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Introduction: Migraine with aura (MwA) is a neurological condition manifested in 
moderate to severe headaches associated with transient visual and somatosensory 
symptoms, as well as higher cortical dysfunctions. Considering that about 5% 
of the world’s population suffers from this condition and manifestation could 
be abundant and characterized by various symptoms, it is of great importance 
to focus on finding new and advanced techniques for the detection of different 
phenotypes, which in turn, can allow better diagnosis, classification, and 
biomarker validation, resulting in tailored treatments of MwA patients.

Methods: This research aimed to test different machine learning techniques to 
distinguish healthy people from those suffering from MwA, as well as people 
with simple MwA and those experiencing complex MwA. Magnetic resonance 
imaging (MRI) post-processed data (cortical thickness, cortical surface area, 
cortical volume, cortical mean Gaussian curvature, and cortical folding index) was 
collected from 78 subjects [46 MwA patients (22 simple MwA and 24 complex 
MwA) and 32 healthy controls] with 340 different features used for the algorithm 
training.

Results: The results show that an algorithm based on post-processed MRI 
data yields a high classification accuracy (97%) of MwA patients and precise 
distinction between simple MwA and complex MwA with an accuracy of 98%. 
Additionally, the sets of features relevant to the classification were identified. 
The feature importance ranking indicates the thickness of the left temporal pole, 
right lingual gyrus, and left pars opercularis as the most prominent markers for 
MwA classification, while the thickness of left pericalcarine gyrus and left pars 
opercularis are proposed as the two most important features for the simple and 
complex MwA classification.

Discussion: This method shows significant potential in the validation of MwA 
diagnosis and subtype classification, which can tackle and challenge the current 
treatments of MwA.
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1. Introduction

Migraine is one of the most common neurological disorders 
that affects over a billion people worldwide and manifests as an 
episodic headache often accompanied by nausea, vomiting and 
sensitivity to light and/or sound (1, 2). According to the Global 
Burden of Disease (GBD) study conducted for the period from 1990 
to 2019, migraine is the second biggest cause of disability at the 
fourth level of the GBD scale for people of any gender and age, 
while among female individuals aged 15–49 migraine ranks first (3, 
4). Migraine can be classified into two major subtypes: migraine 
without aura (MwoA) and migraine with aura (MwA) (5–7). This 
division is based on a distinct pattern of inheritance in these two 
subtypes, different disorders and health conditions they cause, 
variant structural changes in the brain, dissimilar levels of brain 
activity and different responses to therapies and preventive 
measures (6, 7). Our research relies on the studies that propose 
considering MwA and MwoA as two entities and investigating them 
separately. Nevertheless, it should be noted that many authors do 
not consider them to be two different entities.

Migraine without aura is present in almost one-third of 
migraine patients and 5% of people worldwide (8). Typical MwA is 
characterized by completely reversible visual and somatosensory 
symptoms and speech disturbances (5). In addition, it has been 
shown that each migraine attack with aura may have some unique 
characteristics and differ from other attacks (9). Many studies use 
magnetic resonance imaging (MRI) as a data source to find 
important evidence of the impact of MwA on the brain and thereby 
contribute to endeavors to achieve the most effective diagnosis and 
treatment of MwA. These studies have made significant findings 
about the abnormalities in certain brain regions and brain networks 
associated with migraine (10). Neuroimaging findings in MwA 
patients have greatly contributed to a better understanding of this 
disease, but many researchers are still trying to find reliable markers 
for the diagnosis and MwA treatment (11, 12). The following 
neuroimaging techniques based on different physical principles are 
applied to MwA research (10, 11): (1) perfusion-weighted MRI, (2) 
diffusion-weighted imaging, (3) blood oxygen level-dependent 
imaging, (4) magnetic resonance spectroscopy, and (5) positron 
emission tomography. However, two types of MRI data are typically 
used in migraine classification: functional MRI (fMRI) and 
structural MRI. Studies based on fMRI have significantly 
contributed to understanding the brain mechanisms underlying 
migraine symptoms and processes in the brain during and between 
migraine attacks (10, 11, 13). Also, the development of structural 
MRI-based studies arose with the parallel advances in the 
technology of imaging and the pathophysiologic understanding of 
migraine (11). Therefore, the research in this area reported 
structural changes in migraine in white and gray matter and 
delivered insights into migraine pathophysiology that can provide 
a useful basis for discovering a reliable biomarker for MwA and 
even its subtypes (14, 15).

During recent years, artificial intelligence (AI) is increasingly 
present in various domains of neurological research. Many 
important findings have been discovered in the study of migraine 
using machine learning (ML) techniques with MRI data. Recently, 
this methodology has been widely applied for migraine 
classification, as well as the identification of brain regions that are 

important for migraine diagnosis and treatment (12, 13, 16, 17). The 
right middle temporal, posterior insula, middle cingulate, left 
ventromedial prefrontal and bilateral amygdala regions best 
discriminated the migraine brain from HCs, and 97% classification 
accuracy was achieved for brain resting state MRI data of migraine 
patients with over 14 years long disease durations (13). A study 
using regional cortical thickness, cortical surface area and volume 
MRI data achieved an accuracy of 68% for migraine and HCs 
classification, 67% for episodic migraine and HCs classification, 
86% for chronic migraine and HCs classification and 84% for 
chronic and episodic migraine classification (17). The temporal 
pole, anterior cingulate cortex, superior temporal lobe, entorhinal 
cortex, medial orbital frontal gyrus and pars triangularis were 
commonly selected measures for the classification tasks (17). The 
main potential of ML application in this field is providing an aid in 
migraine diagnosis and facilitating the process of distinguishing 
different migraine subtypes (12). This progress and the development 
of AI techniques and applications are one of the main motivations 
for our research. ML algorithms based on brain resting-state fMRI 
and structural MRI have been used to identify brain regions and 
networks involved in migraine attacks, and/or brain signatures that 
discriminate migraine patients from healthy controls (10, 13, 16, 
17), yet fewer studies focused on implementing such models to 
solve MwA classification problems.

This research applies different ML algorithms to find a 
classification method that can distinguish HCs from those suffering 
from MwA, as well as people with simple MwA (MwA-S) and those 
experiencing complex MwA (MwA-C). Also, we aimed to identify 
the sets of MRI data-features that are key to these classifications.

2. Materials and methods

2.1. Participants

The study includes HCs and participants with typical episodic 
MwA. The diagnosis of MwA was based on the third International 
Classification of Headache Disorders criteria (5). All procedures 
performed in this study were in accordance with the ethical 
standards of the institutional and/or national research committee 
and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards. The data-collecting protocol was 
authorized by the Review Board of the Neurology Clinic. The 
consent of all subjects to participate in the study was mandatory. 
The following inclusion criteria were applied: (1) 18–55 years of age, 
(2) suffering from episodic migraines with typical aura for more 
than 5 years before the enrolment in the study, (3) minimum of two 
MwA attacks per year, (4) absence of migraine preventive therapy, 
and (5) right-hand side of body predominance to avoid possible 
differences in brain regions. Also, the following exclusion criteria 
were applied: (1) the presence of other types of headaches (except 
occasional migraine without aura or tension headache), (2) the 
presence of any other neurological, cardiovascular or metabolic 
disorder determined through medical history or during a physical 
examination, (3) reported claustrophobia or inability to perform 
MRI examination, and (4) structural abnormalities on MRI scan. 
Also, MwA patients did not experience a migraine 72 h before and 
after the MRI scan.
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2.2. MRI data acquisition and 
post-processing

The MRI examination was performed on a 3 T Scanner 
(MAGNETOM Skyra, Siemens, Erlangen, Germany). Protocol for 
MRI examination was: (1) 3D T1 (repetition time (TR) = 2,300 ms, 
echo time (TE) = 2.98 ms, flip angle = 9°, 130 slices with voxel size 
1 × 1 × 1 mm3, acquisition matrix 512 × 512 and FOV = 256 × 256 mm2), 
(2) 3D FLAIR (TR = 5,000 ms, TE = 398 ms, TI = 1800 ms, flip 
angle = 120o, acquisition matrix 256 × 256, FOV = 256 × 256 mm) and 
(3) T2 weighted spin echo [T2W] in an axial plane [TR = 4,800 ms, 
TE = 92 ms, flip angle (FA) = 90o, acquisition matrix 384 × 265, 
FOV = 256 × 256 mm, slice thickness = 5 mm]. T2W images were only 
used to exclude the presence of brain lesions.

Freesurfer (v 6.0) analysis was performed on an HP DL850 server 
(Intel Xeon 3.2 MHz, eight cores, 16 GB RAM) using a recon-all script, 
combining 3D T1 and FLAIR images, for automatic cortical 
reconstruction and segmentation of brain structures. The average run 
time (with the parallelization option used) was 6 h. Details about 
Freesurfer and its routines can be found in other studies (18). Cortical 
parcellation was done according to the Desikan-Killiany Atlas (19). 
Post-processed MRI data includes the cortical thickness, surface area, 
volume, mean Gaussian curvature and folding index collected from 
the left and right brain hemispheres. The data set includes 340 numeric 
features used for the algorithm training.

2.3. Machine learning

Based on the data collected from the participants in the study, 
two data sets were created for ML algorithm training. The first data 
set contains the aforementioned 340 input features and one output 
that classifies 78 subjects into healthy individuals and MwA patients 
(MwA classification). The second data set contains identical input 
features, while the output categorizes 46 MwA patients into those 
with the MwA-S and MwA-C (MwA subgroup classification). MwA 
patients with only visual symptoms were labelled as MwA-S, while 
subjects that experienced additional symptoms such as 
somatosensory symptoms and/or dysphasia were categorized into 
the MwA-C subgroup. Values of all features are within their 
anatomical limits.

The feature selection and ML models were developed in the 
Python programming language (version 3.8) in the Jupyter Notebook 
environment. The functions of the Scikit-learn software library for 
ML, Pandas library for data manipulation and analysis, NumPy library 
for mathematical functions and Matplotlib library for creating graphs 
were implemented. The hardware configuration used in this research 
included an NVIDIA GeForce GTX 1650 Ti GPU, AMD Ryzen 
54600H 3.00 GHz central processing unit and 8 GB of random-
access memory.

Feature selection contributes to model simplification by 
reducing the feature number, decreases the training time, reduces 
overfitting by enhancing generalization and helps with solving the 
problem of the dimensionality curse (20). In this paper, the feature 
selection was performed using the Extremely Randomized Trees 
(ERT) algorithm. This algorithm creates multiple uncorrelated 
decision trees over different subsamples of the data set, combines 
their predictions and returns a result (21). The algorithm evaluates 

the importance of each input feature in the data set. The 40 most 
important features are retained, using a combinatorial search to find 
optimal sets of features with the aim of error minimization (22, 23). 
ML classification algorithms were applied to the data set with the 
selected features.

Several different ML algorithms were applied in this study and 
hyperparameter tuning was performed for each algorithm. To design 
a proper configuration of ML algorithms for a specific purpose and 
refine them for application to a particular data set, it is necessary to 
tune hyperparameters and explore a range of functions and values. 
Hyperparameter tuning performed in this study is based on 
comprehensive research of state-of-the-art hyperparameter 
optimization rules and their application to the different ML models 
(24). The following sections provide descriptions of each implemented 
ML model such as technical details, the range of hyperparameters 
being tested, and optimal hyperparameters obtained by exhaustive 
search based on the resulting accuracy. All algorithms were evaluated 
using leave-one-out cross-validation method. Leave-one-out cross-
validation is a special case of k-fold cross-validation commonly 
applied to data sets with a small number of instances, where the 
number of folds is equal to the number of instances (25). The study 
was conducted for MwA and MwA subgroup classification separately 
using the same methodology. The outcomes of algorithms using 
different hyperparameter values were compared and the solutions that 
provided the best results are presented in the Results section of 
this paper.

2.3.1. Logistic regression
Logistic Regression (LR) showed great potential when predicting 

the risk of major chronic diseases with a low number of events and 
simple clinical predictors using a moderate sample size (26). The basic 
LR equation is as follows:
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where y  represents the estimated output, xi stands for the data 
sample, β0 is the intercept or the constant value where the regression 
line crosses the vertical axis, βi  is the weight coefficient for input 
feature xi that determines the contribution of corresponding input to 
the accurate output prediction, and n is the number of samples (27). 
It can be noted that the equation:
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represents the Linear Regression, i.e., the linear model underlying 
LR. The main LR hyperparameter is the cost function which depends 
on the regularization method of the penalization, such as L1 or Lasso 
regularization, L2 or Ridge regularization, and other non-conventional 
regularization methods that usually combine L1 and L2 (24). 
Equations for L1 and L2 regularization are as follows:
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where λ shows the regularization strength, n is the number of 
samples, and, βi  represents the weight coefficient (28). In this research, 
L1 and L2 penalties were tested, and L2-regularized LR provided the 
best results. The algorithm was trained in 5,000 iterations.

2.3.2. Linear discriminant analysis
Linear Discriminant Analysis (LDA) is commonly applied to data 

sets with high dimensionality and a large number of features to reduce 
dimensionality and determine a feature subspace in which the data 
samples are separable (29). The objective of LDA is to minimize the 
variance inside each class and maximize the variance between 
different classes using the equation of maximization of 
Fisher’s criterion:
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where φ is an orientation matrix that is determined as the solution 
of the eigenvalue problem, Sbc implies scatter matrices that contain 
between-class variances:
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while Swc implies scatter matrices that contain within-
class variances:
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The notation c represents the number of classes in the data set, ni 
is the number of samples in class i, xi is the mean value of class i, x  is 
the mean value of n samples, Xi is the subset of the data set consisted 
of input samples that belong to class i, and x  is a data sample (29, 30). 
The LDA can also be  interpreted as assigning xi to the class i, 
i c∈ …{ }1, , whose mean is the closest based on the Mahalanobis 
distance, while also considering the prior probabilities of the class, 
using the equation:

 
log logP i x x x S x x P i Ci

T
i|( ) = − −( ) −( ) + ( ) +−1

2

1

 
(8)

where xi is the mean value of class i, S is the covariance matrix 
based on the assumption that all classes share the same covariance 
matrix, P(i) is the class prior probability, and C is a constant term (31). 
It can be  noted that x x S x xi

T
i−( ) −( )−1  represents the 

Mahalanobis distance.
The first hyperparameter that was tuned within the LDA 

algorithm is the number of features to be extracted which is calculated 
as follows:

 min c f−( )1,  (9)

where c implies the number of classes, whereas f represents the 
number of features in the data set (24). Further, three types of solvers 
were tested: Singular Value Decomposition (SVD), Least squares 
solution, and Eigenvalue Decomposition. The SVD represents an 
expansion of the original data in a coordinate system where the 
covariance matrix is diagonal (32). SVD solver is based on the 
assumption that the singular value diagonal covariance matrix can 
be determined as:

 S U XVT=  (10)

where the rows of U are eigenvectors of X XT , and the columns of 
V are eigenvectors of XXT  (33). Therefore, the prior probabilities of 
the class can be obtained without explicitly computing the covariance 
matrix. Least squares LDA calculates the covariance matrix as Sw xi=
, where w is the weight vector. The Eigenvalue Decomposition solver 
is based on the optimization of equations (6) and (7). SVD LDA is the 
most suitable algorithm for training high-dimensionality data. Each 
solver was implemented without a shrinkage parameter, which implies 
using the empirical covariance matrix as an estimate for the covariance 
matrix, as well as with the Ledoit-Wolf lemma (34). The shrinkage 
parameter is commonly applied to high-dimensionality problems, 
where the sample number is notably higher than the feature number, 
and it may result in improved estimation of covariance matrices. In 
this research, SVD LDA obtained the best results. It should be noted 
that an SVD solver does not compute the covariance matrix, hence 
cannot be used with the covariance matrix shrinkage.

2.3.3. K-nearest neighbors
Within K-Nearest Neighbors (KNN) algorithm, the distance 

between samples is calculated and the output class is predicted based 
on the majority vote of the nearest k samples (35). In this study, the 
distance was measured according to the Euclidean distance equation:
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(11)

where n represents the number of samples, while p and q are 
two data samples whose distance is being measured (36). The most 
important KNN hyperparameter is the number of nearest neighbors 
k (24). The values of hyperparameter k were tested starting with 
k = 2, k = 3 provided the best accuracy result, whereas further rising 
of the number of neighbors resulted in lower performance of 
the algorithm.

2.3.4. Classification and regression tree
A decision tree classifier implemented in this research is an 

optimized version of the Classification and Regression Tree (CART) 
algorithm. CART is based on binary trees where each test node 
contains exactly two possible outcomes of the test and leaf nodes 
represent a predicted outcome (37). At each node, the data set is 
partitioned recursively creating two subsets:
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where xi is a subset at node i, x is the input vector, y is the output, 
j represents a feature, and ti is a threshold at node i. The suitability of 
each split option is determined using the splitting criteria, which 
measures the impurity of the nodes (38). Gini impurity and Shannon 
information gain are the two main types of impurity functions (24). 
Gini impurity is calculated as follows:

 
G x x
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c
i i= −( )

=
∑
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(14)

where c represents the number of classes in the data set, and xi 
denotes the fraction of samples belonging to class i at a specific node 
(38). Shannon information gain or entropy is calculated using the 
following equation:
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c
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where c is the number of classes, and pi denotes the fraction of 
samples belonging to class i at a current node (38). In addition, a 
strategy used to choose the split at each node can be chosen. Supported 
strategies are the best split and best random split (24). Another 
important hyperparameter that can be  tuned within the CART 
algorithm is the number of features to consider when looking for the 
best split (24). Using the total number of features, calculating the 
square root, or calculating the binary logarithm of the total number 
of features are three examples of how to set the maximum number of 
features. In this study, the CART algorithm was tuned with Gini and 
entropy impurity functions, best and best random splitting strategies, 
and using all three previously mentioned values for the maximum 
number of features. The best results were achieved using the Gini 
function, best split strategy, and the total number of features 
as maximum.

2.3.5. Naive Bayes
Naive Bayes (NB) is a classification technique based on Bayes’ 

theorem (39). A frequency table for each attribute is generated to 
calculate the posterior probability. These tables show the number of 
occurrences of each attribute value in each possible class. The 
frequency tables are converted into likelihood tables by calculating the 
ratios of class and overall frequencies. Further, the class and predictor 
prior probabilities are computed. Finally, the posterior probability is 
calculated as follows:
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where f is the number of features, x is the input vector, i is the 
observed output class, i c∈ …{ }1, , c is the number of classes, P(i) is 

class prior probability, P(x) is predictor prior probability, and P(x|i) is 
the likelihood (40). When equation (16) is applied to each class, the 
class with the highest probability is chosen as the final result. The types 
of NB classifiers mainly differ by the assumptions they make regarding 
the distribution of the likelihood. In this paper, the Gaussian NB 
classifier was implemented, where the likelihood is calculated 
as follows:

 
P x i

s
e

xi

x x
s
i

x i|( ) =
−

−( )
1

2
2

2

2

2

π  
(17)

where sxi2  denotes the variance, and xi is the mean of the input x 
for the observed class i (41). For the NB algorithm, no hyperparameter 
needs to be tuned (24).

2.3.6. Support vectors machine
Support Vector Machine (SVM) is an algorithm that transforms 

the problem space into a multidimensional space in order to make the 
problem linearly separable and to divide the classes using a hyperplane 
(42). The hyperplane is identified based on the margins between data 
samples from different classes, and it is used as a partition boundary 
for the classification.

The goal of SVM implementation used in this study is to find the 
solution for the following minimization problem:

 
min
α

α α α
1

2
1

T TQ −


 
(18)

 subject to C i ni 0 1≤ ≤ = …α , ,

 yTα = 0

where 


1 is the vector of all ones, αi are the dual coefficients, C is 
the upper bound, n is the number of samples, and Q is a positive 
semidefinite matrix Qij ≡ yiyjK(xi, xj), where K(xi, xj) is the kernel (42). 
Kernel functions aim to measure the similarity between data samples 
xi and xj, and kernel type is one of the crucial SVM hyperparameters 
(24). Radial basis function (RBF), polynomial, and sigmoid kernel are 
tested in this research and their equations are listed below, 
respectively, (43):
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T
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(21)

Variables γ (gamma), r (coef0), and d (degree) are the 
hyperparameter of the kernels. The gamma defines the hyperplane 
depth and it can be tuned in all the above-mentioned kernels. The 
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coef0 is an independent term that can be used in polynomial and 
sigmoid functions. The degree hyperparameter of polynomial 
kernels determines the flexibility of the separation line.

The gamma hyperparameter was tuned using the 
following equations:

 γ = 0 001.  (22)

 
γ =

∗

1

2f sx  
(23)

 
γ =

1
f  

(24)

where f represents the number of features, and sx2 is the variance 
of the input. Independent term coef0 was set to the value zero. The 
degree hyperparameter was set to a value of three. C-SVM with RBF 
kernel, regularization hyperparameter value of 100, L2 squared 
penalty, and gamma value calculated according to equation (24) 
obtained the best results.

2.3.7. Random forest
Random forest (RF) is an improved bagging algorithm in 

which a set of loosely correlated decision trees is created (44). The 
training is conducted over the bagged trees separately. At each 
split, the algorithm is considering a random subset of predictors, 
therefore avoiding the overfitting problem and providing more 
reliable results.

The main hyperparameter of the RF algorithm is the number of 
estimators or trees to be generated whose results are combined into 
the final prediction (24). The algorithm was trained with 100, 200, and 
300 trees, where raising the number of trees led to better results. 
Further increase in the number of trees was limited by the computer 
power that was available.

Another important hyperparameter is the maximal number of 
features to be considered in each tree. In this research, the value of this 
hyperparameter was calculated as follows:

 m f=  (25)

where f is the number of features (44). The decision trees were 
tested with Gini and entropy impurity functions that measure the 
quality of a split. These functions are mathematically presented with 
equations (14) and (15). RF with 300 decision trees and entropy 
function obtained the highest accuracy in comparison to other 
hyperparameter values.

3. Results

This study was based on MRI post-processed data collected from 
78 subjects (46 MwA patients and 32 HCs). Groups were balanced for 
age (MwA = 36.56 ± 9.03 (21–54 years range) vs. HCs = 35.67 ± 8.98 
(19–55 years range), p = 0.669) and sex (MwA = 72% females vs. 
HCs = 70% females, p = 1.000). The study involved 22 MwA-S and 24 
MwA-C patients. Subgroup characteristics including demographic 
data and aura features are shown in Table 1.

In this study, two data sets were created on which feature selection 
and ML algorithms were applied. Each data set addresses one 
classification task: MwA vs. HCs and MwA subgroup classification. 
Table 2 summarizes the classification results of healthy individuals and 
MwA sufferers as well as the classification of MwA-S and MwA-C 
(MwA subgroup) for seven ML algorithms (LR, LDA, KNN, CART, 
NB, SVM, and RF). The accuracies of the presented results are based 
on the leave-one-out cross-validation. For both classification 
problems, the best results were achieved by the LDA algorithm. The 
highest accuracy of 97% was achieved for MwA classification, while 
in the case of MwA subgroup prediction, an accuracy of 98% was 
obtained. The majority of algorithms (except SVM) achieved better 
results when classifying subgroups.

The importance and ranking of the 10 most prominent features 
for the LDA algorithm in relation to the average feature importance 
using all algorithms are presented in Tables 3, 4 for MwA and MwA 
subgroup classification, respectively. Feature importance was 
calculated using the ERT algorithm, resulting in assigning the 
importance score to each of the 340 features, which added up to a 
value of 100. When using the LDA algorithm that yielded the best 
classification performance, the feature importance ranking indicates 
the thickness of the left temporal pole, right lingual gyrus and left pars 
opercularis as the most prominent markers for MwA classification 
(Figure 1), while the thickness of left pericalcarine gyrus and left pars 

TABLE 1 Participant characteristics for MwA subgroup classification.

Variable Participants Statistics

MwA-S patients 
(n = 22)

MwA-C patients 
(n = 24)

Age, mean ± SD (range) 37.64 ± 8.41 (19–55) 33.88 ± 9.28 (20–55) p = 0.158

Sex, number of females (%) 15 (68) 17 (71) p = 1.000

Migraine frequency per year, mean ± SD (range) 4.91 ± 4.33 (2–20) 7.75 ± 8.57 (1–30) p = 0.160

Visual symptoms, number of patients (%) 22 (100) 24 (100) /

Somatosensory symptoms, number of patients (%) 0 (0) 24 (100) /

Dysphasic symptoms, number of patients (%) 0 (0) 24 (100) /

Average aura duration (minutes), mean ± SD (range) 30.23 ± 16.65 (10–60) 41.04 ± 14.96 (20–90) p = 0.025

MwA, migraine with aura; MwA-S, simple migraine with aura; MwA-C, complex migraine with aura; SD, standard deviation.
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opercularis are proposed as the two most important features for the 
simple and complex MwA classification (Figure  2). Figures  1, 2 
highlight the cortical features that notably stand out compared to the 
other features based on their importance value for the LDA algorithm, 
which can be seen in Tables 1, 2 for the MwA and MwA subgroup 
classification. The thickness of the left temporal pole, right lingual 
gyrus, and left pars opercularis recognized as the most prominent 
markers for MwA classification had high importance levels that are 
greater than 1.2 (1.47, 1.23, and 1.21 respectively). The thickness of the 
left pericalcarine gyrus and left pars opercularis as the two most 
important features for the MwA subgroup classification had high 
importance levels that are greater than 0.9 (1.68 and 1.13 respectively).

4. Discussion

The focus of this study was finding new and advanced techniques 
for the detection of different phenotypes, which in turn, can allow 
better classification, marker validation and more optimized treatment 
of MwA patients. The main contribution of this work was finding an 
ML algorithm that performs the MwA vs. HC and MwA-S vs. MwA-C 
subgroups classification with high accuracy. This study showed that 
for both classification tasks the LDA algorithm has the best potential. 
In addition, sets of the most important features that contribute to 
accurate MwA detection and MwA subgroup classification 
were identified.

The development of neuroimaging techniques is in constant 
progress and multiple functional and anatomical imaging 
characteristics for aid in migraine diagnosis have been found, but 
research efforts are still being directed toward finding reliable 
biomarkers (11). The feature selection conducted in this research aims 
to contribute to the efforts in finding a marker that can improve the 
MwA diagnosis. Prior research concluded that the presence of aura is 
related to the regional distribution of cortical thickness and surface 
area abnormalities (45). Present results confirmed earlier findings on 
the existence of changes in the thickness of certain areas of the cortex 
in MwA patients (15, 46–48). This study also supports previous 
findings which indicate different thicknesses in the cerebral cortex 
when comparing MwA subgroups and demonstrate the cerebral 
cortex as a hallmark for the investigation of the complex MwA 
pathophysiology, where a further sub-phenotypes investigation is 
suggested (49). Moreover, some other features of the cortex, such as 
the folding index, may play a significant part in the differentiation 
between MwA-S and MwA-C subgroups (50).

Previous studies elaborate on the great potential of ML 
algorithms in determining brain aberrations that are specific to the 
migraine that could eventually be developed into computer-aided 
diagnostic tools based on MRI markers (12, 16, 17), which this 
study also investigates. Moreover, previous studies propose LDA, 
SVM and decision tree algorithms with 10-fold cross-validation to 
assess different types of migraine classification accuracy (13, 17), 
which were included and tested in this research. Studies that focused 

TABLE 2 Classification accuracies across all machine learning algorithms tested.

Classification 
problem, %

Machine learning algorithm

LR LDA KNN CART NB SVM RF

HC vs. MwA (MwA 

detection)
87.18 97.44 78.21 88.46 88.46 89.74 85.90

MwA-S vs. MwA-C (MwA 

subgroups)
87.23 97.87 82.98 91.49 89.36 82.98 89.36

HC, healthy controls; MwA, migraine with aura; MwA-S, simple migraine with aura; MwA-C, complex migraine with aura; LR, linear regression; LDA, linear discriminant analysis; KNN, 
K-nearest neighbors; CART, decision tree; NB, Naive Bayes; SVM, support vectors machine; RF, random forest.

TABLE 3 Feature importance for MwA classification.

Cortex area LDA All algorithms

Rank Importance (%) Rank Importance (%) 
Mean + SD

Left temporal pole thickness 1 1.47 4 0.94 ± 0.52

Right lingual gyrus thickness 2 1.23 1 1.31 ± 0.23

Left pars opercularis thickness 3 1.21 2 1.06 ± 0.56

Left temporal pole volume 4 1.17 3 0.98 ± 0.21

Left parahippocampal gyrus thickness 5 1.06 6 0.91 ± 0.12

Left caudal anterior cingulate thickness 6 0.97 5 0.92 ± 0.09

Left pars opercularis mean Gaussian curvature 7 0.94 8 0.84 ± 0.40

Left middle temporal gyrus thickness 8 0.93 9 0.46 ± 0.34

Left fusiform gyrus folding index 9 0.90 7 0.91 ± 0.25

Left inferior parietal folding index 10 0.86 10 0.28 ± 0.37

LDA, linear discriminant analysis; SD, standard deviation; Importance, feature importance calculated using the Extremely Randomized Trees algorithm (assigning the importance score to 
each feature which adds up to a value of 100); All algorithms/Importance, average feature importance using all algorithms and standard deviation (Linear Regression, Linear Discriminant 
Analysis, K-Nearest Neighbors, Decision Tree, Naive Bayes, Support Vectors Machine, and Random Forest).
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on distinguishing MwoA and MwA patients proposed the SVM 
algorithm and achieved 84% accuracy when using cerebral blood 
flow imaging markers (51), while 85% accuracy was reached when 
using electroencephalography data (52). In our research, the LDA 
algorithm outperformed other algorithms for both classification 
tasks, while KNN achieved the lowest accuracy. Also, it can be noted 
that the SVM algorithm resulted in noticeably lower accuracy 
compared to LDA. The study resulted in a promising accuracy of 
over 97% for both classification tasks. Also, the results indicate that 
most algorithms had better MwA subgroup classification accuracy. 
Previous studies using neural networks in migraine classification 
have achieved high accuracy (from 91 to 99%), however, these 
studies are predominantly based on the classification of MwoA and 
MwA patients (53–55). An approach that combines functional MRI 
data and inception module-based convolutional neural networks 
achieve up to 99% accuracy when discriminating HCs and migraine 
patients, as well as migraine subtypes  - MwoA and MwA (54). 
Another study performs the classification of seven types of 
migraines and reaches 98% accuracy using an artificial neural 
network (55). However, these studies do not focus on HCs and 
MwA or MwA subtype classification problems, which is the main 
goal of this study. Current work employs a leave-one-out 
classification performance validation, without data scaling which 
confirms the applicability of the developed model for further clinical 
use with novel MRI data.

In our study, the LDA algorithm yielded the thickness of the 
left temporal pole, right lingual gyrus and left pars opercularis as 
the most prominent markers for MwA classification. The left 
temporal pole is already marked as an important cortical feature of 
migraineurs’ brain in several previous studies (56–58), indicating 
that aberrant function, connectivity and structure of the temporal 
pole might contribute to clinical abnormalities in migraine patients 
(57). Furthermore, it is suggested that increased glucose 
metabolism in the left temporal pole compared to healthy 
individuals during olfactory stimuli might reflect the unique role 
of the temporal pole in odor hypersensitivity and odor-triggered 

migraine (58) and thus can be considered as a potential target for 
treatment (59). Also, previous studies demonstrated an important 
role of the extrastriate visual cortex, including the lingual gyrus, in 
the MwA pathophysiology and point out that mitochondrial 
dysfunction might be only present in MwA relative to MwoA and 
HCs (60). Moreover, it was reported that glutamate levels were 
increased while gamma-aminobutyric acid (GABA) levels were 
decreased in the visual cortex in MwA patients, suggesting 
disturbances in the cortical excitatory-inhibitory balance, which 
could predispose the cortex to CSD and aura (61, 62). Another 
study compared healthy controls with MwA patients and found 
results that indicate significant differences in thickness of several 
brain areas between HC and S-MwA and between HC and C-MwA 
(15). The study reported abnormal thickness of MwA patients 
compared to HCs in the right high-level visual-information-
processing areas, including the lingual gyrus, which is also 
confirmed by our results.

Regarding the simple and complex MwA classification, the 
thickness of the left pericalcarine gyrus and left pars opercularis 
cortex are proposed as the two most important features, although 
their role in the complexity of aura manifestation is unknown and 
could not be marked as specific features for the complexity of MwA 
because changes in the function and structure of the left 
pericalcarine gyrus and left pars opercularis cortex are also noted 
in the MwoA (63, 64), although thicker cortex of the left 
pericalcarine gyrus is demonstrated in MwA-C patients (50). 
Increased cortical thickness of the calcarine area of the left 
hemisphere was discovered in both MwA subtypes in contrast to 
HCs, while no significant differences emerged among MwA-S and 
MwA-C (15). Anyhow, given that all cortex features had a low 
percentage of importance in the classification, both for MwA 
classification and subclassification, but accuracy was very high, it 
can suggest that MwA is not a disease of one brain region yet a 
functional disease of the neural network with multiple structural 
changes of the cerebral cortex. Finally, it should be kept in mind 
that this is the first study, to the best of our knowledge, that tries to 

TABLE 4 Feature importance for MwA subgroup classification.

Cortex area LDA All algorithms

Rank Importance (%) Rank Importance (%) 
Mean + SD

Left pericalcarine thickness 1 1.68 1 1.95 ± 0.3

Left pars opercularis thickness 2 1.13 7 0.40 ± 0.51

Right parahippocampal gyrus thickness 3 0.83 9 0.37 ± 0.48

Right lingual gyrus surface area 4 0.82 5 0.45 ± 0.43

Right transverse temporal gyrus thickness 5 0.82 6 0.43 ± 0.41

Right paracentral lobule mean Gaussian curvature 6 0.80 8 0.39 ± 0.37

Right lateral occipital folding index 7 0.80 2 0.69 ± 0.1

Left parahippocampal gyrus folding index 8 0.75 4 0.53 ± 0.38

Left parahippocampal gyrus mean Gaussian curvature 9 0.75 10 0.19 ± 0.32

Right entorhinal volume 10 0.74 3 0.61 ± 0.42

LDA, linear discriminant analysis; SD, standard deviation; Importance, feature importance calculated using the Extremely Randomized Trees algorithm (assigning the importance score to 
each feature which adds up to a value of 100); All algorithms/Importance, average feature importance using all algorithms and standard deviation (Linear Regression, Linear Discriminant 
Analysis, K-Nearest Neighbors, Decision Tree, Naive Bayes, Support Vectors Machine, and Random Forest).
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classify MwA patients and HCs, as well as MwA-S and MwA-C 
subgroups, using several cortex features derived from structural 
neuroimaging by state-of-the-art post-processing techniques. 
Hence, our results should be validated in future multicentric studies 
where a larger sample of MwA patients will yield more solid 
conclusions. Also, this is the first step in classifying the complexity 
of MwA based on morphometric MRI data and future work should 
include a finer classification based on the Migraine Aura Complexity 
Score (MACS) (49).

A possible limitation of the current study is the lack of 
prospectively collected information about the lateralization of 
MwA attacks which could potentially play an influencing factor 
in neuroimaging studies. However, throughout the medical 
history of selected MwA patients, there was no report suggesting 
that the patient had clear lateralization of visual or somatosensory 
symptoms. Moreover, future studies should include a group 
of patients who have only migraines without aura to investigate 
specific morphometric features from neuroimages related 
only to MwA-S and MwA-C subgroups. In addition, new 
knowledge and better accuracy might be obtained by combining 
fMRI and structural MRI modalities (12). ML models based on 
the combined data could be  implemented and tested in 
future studies.

5. Conclusion

This study shows that high accuracy can be reached when using the 
LDA algorithm for classifying individuals into HCs and MwA patients, 
as well as for MwA subtype classification. Furthermore, results indicate 
the existence of an abnormality in MwA patient thickness, surface area, 
volume, mean Gaussian curvature and/or folding index of particular 
cortex areas concerning HCs, as well as when comparing MwA-S and 
MwA-C patients. Also, this method shows significant potential in the 
validation of MwA diagnosis and subtype classification, which can 
tackle and challenge the current treatments of MwA.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and 
approved by Medical Ethics Committee of the Neurology Clinic, 

FIGURE 1
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left pericalcarine thickness).
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