to measure the degree of similarity. GD judges the final registration

result by measuring the change of low-frequency gray value due

to gradient reduction. The formula is shown in Equations (5)–(7)

in Appendix.

In Equations (5)–(7) in Appendix, the dA
dm

and dB
dm

represent the

gradient images in the horizontal direction of the two images, dA
dn

and
dB
dn

represent the gradient images in the vertical direction of the two

images, IdV is the difference between the horizontal gradient images,

FIGURE 3

Multi-resolution fusion optimization strategy samples the input image, according to the di�erent image resolutions, and the registration process is

divided into two types from coarse resolution to fine resolution. The regular step gradient descent (RSGD) algorithm performs iterative optimization of

the registration through the registration results and continuously adjusts the computed tomography (CT) image position parameters to match the

optimal projection position, so as to obtain the optimal value of the registration result.
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IdH is the difference between the vertical gradient images, s is the scale

constraint factor, σv and σh are constants.

3.2. Multi-resolution fusion optimization
strategy

The 2D–3D registration requires adjusting the position of the

3D image to generate the corresponding projection image in each

iteration, which leads to an excessive computation of the registration.

To reduce the time consumed in the whole registration process, a

multi-resolution strategy can be incorporated into the registration

process. Themulti-resolution strategy divides the registration process

into two, to realize the process from coarse to fine registration,

which can improve the probability of finding the optimal solution in

the optimization iteration, accelerate the convergence speed of the

algorithm, and reduce the registration time loss.

The basic idea of multi-resolution is that the multi-resolution

strategy arranges the images in order of their resolutions and

aligns them from the lowest to the highest resolution, and the

result of the last registration is used as the initial value of the

next one. This bottom-up registration method can render the low-

resolution images smooth during the registration process, thus

improving the robustness of the images, avoiding the algorithm

from converging badly in the iterative process and falling into the

local optimum, which greatly improves the efficiency and stability of

the registration algorithm, speeds up the registration optimization

speed, and improves the capture range. In this study, the Gaussian

pyramidal convolution algorithm is used for the multi-resolution

processing of images, so that the fused multi-resolution pyramidal

convolution algorithm improves the stability of registration and

registration efficiency.The principle behind the algorithm is that the

layer gk image is convolved from the layer gk−1 image through two

convolutional layers characterized by different Gaussian kernels. The

computational formula is given in Equation (9) in Appendix.

In Equation (9) in Appendix, gk(i, j) denotes the layer k image,

i and j denote the number of rows and columns of the image, and

W(m, n) is a window function.

After the similarity metric function of the registration is

determined, a suitable optimization algorithm is needed to solve

the optimal value of the objective function, so the selection of the

optimization algorithm affects the final result of the registration

directly. Compared with the traditional gradient descent algorithm,

in this experiment, the RSGD algorithm is used to reduce the step

size when the gradient direction is changed to update the parameter

values each time, it can prevent the generation of excessive step

sizes during the gradient descent process, and the solution along the

gradient descent direction can improve the registration speed. In each

iteration, RSGD takes a fixed step along the gradient direction of the

metric and solves for the parameter values within this gradient range

for that step value condition. The optimization algorithm formula

is given in Equation (10) in Appendix. The optimization process is

shown in Figure 3.

In Equation (10) in Appendix, θk denotes the parameter value

updated in the iteration of k times , θk+1 denotes the parameter

value updated in the iteration of k + 1 times, k denotes the number

of iteration times, αk denotes the step size chosen in the gradient

Input: Moving image, Fixed image;

Output: Spatial location parameters and similarity

measure values for registration results;

1: convolution(Moving image, Fixed image,kernel);

2: next bold resolution image ⇐ Bold resolution

moving image A ∗ kernel;

3: next fine resolution image ⇐ Fine resolution

moving image B ∗ kernel

4: pyup(moving image A, dst_A, size),pydown(moving

image B, dst_B, size)

5: NMG(dst_A, fixed_A), NMG(dst_B, fixed_B);

rx , ry , rz , tx , ty , tz ⇐







(fixedA − dstA)

(fixedB − dstB)
;

6: After multi-resolution sampling, the calculation of

the target value of the similarity measure function

is started.

7: NMI(Am,Af ) = 1+
MI(Am ,Af )

H(Am ,Af )
;

8: NMI(Bm,Bf ) = 1+
MI(Bm ,Bf )

H(Bm ,Bf )
;

9: GD(Am,Af ) =
∑

m,n
σv

σv+(IdV (m,n))2
+

∑

m,n
σh

σh+(IdH (m,n))2
;

10: GD(Bm,Bf ) =
∑

m,n
σv

σv+(IdV (m,n))2
+

∑

m,n
σh

σh+(IdH (m,n))2
;

11: NMG = α1 · INMI + α2 · IGD;

12: while r(fixed image - moving image)(rx , ry , rz), t(fixed

image - moving image)(tx , ty , tz)is not 0 do

13: if metric is not optimal then

14: α ⇐ 0;

15: d ⇐decrease dm;

16: while α < αmin, d < dm do

17: d ⇐ f (NMG)
′

;

18: NMG ⇐ NMG− αd;

19: end while

20: else

21: Output registration results

22: end if

23: end while

24: return spatial Location parameter rx , ry , rz , tx , ty , tz& Metric

value

Algorithm 1. Pyramid convolutional fusion regular step gradient descent

(RSGD) optimization process.

direction in the iteration of k times, and dk times represent the

gradient searched in the iteration of k times.

In the whole optimization algorithm, the process of finding the

optimal value of the similarity measure function, the optimization

method adopted is the multi-resolution strategy fused with the

conventional stepwise gradient descent algorithm to solve, the

pyramid convolution algorithm first samples the coarse-resolution

image and the fine-resolution image in two processes from coarse to

fine, so as to speed up the alignment efficiency. The similarity metric

function finds the metric value and the spatial location parameter, so

as to analyze whether the obtained value is the optimal value. Then,

the similarity metric function is used to obtain the metric values and

spatial location parameters to determine whether the acquired value

is the optimal value, if not, the target value is iteratively obtained

using the conventional stepwise gradient descent algorithm to speed

up the registration, and the optimal value is approximated finally. The

algorithm code about this process is shown in Algorithm 1.
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FIGURE 4

Five sets of controlled experiments were done for the first set of vascular data under three optimization algorithms, Powell, gradient descent (GD), and

regular step gradient descent (RSGD). Change the five times position space parameters of the input image, respectively. The first column represents the

input digital subtraction angiography (DSA) image, the second column represents the digitally reconstructed radiograph (DRR) image generated by the

Powell algorithm, the third column represents the DRR and DSA registration generated by the Powell algorithm, the fourth column represents the DRR

image generated by the GD algorithm projection, the fifth column represents the DRR and DSA registration maps generated by the GD algorithm

projection, and the results show that some error still seems to be present, the sixth column shows the DRR image generated by the RSGD algorithm, and

the seventh column shows the DRR and DSA registration maps generated by the RSGD algorithm, which shows that the registration error is reduced and

the registration accuracy is improved compared with the previous two algorithms. The registration results of vessel obtained by Powell in the third

column and by GD in the fifth column have errors between the floating image and the reference image, as indicated by the blue arrows.

TABLE 1 The parameters associated with the first set of cerebrovascular

data, the size and resolution of the input three-dimensional computed

tomography angiography (3D-CTA) images and two-dimensional digitally

reconstructed radiograph (2D DRR) images.

Data Size Resolution

CT image 512×512×726 0.3828×0.3828

Analog X-ray image (DRR) 730×941×1 0.38×0.38

TABLE 2 Angle deviation, position deviation, and metric value of the image

registration result of blood vessel data.

Powell GD RSGD

Rotation amount along X/(◦) 1.1183◦ 0 0

Rotation amount along Y/(◦) 0.0018◦ 0 0

Rotation amount along Z/(◦) 0 0 0

Translation amount along X/(mm) 0 0 0

Translation amount along Y/(mm) 0.2361 0 0

Translation amount along Z/(mm) 0 0 0

Registration time/(s) 61.9249 58.7534 56.5500

Metric value 1.9538 0.0520 0.0037

4. Results

In the whole registration process, first, the 3D floating image

entering the registration is spatially transformed and its position

parameters are continuously adjusted to get the best projection

position, the projection image is projected to get the qualified

projection image, and the 2D reference image is pre-processed at the

same time. Second, the Gaussian pyramid convolution algorithm is

TABLE 3 The parameters associated with the second set of brain data, the

size and resolution of the input three-dimensional computed tomography

angiography (3D-CTA) images and two-dimensional digitally reconstructed

radiograph (2D-DRR) images.

Data Size Resolution

CT image 512×512×675 0.3828×0.3828

Analog X-ray image (DRR) 730×941×1 0.38×0.38

TABLE 4 Angle deviation, position deviation, and metric value of image

registration result of blood vessel data.

Powell GD RSGD

Rotation amount along X/(◦) 1.6180◦ 0 0

Rotation amount along Y/(◦) 0.2304◦ 0 0

Rotation amount along Z/(◦) 0.3820◦ 0 0

Translation amount along X/(mm) 0.1988 0 0

Translation amount along Y/(mm) 0 0 0

Translation amount along Z/(mm) 0.0157 0 0

Registration time/(s) 53.5833 53.0519 50.8070

Metric value 1.9522 0.0562 0.0003

used for multi-resolution processing, and both the projection image

and reference image are sampled from coarse to fine resolution.

This process not only improves the signal-to-noise ratio of the

sampled signals and the robustness of the algorithm but also

increases the speed of registration by compressing the sampling

information at each point. The similarity of the sampled projection

and reference images is evaluated by the similarity metric function,

the optimization algorithm iteratively solves the optimal value of the
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FIGURE 5

Five controlled trials of three optimization algorithms on blood vessel data and brain data. The labels in row (A–E) represent the tests conducted under

di�erent initial positions of 3D CTA images. The three initial rotation position parameters of the first group are 0, 0, 0, and the three translation position

parameters are 10, −50, −70. Then the remaining five groups can change the measurement value of 20 each time based on the data of the first group.

The first column represents the original DSA image, the second, fourth and sixth columns represent the DRR image generated under di�erent

optimization algorithms, and the third, fifth and seventh columns represent the registration results of the generated DRR image and DSA image.

objective function, until the global optimum is obtained, and the

registration process is completed. The first set of data used in this

experiment pertains to blood vessel data in a human body, and the

data sampled from the CT images and DRR images are shown in

Table 1.

As regards the translation of the initial position in CT, rotation

values are specifically taken as 0 in the X-axis rotation angle, 0

in the Y-axis rotation angle, 0 in the Z-axis rotation angle, 10

mm for the initial value of translation in the X-axis direction,

–50 mm for the initial value of translation in the Y-axis direction,

and –70 mm for the initial value of translation in the Z-axis

direction, rx = 0, ry = 0, rz = 0, tx = 10 mm, ty = –50 mm,

and tz = –70 mm. Table 2 shows the solutions using the first

set of data under the same NMG with the application of three

different optimization algorithms, Powell, GD, and RSGD. From

Table 2, we can see that the registration result error and registration

time of the Powell algorithm are larger than those of the other

two algorithms, and the registration result error of both GD and

RSGD is 0.

The experimental results indicate that the accuracy of the

registration result can be improved by applying the gradient

optimization algorithm to the improved similarity measure
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FIGURE 6

Five sets of controlled trials were done for the second group of brain data under three optimization algorithms, Powell, gradient descent, and regular step

gradient descent (RSGD). Change the five times position space parameters of the input image, respectively. The first column represents the input digital

subtraction angiograph (DGA) image, the second column represents the digitally reconstructed radiograph (DRR) image generated by the Powell

algorithm, the third column represents the DRR and DSA registration generated by the Powell algorithm, the fourth column represents the DRR image

generated by GD algorithm projection, the fifth column represents the DRR and DSA registration maps generated by the GD algorithm projection, and the

results show that some error still seems to be present, the sixth column shows the DRR image generated by the RSGD algorithm, and the seventh column

shows the DRR and DSA registration maps generated by the RSGD algorithm, which shows that the registration error is reduced and the registration

accuracy is improved compared with the previous two algorithms, the registration e�ciency is also improved. The registration results of the brain

obtained by Powell in the third column and by GD in the fifth column have errors between the floating image and the reference image, as indicated by

the blue arrows. The labels in row (A–E) represent the tests conducted under di�erent initial positions of 3D CTA images. The three initial rotation

position parameters of the first group are 0, 0, 0, and the three translation position parameters are 10, −50, −70. Then the remaining five groups can

change the measurement value of 20 each time based on the data of the first group.

function, until the registration error of the spatial parameters

tends to 0. Moreover, the time used by RSGD is significantly

smaller than that of than the other two optimization algorithms.

In summary, RSGD is significantly better than the other two

optimization algorithms in iterative optimization of the similarity

measure function to find the optimal value. The final experimental

results show that the iterative optimization of NMG by applying

the RSGD algorithm improved the efficiency and time of

registration, and improved the stability, robustness, and accuracy

of registration. For two sets of test data, the registration values

obtained under different optimization algorithms are shown in

Figure 4.
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FIGURE 7

Under the condition of di�erent similarity measure functions, the measure values of the three optimization algorithms.

The three sets of similarity metric values under the three different

optimization algorithms are shown in Table 3. It can be visualized that

under the RSGD algorithm optimization, not only is the registration

time the fastest, but also the final similarity metric value is also

the smallest, and the registration accuracy is the highest. To verify

that the RSGD based on the multi-resolution strategy proposed in

this study to find the optimal value of NMG has better registration

efficiency and stronger robustness, controlled trials were carried

out by changing the parameters of the initial position, and the

experimental results are shown in Figure 5.

To verify the advantages of the weighting function and the

optimization algorithm proposed in this study, two controlled

experiments of three optimization algorithms (Powell, GD, and

RSGD) under three similarity metric functions (MI, NMI, and NMG)

were conducted on two sets of data, the blood vessels and the brain,

and the comparative experimental results are shown in Figure 4,

analyzed by the qualitative and quantitative results obtained from

the aforementioned sets of experiments, and the registration method

proposed in this study shows certain advantages in registration

efficiency and registration accuracy.

To verify that the registration method proposed in this

experiment has stronger robustness and can adapt to images of

different parts of the human body and different image styles, the

second set of brain data was selected for the experiment, and the

relevant data are shown in Table 3.

After conducting the second set of data experiments, it can be

seen from Table 4 that the conclusions drawn are consistent with

the conclusions of the first set of data experiments, the RSGD

algorithm for iterative optimization of NMG, the accuracy of the

experimental results obtained, and the registration time spent is

the best performing set. The results of the Powell algorithm for

registration have larger errors in rotation angle and translation

distance compared to the other two optimization algorithms, and

the registration time used is larger than those of the other two

optimization algorithms. The values of the rotation angle error and

translation distance error for both the GD and RSGD algorithms

are zero, and the registration time used for the RSGD algorithm

is smaller than that of the GD algorithm. The RSGD proposed

in this experiment is applied to the NMG registration method,

and the results of the registration experiments are good, with the

distance error of each group being 0, the angle error being 0, the

least time consumed, and the error does not increase due to the

selection of different parts and different image styles, indicating that

the algorithm proposed in this experiment has better generalization

applicability and stronger robustness.

The results of the second set of data experiments are shown in

Figure 6. The registration similarity metric values for the second set

of data are shown in the Figure 6, and according to the experimental

results, it can be seen that the registration results under the RSGD

optimization algorithm are more accurate than the other two. The

same transformation of the initial position parameters is performed

for the second set of data to verify the universality and stability of the

registration framework in this article.

To verify the advantages of the weighting function and the

optimization algorithm proposed in this study, two controlled

experiments of three optimization algorithms (Powell, GD, and

RSGD) under three similarity metric functions (MI, NMI, and NMG)

were conducted on two sets of data, the blood vessels and the brain,
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FIGURE 8

The registration time spent by the three optimization algorithms under the conditions of di�erent similarity measure functions.

and the comparative experimental results are shown in Figures 7, 8,

analyzed by the qualitative and quantitative results obtained from

the aforementioned sets of experiments, and the registration method

proposed in this study shows certain advantages in registration

efficiency and registration accuracy.

5. Discussion

During the intervention of cerebrovascular disease, accurately

finding the vascular morphology of the target region will greatly

improve the success rate of the operation. In the field of

2D–3D medical image registration, it is important to improve

the registration accuracy and reduce the registration time to

locate the lesion more accurately in surgical procedures. When

multi-resolution completes sampling, the similarity is obtained

by NMG and the optimal value is iteratively obtained by the

RSGD algorithm, so that our method can achieve the effect

of optimal registration, and the spatial position parameters of

the CT image are continuously adjusted in this process, so

that the projected image can be accurately aligned with the

reference image.

According to the preliminary experiments and controlled

experiments done on two groups of human data, the finally presented

experimental data and registration results show that the registration

method proposed in this experiment has a better performance for

2D–3D registration. The errors of spatial position parameters of the

images in both sets of experiments are 0, and the spent registration

time is also the smallest. The experimental results obtained from

the control experiments after the initial spatial parameters are

changed also meet the requirements. The traditional similarity metric

functions, MI and NMI, contain only the grayscale information

of the image, which leads to an increase in the error of the final

registration results.

The fusion with the gradient difference function makes up for

the lack of spatial feature information of the original algorithm in

the image, and the NMG function proposed in this experiment can

capture both grayscale and spatial information of the image. The

multi-resolution strategy selects the pyramid convolution algorithm,

which adds another convolution layer before each original pyramid

layer. The Strategy can improve the sampling signal ability of

the pyramid and play the role of suppressing image noise while

improving the robustness of the algorithm. The optimization

algorithm selects the RSGD, which avoids local extremes by changing

the step length of gradient descent in each iteration process, and

which can speed up the registration speed.

Based on the aforementioned analysis, the results and registration

efficiency of the optimized NMG registration method using RSGD

based on a multi-resolution sampling strategy for multimodal image

registration are excellent compared with the other two optimization

algorithms; however, this experiment can align only single images at

present and cannot perform batch processing, which is the limitation

of this experiment.
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6. Conclusion

This study introduces the RSGD-optimized NMG registration

method based on the multi-resolution strategy, while experiments

show that the registration performance has improved greatly

compared with the traditional registration method. NMG makes

the aligned image contain grayscale information and spatial

gradient information, while the multi-resolution strategy improves

the image signal sampling ability and enhances the stability

and robustness. RSGD can avoid local extremes to approach

the optimal solution of the objective function faster. Future

research prospects can look into non-rigid 2D–3D alignment

algorithms and how to efficiently process large batches of

aligned images.
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Appendix

NMG(A,B) = α1 · INMI(A,B)+ α2 · IGD(A,B) (1)

H(A) = −

N
∑

i=1

p(Ai) logp(Ai) (2)

H(A,B) = −

N
∑

i=1

N
∑

j=1

p(Ai,Bj) logp(Ai,Bj) (3)

MI(A,B) = H(A)+H(B)−H(A,B) (4)

NMI(A,B) =
H(A)+H(B)

H(A,B)
= 1+

MI(A,B)

H(A,B)
(5)

GD(A,B) =
∑

m,n

σv

σv + (IdV (m, n))2
+

∑

m,n

σh

σh + (IdH(m, n))2
(6)

IdV (m, n) =
dA

dm
− s ∗

dB

dm
(7)

IdH(m, n) =
dA

dn
− s ∗

dB

dn
(8)

gk(i, j) =
∑

m

∑

n

(W(m, n)× gk−1(2i+m, 2j+ n)) (9)

θk+1 = θk − αkdk (10)
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