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Elucidation of the mechanism
underlying impaired sensorimotor
gating in patients with primary
blepharospasm using prepulse
inhibition

Xinqing Hao1†, Xiaofeng Huang1†, Xiaoxue Yin1, Hai-Yang Wang1,2,

Ren Lu1, Zhanhua Liang1* and Chunli Song1*

1Department of Neurology, The First A�liated Hospital of Dalian Medical University, Dalian, China,
2Department of Neurology, Jining No. 1 People’s Hospital, Jining, China

Objective: Weaimed to analyze prepulse inhibition (PPI) impairment of the blink reflex

in patients with primary blepharospasm (BSP).

Methods: We recruited 30 BSP patients and 20 gender- and age-matched healthy

controls (HCs). Weak electrical stimulation was applied to the right index finger at

interstimulus intervals (ISIs) of 120, 200, and 300ms before the supraorbital nerve

stimulation to investigate PPI size [PPI size = (1 – R2 area at prepulse trials/R2 area at

baseline trials) × 100%].

Results: The prepulse stimulus significantly inhibited the R2 component at the three

ISIs in both groups, but less inhibition was shown in the BSP group (p < 0.05). In

HCs, the prepulse stimulus induced prolonged R2 and R2c latencies at the three ISIs

and increased the R1 amplitude at ISIs of 120ms; these changes were absent in BSP

patients. In the BSP group, patients with sensory tricks showed better PPI than patients

without sensory tricks. Disease duration and motor symptom severity showed no

significant correlation with PPI size.

Conclusion: In BSP patients, PPI was impaired while R1 facilitation was absent. PPI

size did not correlate with the motor symptom severity and disease duration. Patients

with sensory tricks showed better PPI than those without sensory tricks.

KEYWORDS

primary blepharospasm, prepulse inhibition, blink reflex, sensory trick, sensorimotor

integration

1. Introduction

Primary blepharospasm (BSP) is a common focal dystonia disorder characterized by

intermittent or persistent involuntary eye closure (1). Although recognized as a movement

disorder, various studies have shown that abnormal sensory processing plays an important role

in the pathophysiology of BSP (2). Local sensory symptoms, such as burning sensation in the

eye, photophobia and dry eye, may precede the onset of motor symptoms (3). Patients with BSP

show an increased somatosensory temporal discrimination threshold (STDT) (4). The increased

STDT values remain unmodified with worsened disease severity (5). Sensory tricks, also called

“geste antagoniste,” are voluntary maneuvers that alleviate the severity of abnormal movement

or postures in dystonia patients (6). Sensory tricks are a cardinal feature of many forms of

focal dystonia, especially common in cervical dystonia but also present in BSP, oromandibular

dystonia, and writer’s cramp (7). According to a survey, sensory tricks can occur in up to 71.2% of
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patients with BSP (8). A more frequently reported trick is using the

index finger and/or thumb to touch the upper eyelid (6). Other tricks

include wearing tinted lenses, singing, talking, or chewing gum (9). In

animal experiments, altering the sensory input by a peripheral injury

can elicit involuntary blinking and eyelid spasms in predisposed

animals (10), further indicating the regulatory role of the sensory

system in BSP.

The pathophysiological mechanisms of BSP are not clear.

Alterations of synaptic plasticity, including disruption of homeostatic

plasticity, widespread facilitation of synaptic potentials, and

loss of synaptic inhibitory processes, are currently considered

endophenotypic features of focal dystonia (11, 12). Abnormal

sensorimotor integration functions may be related to maladaptive

plasticity phenomena, which can contribute to the co-contraction

of antagonistic muscle groups involved in the onset of dystonic

movements (13, 14).

The startle reflex is a rapid and involuntary motor response

triggered by a sudden and intense sensory stimulus (e.g., sound,

electricity, or touch) (15). The startle reflex typically manifests as

an eyeblink response (blink reflex) in humans and as a whole-

body motor response in animals (16, 17). Prepulse inhibition (PPI)

occurs when a weak prestimulus (prepulse) 30–500ms before the

startling stimulus significantly inhibits the startle reflex (18). PPI

of the blink reflex causes inhibition of the R2 magnitude, while

short interstimulus intervals (ISIs) increase the amplitude of R1
(19). Prepulse inhibition is believed to be a model of sensorimotor

gating across taxa (20). Numerous studies have confirmed that PPI

impairment is an important feature of several psychiatric disorders,

including schizophrenia and obsessive-compulsive disorder (21, 22).

In recent years, PPI impairment has also been observed in movement

disorders such as Parkinson’s disease (23), cervical dystonia (24), and

BSP (25). Previous studies have shown that PPI is most pronounced

at 120ms in healthy populations (26, 27), but no studies have been

conducted in healthy populations and patients with dystonia in China

or Asia.

Therefore, in the present study, we analyzed PPI at different

ISIs in healthy Chinese populations, compared PPI impairment

characteristics between BSP patients and healthy controls, and

examined the correlations of PPI impairment with disease duration

and motor symptom severity in BSP patients. We aimed to

elucidate the neurophysiological mechanisms of sensorimotor gating

impairment in BSP patients and to provide an objective basis for

identifying biological markers, guiding treatment, and evaluating

the prognosis.

2. Materials and methods

2.1. Subjects

We included 30 consecutive patients with BSP who were

seen in our movement disorders clinic at the First Affiliated

Hospital of Dalian Medical University and 20 gender- and age-

matched healthy controls (HCs). The study was approved by the

ethics committee of the First Affiliated Hospital of Dalian Medical

University [identification number: PJ-KS-KY-2022-134(X)], and all

subjects signed informed consent.

BSP patients met the diagnostic criteria of the Benign Essential

Blepharospasm Research Foundation (BEBRF) (1). They have never

TABLE 1 Demographic and clinical characteristics of the HC and BSP

groups.

HC (n = 20) BSP (n = 30) p

Age (years) 52.7± 12.6 59.4± 12.8 0.071

Gender M/F n (%) 7/13 (35%/65%) 11/19 (36.7%/63.3%) 0.904

Supraorbital threshold (mA) 1.4± 0.3 1.5± 0.3 0.210

Index finger threshold (mA) 1.7± 0.3 1.9± 0.7 0.380

Duration (years) - 4.8± 3.1 -

JRS score - 5.0± 1.6 -

Sensory trick n (%) - 17 (56.7%) -

Non-normally distributed and qualitative data were analyzed using the Mann-Whitney U-test,

and normally distributed data were analyzed using the independent-sample t-test.

TABLE 2 Demographic and clinical characteristics of the NST and ST

groups.

NST (n = 13) ST (n = 17) p

Age (years) 61.3± 11.3 58.0± 12.7 0.497

Gender M/F n (%) 4/9 (30.8/69.2%) 7/10 (41.2/58.8%) 0.558

Supraorbital threshold (mA) 1.5± 0.2 1.5± 0.4 0.527

Index fingers threshold (mA) 2.0± 1.8 1.7± 0.5 0.247

Duration (years) 4.4± 2.7 5.1± 3.6 0.720

JRS score 4.9± 1.3 5.1± 1.8 0.949

Non-normally distributed and qualitative data were analyzed using the Mann-Whitney U-test,

and normally distributed data were analyzed using the independent-sample t-test.

received botulinum toxin injections or at least 3 months since their

last botulinum toxin administration. We excluded patients with

comorbidities known to affect PPI, including schizophrenia spectrum

disorders and temporal lobe epilepsy with psychosis, and patients

who have taken medications that affect PPI, such as dopamine

receptor agonists (28).

A structured interview was conducted with all subjects to obtain

their medical history, family history, and current medication and

to record contraceptive use and menstrual cycle in females (29).

All subjects were asked to avoid smoking or consuming caffeinated

beverages at least 3 h before the experiment. In addition, all BSP

patients completed the Jankovic Rating Scale (JRS) (30) to assess their

motor symptom severity.

2.2. Methods

We used surface electromyography (EMG; Synergy, CareFusion,

London, UK) to perform the electrophysiological recordings.

Bandpass filters for EMG recordings were 30–3,000Hz, and the

sampling rate for signal storage was 2,000Hz. Subjects were informed

of the different types of stimuli they would receive before the

experiment, but the researcher and equipment were out of their view

to ensure they could not see the type of stimuli.

2.2.1. Blink reflex (baseline trials)
The subjects were examined in a comfortable supine position

and instructed to keep their eyes gently closed. The EMG activity
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FIGURE 1

Prepulse inhibition of the blink reflex in the HC and BSP groups (with and without sensory tricks). (A) HC group, (B) NST group, (C) ST group. PPI120,

prepulse inhibition at ISIs of 120ms; PPI200, prepulse inhibition at ISIs of 200ms; PPI300, prepulse inhibition at ISIs of 300ms. The upper two traces

represent the baseline blink reflex (without a prepulse stimulus), while the lower six traces represent the blink reflex after a prepulse stimulus (arrow

indicates prepulse stimulus to the index finger). Each trace represents the superposition of four blink reflexes. BSP patients had greater R2 and R2c areas

after prepulse stimulation than HCs, and the NST group had greater R2 and R2c areas after prepulse stimulation than the ST group (i.e., BSP patients

exhibited impaired prepulse inhibition, and patients with sensory tricks showed better PPI than those without sensory tricks).

of the orbicularis oculi muscle was recorded by attaching surface

electrodes to the subject’s skin using a conductive electrode gel. The

active electrodes were placed on the lower eyelids, the reference

electrodes were placed 2 cm lateral to the outer canthi, and the

grounding electrode was placed on the wrist of the left upper limb.

Each blink reflex was evoked by electrical stimulation (constant

current rectangular pulses with a stimulation duration of 0.2ms)

above the right supraorbital notch percutaneously. The stimulus

intensity was 10 times the sensory threshold, defined as the minimum

stimulation intensity at which the subject could perceive at least four

of eight stimuli.

2.2.2. Prepulse inhibition (prepulse trials)
Prepulse inhibition was assessed by applying a prepulse

stimulus at ISIs of 120ms (PPI120), 200ms (PPI200), and

300ms (PPI300) before the supraorbital nerve stimulation.

The choice of ISIs was based on previous studies (18, 25, 26).

The prepulse stimuli (constant current rectangular pulses

with a stimulation duration of 0.2ms) were delivered through

ring electrodes attached to the middle and distal phalanges

of the right index finger at an intensity two times the

sensory threshold.

Four blink reflexes were obtained in each trial. Baseline and

prepulse trials were randomly mixed with a 15–25 s interval between

every two trials.

3. Statistical analysis

Trials with artifacts were excluded. In each trial, we identified the

ipsilateral R1, R2, and the contralateral R2c of the blink reflex.

We used the area under the curve to represent the magnitude

of the R2 and R2c components of each blink reflex. Following the

baseline and prepulse trials, we recorded the R1 latency and peak-

to-peak amplitude as well as the bilateral R2 latencies and areas under

the curve. The percentage change in R2 area was the magnitude of the

PPI effect (hereafter, PPI size), and the formula was PPI size (in %)=

[1 – R2 area at prepulse trials (120, 200, or 300ms)/R2 area at baseline

trials]× 100%.

Data analysis was performed using SPSS 25.0 (SPSS, Chicago,

IL, USA). The normality of data was tested using the Shapiro-

Wilk test. Age, gender, and sensory thresholds for supraorbital

nerve stimulation and prepulse stimulus were compared between

the BSP and HC groups using the independent-sample t-test for

quantitative data and Mann-Whitney U-test for qualitative data and

non-normally distributed data. The presence of sensory tricks was

expressed as a percentage of the total number of BSP patients. Disease

duration and JRS score were presented as the mean ± standard

deviation (SD).

We compared PPI size at different ISIs in HCs using

the one-way analysis of variance. The ipsilateral R1 latency

and amplitude, bilateral R2 latencies and areas at baseline and

prepulse trials, and PPI size at different ISIs were compared
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FIGURE 2

Comparison of blink-reflex neurophysiological data between the HC and the BSP groups. BR, baseline blink reflex (without a prepulse stimulus); PPI120,

prepulse inhibition at ISIs of 120ms; PPI200, prepulse inhibition at ISIs of 200ms; PPI300, prepulse inhibition at ISIs of 300ms. (A) Di�erences in the R1

latency between the BSP and HC groups at baseline and prepulse trials administered at di�erent ISIs. (B) Di�erences in the R1 amplitude between the BSP

and HC groups at baseline and prepulse trials administered at di�erent ISIs. (C) Di�erences in the R2 latency between the BSP and HC groups at baseline

and prepulse trials administered at di�erent ISIs. (D) Di�erences in the R2c latency between the BSP and HC groups at baseline and prepulse trials

administered at di�erent ISIs. (E) Di�erences in the R2 area between the BSP and HC groups at baseline and prepulse trials delivered at di�erent ISIs. (F)

Di�erences in the R2c area between the BSP and HC groups at baseline and prepulse trials delivered at di�erent ISIs. Non-normally distributed and

qualitative data were analyzed using the Mann-Whitney U-test, and normally distributed data were analyzed using the independent-sample t-test.

**p < 0.01.

separately between BSP patients and HCs with the Mann-

Whitney U-test for non-normally distributed data, and the

independent-sample t-test for normally distributed data. We also

used the Wilcoxon rank-sum test for non-normally distributed

data and a paired-sample t-test for normally distributed data

to compare within-group differences in the ipsilateral R1 latency

and amplitude, bilateral R2 latencies and areas at baseline and

prepulse trials.

We further divided BSP patients into those with sensory tricks

(ST group) and those without sensory tricks (NST group) and

compared the PPI size of two subgroups. All data obtained above

were expressed as the mean ± SD. The correlations of PPI size with

disease duration and JRS score in the BSP group were analyzed with

Pearson correlation analysis.

All p-values < 0.05 was considered a significant difference.

4. Results

4.1. Clinical data

There were no significant differences between BSP and HC

groups regarding age, gender, or sensory thresholds for supraorbital

nerve stimulation and prepulse stimulus to the index finger (Table 1).

Sensory tricks were present in 17 patients. No significant differences

were found in the clinical characteristics and demographics between

ST and NST groups (Table 2).

4.2. PPI di�erence between the BSP and HC
groups

Examples of the blink reflex responses without and with prepulse

stimulus in the BSP and HC groups are displayed in Figure 1. The

characteristics of the baseline blink reflex induced by supraorbital

nerve stimulation were not significantly different between the two

groups (Figure 2). In the HC group, prepulse stimulus elicited

bilateral R2 latencies prolongation and bilateral R2 areas reduction

in all three ISIs. However, in the BSP group, prepulse stimulus had

no significant effect on bilateral R2 latencies, and the inhibition of

bilateral R2 areas was lower than that in the HC group. That is,

the PPI size in the BSP group was significantly smaller than that in

the HC group (Table 3; Figure 3). In addition, the prepulse stimulus

increased the R1 amplitude at ISIs of 120ms inHCs, which was absent

in the BSP group (Table 3). Besides, we performed a correlation

analysis between PPI and age in the HC and BSP groups but found

no significant correlation (the date was not shown). Although there

was no significant difference, the PPI size appeared greater at 200ms

compared to 120ms and 300ms in HCs (Figure 4).

4.3. PPI di�erence between the ST and NST
groups

Further analysis revealed that, in BSP patients, the PPI size

was significantly greater in the ST group than in the NST group
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FIGURE 3

Di�erences in PPI size between the HC and BSP groups. PPI120,

prepulse inhibition at ISIs of 120ms; PPI200, prepulse inhibition at ISIs

of 200ms; PPI300, prepulse inhibition at ISIs of 300ms. All comparisons

were performed using the independent-sample t-test. **p < 0.01.

(Figures 1, 5). Finally, we found no correlations between PPI size and

motor symptom severity or disease duration.

5. Discussion

To our knowledge, this is the first study of PPI impairment in

BSP patients from a Chinese population. Previous European studies

have shown that PPI size in healthy populations is generally above

60% (24, 31). In contrast, the present study reported a smaller PPI

of about 40%. Additionally, previous studies have shown that PPI

is most pronounced at 120ms in healthy populations (26, 27), but

in our research, PPI size appeared to be greater at 200ms. The

differences in ethnicity may contribute to the discrepancy of results,

in addition to age and gender structures (27, 32, 33). Furthermore,

we found that impaired PPI in BSP patients also occurred at ISIs of

200 and 300ms, and the R1 amplitude facilitation and bilateral R2
latencies prolongation were absent in BSP patients, which above was

not explored in previous studies (25, 34).

A supraorbital nerve stimulation induces two primary responses

in the orbicularis oculi: an early ipsilateral component (R1)

and a late bilateral component (R2) (35). The R1 originates

from an oligosynaptic pontine circuit, while the R2 is mediated

by multisynaptic pontomedullary connections (36). The main

anatomical structures responsible for PPI are located in the

brainstem, as PPI can still be observed in decerebrate animals

(37). The central structure may be the connection between the

pedunculopontine tegmental nucleus (PPTN) and the caudal pontine

reticular nucleus (38). Although PPI occurs in the brainstem, it is also

subject to top-down modulation by forebrain regions (39, 40). In the

present study, the unconditioned blink reflex did not differ between

BSP patients and HCs, indicating the integrity of the brainstem

circuits. Abnormal top-down modulation from the prefrontal lobe

projections to the pontine reflex circuits may be the reason for

impaired PPI. Previous studies have found an abnormal blink reflex

recovery cycle in BSP patients, confirming hyperexcitability of the

trigemino-facial circuits (41). In our study, impaired PPI in BSP
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FIGURE 4

PPI size of the HC group at ISIs of 120, 200, and 300ms. PPI120,

prepulse inhibition at ISIs of 120ms; PPI200, prepulse inhibition at ISIs

of 200ms; PPI300, prepulse inhibition at ISIs of 300ms. The

comparisons were performed using the one-way analysis of variance.

patients suggests abnormal inhibitory modulation at the cortical and

subcortical levels may also contribute to the hyperexcitability of the

trigemino-facial circuits.

Early animal studies have identified a cortico-subcortical pathway

from the brainstem that mediates PPI, called the cortico-pallidum-

thalamic (CSPT) circuit (42). Neuroimaging studies demonstrated

the involvement of the frontal and parietal cortical regions, striatum,

hippocampus and thalamus in PPI (43). In recent years, studies

have reported abnormal activation and functional connectivity in

the frontal and parietal cortex, basal ganglia, and cerebellar in BSP

(44). In addition, cerebellar continuous theta burst stimulation can

improve motor symptoms in patients with dystonia (45, 46). It has

been suggested that PPTN had a reciprocal association with basal

ganglia (47). The PPTN also participated in muscle tone regulation

(48). Therefore, PPTN may play a role in the dysregulation of

PPI in BSP. Our previous studies also showed abnormal functional

connectivity of sensorimotor networks and regulatory networks

involving the frontal lobe in BSP (49). Thus, impairment of central

nervous system inhibition may lead to excessive motor output, and

abnormal cortical and subcortical regulation may also contribute to

the abnormal PPI in BSP.

We demonstrated that PPI impairment is greater in BSP patients

without sensory tricks, similar to the results of previous studies (25).

Gomez-Wong et al. found that the R2 magnitude of the blink reflex

was reduced when a sensory trick was induced by a light touch

on the eyelids and periorbital areas of the face in BSP patients,

suggesting that sensory tricks may serve as a prepulse stimulus

to modulate the activity of the trigeminal-facial circuits and thus

ameliorate spasm (50). According to the “sensory-motor integration”

theory, the abnormal excitation in the primary motor cortex may

be due to excessive signal afferents in the primary somatosensory

cortex, a phenomenon known as “sensory overflow (51).” PPI may

inhibit sensory information overload through sensorimotor gating

mechanisms (20). Our previous functional magnetic resonance

imaging study reported a relatively preserved function of the

supplementary motor in BSP patients with sensory tricks (49). Thus,

the relatively normal PPI in BSP patients with sensory tricks reflects

the relative preservation of sensory information processing and the

ability to regulate abnormal trigemino-facial circuits excitability.

FIGURE 5

Di�erences in PPI size between the ST and NST groups. PPI120,

prepulse inhibition at ISIs of 120ms; PPI200, prepulse inhibition at ISIs

of 200ms; PPI300, prepulse inhibition at ISIs of 300ms. All comparisons

were performed using the independent-sample t-test. *p < 0.05.

Additionally, we showed that PPI was not associated with the

severity or duration of BSP, indicating abnormal PPI may represent a

premorbid feature. Such PPI impairment was found not only in BSP

but in cervical dystonia (24), thus may be a potential pathogenesis

of dystonia.

Although we found that PPI seemed to be more pronounced at

200ms, there was no significant difference. Besides, our study has

some other limitations. We failed to explore PPI at ISIs lower than

100ms due to equipment limitations. Considering the small sample

size, we were unable to provide a subgroup analysis according to

the variability of clinical symptoms, such as increased blinking and

apraxia of eyelids opening.

6. Conclusion

In conclusion, we found that PPI was impaired in BSP patients

at three different ISIs. Patients with sensory tricks had better PPI

than those without sensory tricks. The sensory tricks phenomenon

may represent either the relative integrity of sensorimotor gating

pathways or a compensatory mechanism. We may thus speculate

that the underlying pathophysiology of abnormal cortical/subcortical

regulation mechanisms of sensorimotor gating and abnormal

brainstem excitatory pathways may play an important role in BSP.
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