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Site di�erences, or systematic di�erences in feature distributions across

multiple data-acquisition sites, are a known source of heterogeneity that

may adversely a�ect large-scale meta- and mega-analyses of independently

collected neuroimaging data. They influence nearly all multi-site imaging

modalities and biomarkers, and methods to compensate for them can

improve reliability and generalizability in the analysis of genetics, omics,

and clinical data. The origins of statistical site e�ects are complex and

involve both technical di�erences (scanner vendor, head coil, acquisition

parameters, imaging processing) and di�erences in sample characteristics

(inclusion/exclusion criteria, sample size, ancestry) between sites. In an age

of expanding international consortium research, there is a growing need

to disentangle technical site e�ects from sample characteristics of interest.

Numerous statistical and machine learning methods have been developed to

control for, model, or attenuate site e�ects – yet to date, no comprehensive

review has discussed the benefits and drawbacks of each for di�erent use

cases. Here, we provide an overview of the di�erent existing statistical and

machine learning methods developed to remove unwanted site e�ects from

independently collected neuroimaging samples. We focus on linear mixed

e�ect models, the ComBat technique and its variants, adjustments based on

image quality metrics, normative modeling, and deep learning approaches

such as generative adversarial networks. For each method, we outline the
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statistical foundation and summarize strengths and weaknesses, including

their assumptions and conditions of use. We provide information on software

availability and comment on the ease of use and the applicability of these

methods to di�erent types of data. We discuss validation and comparative

reports, mention caveats and provide guidance on when to use each method,

depending on context and specific research questions.

KEYWORDS

MRI, multi-site study, ComBat, normative modeling, site e�ect, neuroimaging, deep

learning, generative adversarial networks (GANs)

Introduction

Multi-site data analysis is now the typical practice in

consortium projects such as the Enhancing NeuroImaging

Genetics through Meta-Analysis (ENIGMA) consortium (1),

the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) consortium (2), iSTAGING (3) as

well as in other large scale data aggregation efforts (4–6). These

efforts aim to pool together data and statistical information

across independent studies collected across a wide range of

locations and study designs. However, the distribution of

extracted features can be heavily dependent on the site at which

it was collected, and these site effects represent a considerable

statistical challenge for neuroimaging analyses. Retrospective

site-correction techniques are now common-place for multisite

neuroimaging analyses, yet knowing which method to use under

what conditions is not always clear. The focus of our review,

therefore, is to provide an overview of the methods to date and

provide the first ever set of site-correction guidelines.

Several goals motivate the use of multi-site data both for

hypothesis-driven and exploratory analyses: one goal is to

increase statistical power by increasing the total number of

observations. This improves the ability to detect small but

likely true effects. Another goal is to boost the generalizability

and hence the scientific value of the results by directing the

same hypothesis to independent cohorts. Similarly, multivariate

pattern analysis (MVPA) needs large, heterogeneous and

representative data to effectively detect subgroups (“biotyping”)

and to develop classification tools through supervised machine

learning that generalize well to unseen data (7, 8). In this line,

MVPA with small sample sizes tends to lead to inflated accuracy

estimates during cross validation (9). To attenuate dataset shift

issues in machine learning, it has actually been recommended to

allow for more clinical heterogeneity (8), for example, include

patients with different ethnicity or from different age classes.

As a natural consequence, this inclusion strategy enhances site

effects that need to be considered to make optimal use of large

multisite samples (10). Both power and generalizability also

play a role in analyses that need certain variables stretched

out over a sufficiently large range. These include, for example,

lifespan studies of brain development and aging that benefit

from concatenating studies to cover a large age range (11–13).

Finally, open data sets often contain multi-site data, representing

a pool of neuroimaging data sets have been collected as part of

different studies and then gathered.

In the light of these goals, one statistical challenge is to

estimate the variance explained by the (acquisition) site without

impacting the model’s capacity to estimate other effects that

co-vary with the site. Insufficient correction for site effects can

leave serious confounds in the data that obscure interpretations,

impair the generalizability, replication and reproducibility and

hinder multivariate approaches such as MVPA and machine

learning (ML). In turn, overcorrection of site effects may

interfere with the estimation of effects of interest and the effects

of confounders or other nuisance variables that are needed for a

valid model (e.g., age effects) (14).

What sources of variability exist that contribute to “site-

effects” and affect the imaging phenotypes at a specific site

systematically? For magnetic resonance imaging (MRI), which

is the primary topic of this article, the MR imaging platform,

its field strength, properties of the main magnet, gradient

coils and receiving coils and the sequence specification, such

as voxel size, are all examples of major sources of different

raw signal properties that propagate into the derived features

(15, 16). Site differences are even more heterogeneous for

functional MRI due to additional factors such as variable

acquisition geometry and brain coverage, head coils, bias fields

(17), difference in task implementation, temporal duration,

EPI based sequences and complex effects of motion (18)

with static and motion-dependent image distortions and signal

dropouts (19). A site’s (re-)positioning strategy (20, 21) or

the use of immobilization devices may even influence the

uniformity of the acquisitions from one participant to the next.

The complexity increases in multisite task-based functional

MRI due to its interactive element: Here, details of the task

instructions, circadian effects and other procedural details

may influence site-specific differences in the behavior of the

participants, even for low-demand tasks such as resting state
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FIGURE 1

Overview of di�erent sources of site e�ects. The left column lists categories of technical factors that are bound to a specific acquisition site and

that may significantly influence the primary image properties. “Scanner e�ect” is often used as an abbreviation for “image acquisition platform” in

a wider sense while it incorporates numerous technical components. In active tasks where researchers or technicians intervene as part of the

study protocol (e.g., provide instructions to participants), additional site specific e�ects of a systemic nature may appear. The right column lists

factors that may be variables of interest (such as a disease status) or variables of no interest, depending on the study question. Each of them may

be site-specific and thus co-vary with the specific site in a multi-site analysis, imposing the challenge of disentangling the two sources of “site

e�ects”. It should be noted that “variables of no interest” may still be essential for an adequate statistical model of the biological e�ects (e.g., age).

fMRI (rs-fMRI) (22). In multi-site analyses such as those

practiced by the ENIGMA consortium, considerable effort

is made to standardize image processing protocols (http://

enigma.ini.usc.edu/protocols/imaging-protocols). In addition,

data quality control (QC) procedures that often cannot be fully

automated but require a qualitative assessment by a reader,

can be standardized (23). Further, to reduce influences of

different (combinations of) software versions, containerized,

user-friendly software packages are often distributed (24).

Sample characteristics are the other major source of site

effects, as “site” and “sample/cohort” are often indistinguishable.

Sample characteristics comprise the population from which

participants are sampled, or the criteria by which healthy

controls are defined, including tolerance thresholds for current

or past illness. In clinical samples, diagnostic criteria, their

operationalization and potentially ill-defined context variables,

as well as inclusion and exclusion criteria have an influence.

Cohort characteristics are thus the most disputable source of site

related variability that must be handled carefully because they

may carry true variability of the effect of interest. We give an

overview over potential sources of site difference in Figure 1.

The imaging trait, or phenotype, can originate from a broad

range of modalities and carry different levels of abstraction, yet

as long as it is linked to a common anatomical or functional

reference or index system, it is analyzable across subjects. Fully

automated analyses such as by the FreeSurfer segmentation

pipeline (http://surfer.nmr.mgh.harvard.edu) lead to regional

cortical thickness, surface area, cortical volume, or gyrification

indices, andmany of these features are also available at the vertex

level. Voxel-based analyses generate measures in stereotactic

atlas space with increasingly precise intersubject coregistration

(25–27). Task-based fMRI is meanwhile routinely contained

for large cohort studies (28) or deep phenotyping studies

(29), and the same is true for features from structural or

functional connectomics with bi-regional connectivity, network

specific connectivity metrics (30) or global or regional graph

theory based network properties (31). The statistical principles

of the site effect correction methods are generally valid

and applicable to all types of human brain mapping data

as long as the features refer to a common anatomical or

functional reference system which can be indexed across

different subjects.
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Overview and structure of this
manuscript

Several strategies exist to handle site effects, including

statistical methods performed on derived features, and more

deep learning based tools that tend to adjust site effects

image-wide. We explain and discuss the statistical tools that

are applied post-hoc to imaging metrics in two groups: A

first group that uses regression models to remove variance

such as the adjusted residuals harmonization (32–34) and the

ComBat approach that modifies the regression approach to

preserve defined covariate system (11, 33, 34). We also present

variants of ComBat such as CovBat that harmonizes site-specific

covariance patterns across features (35), implementations for

longitudinal data (36) or non-linear covariate effects (35), or

approaches that estimate the ComBat correction parameters

from low level image characteristics, such as. image quality

metrics (37). The second category is normative modeling

that maps rather than adjusts the metrics given their site

and covariate information (38–40). Last, we look into deep

learning algorithms that transform the raw images based on

learned, virtual, site-specific prototypes (41–44). In Section

Overview of site effect correction tools we describe the statistical

foundation of currently available methods, their degree of

validation, software availability, computational demands, and

key advantages and disadvantages, such as the possibility to

transfer the model to unseen cases or sites, or the possibility

to choose a reference site. We acknowledge that the list

of methods discussed in this paper is not exhaustive but

chosen based on their level of availability, dissemination

and theoretical considerations. In Section Discussion we

discuss comparative reports, highlight caveats for the use

of some methods and inform on considerations that might

guide the selection of an appropriate method to attenuate

site effects.

Who should read this manuscript

This review will be most helpful in academic settings

in which researchers are analyzing multi-site neuroimaging

data—for example, from a publicly available repository or

in a consortium. In fact, we hope that this manuscript

will encourage the use of open, shared pooled data sets by

providing an overview and guidance over several tools to

accommodate site effects and by facilitating their use. Yet,

site effects are generic and can be found in many settings—

spanning from behavioral data analyzed in interventional

clinical trials to cohort studies in social sciences, to gene

expression or any other biological data with site or batch

effects—and so, the statistical principles presented here are

not specific to imaging phenotypes as dependent variables.

To address readers from different scientific backgrounds with

different degrees of statistical knowledge and interest, we

present the methods at different levels of granularity: for a

short summary of each method, the reader may want to focus

on the sections regarding the advantages and disadvantages

of each approach and the general discussion. For the more

methodologically-curious readers, the statistical sections on

each method provide a deeper insight into the derivation of

each method.

Overview of site e�ect correction
tools

In the following sections we focus on methods that

consider the presence of covariate effects in their theoretical

conceptualization. We do not describe in detail simple

global scaling (32, 33), residuals harmonization (33) or

the surrogate variable analysis (SVA) approach that after

dimensionality reduction incorporates component weights as

nuisance variables (45).

An illustrative overview over all methods is given in Figure 2.

In addition, we have provided a summary table including details

on the number of participants, sites, the type of feature that each

method was validated on for all papers cited in this manuscript

(Supplementary Table S1).

Notation

For the convenience of the reader, we aim to provide

a consistent selection of parameter names and the notation

of equations and mathematical symbols. We follow general

notation practices, such as denoting the mean of x by as x̄,

an estimate of x by x̂ and a new value or prediction of x by

x∧∗, if not noted otherwise. Running indices follow standard

practices, such as that xisf represents the value of subject i,

site s and feature f . Lowercase letters, such as x, represent

single values, bold lowercase letters x denote vectors, and

uppercase letters X matrices. Vectors are column vectors if

not noted otherwise. Furthermore, we adopted the notation

and parameter naming of the original authors (which is often

also reflected in the code implementing a method) as much as

possible, but have made adjustments for consistency within this

document and the flow of the text. Lastly, the difference between

standardized and unstandardized values is often marked by

selecting different parameters (in papers of the ComBat family

standardized values are represented by Z, unstandardized

values by Y). For readability and the convenience of the

reader, we abstain from this differentiation and note at this

point that all values in the following need to be considered

as standardized.
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FIGURE 2

Site e�ects & correction methods for multi-site e�ects in neuroimaging. (A) Obvious site e�ects with preserved age e�ect within the sites. (B)

True, underlying, unknown heteroscedastic distribution. (C,D) The standard ComBat algorithm provides linear adjustment of site means

(Continued)
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FIGURE 2 (Continued)

and scaling of site variance di�erences, with the option to preserve linear covariate e�ects of interest, while scaling the variance to a

homoscedastic distribution. (E,F) ComBat-GAM: ComBat is augmented by the option to expand defined covariates of interest by penalized

non-linear expansion terms, while scaling the variance to a homoscedastic distribution. (G,H) Longitudinal ComBat: The ComBat algorithm is

modified to model within-subject variance over several time points under the additional consideration of changing (linear) covariates. (I,J)

CovBat: After application of the original ComBat algorithm, ComBat is again applied to the principal components of the residuals to harmonize

site-specific covariance. (K,L) Normative modeling allows the user to convert raw engineered features into z-scores specifically adjusted to

separately model site e�ects and covariate e�ects, all under a Bayesian prior system. (M,N) Neuroharmony allows one to harmonize features of

a single subject based on raw T1-image based quality metrics that have previously been linked to ComBat correction coe�cients by a

supervised ML algorithm that has been trained on a large neuroimaging data set.

Adjusted residuals harmonization

One very simple harmonization technique is adjusting the

observed values by a simple estimate of the residuals from

a multiple regression analysis that includes site and a set

of covariates as predictors. The even simpler approach—of

just regressing out site effects without considering a covariate

system—is not recommended (33, 38).

Statistical foundation

This approach is based on the additive modeling of site

effects and covariate effects:

Yisf = αf + Xβ f + γ sf + ǫisf

with f being the feature index, s being the site index, αf the

grand mean of the feature across sites, X represents the covariate

matrix, β f the coefficients associated with X and γ sf the site

effect parameters. The residual terms ǫisf are assumed to have

a mean of 0. Using ordinary least squares (OLS), for each feature

f , the estimators β̂f and γ̂sf are obtained. The adjustment is

performed by subtracting the site related term:

Y
Adj
isf

= Yisf − γ̂sf .

Advantages and disadvantages

Adjusted residuals harmonization can be implemented

easily in every statistical environment that allows for multiple

regression analysis. As described above, covariate effects βf

are considered in the way that during the OLS procedure

the covariate effects “compete” with the site effects and

attenuate their correlation with the dependent data. However,

the approach has several disadvantages: first, multicollinearity

between site and covariates may lead to unstable estimations

of the regression coefficients and to both undercorrection or

overcorrection of site and covariate effects. Second, different

scaling behaviors of the sites (i.e., different variance of the

same features between scanners) are not modeled. Particularly

when aiming to combine independently collected data, we advise

against using this procedure, as the variance retained in Xisβf
is strongly dependent on the covariate effects and the degree

of collinearity between covariates and sites. Nygaard et al. (46)

demonstrated that in unbalanced samples, the residualization

approach (two-factorial ANOVA in their example) leads to

overconfident group results.

The ComBat approach

The ComBat approach was originally suggested for

microarray gene expression data (34); its main purpose was

to improve the location/scale model (47) for small samples.

Applied to neuroimaging data, the ComBat approach assumes

a multisite dataset with “site” often representing “scanner”

in the sense of systematically different imaging acquisition

platforms. It then builds on two principles: first, a site-specific

shift and a site-specific scaling factor is assumed and estimated

by a Bayesian approach. In detail, this Bayesian approach

generalizes the OLS approach outlined above, adding empirical

priors over the site specific means and variance, which results

in partial pooling over the features (genes in the original

implementation, but voxels or regions in neuroimaging).

Second, covariates (that may be confounded with site) can be

defined in order to incorporate their effect on the variance

and preserve between-subject biological variability. ComBat

was first developed and validated for diffusion tensor imaging

data—more specifically, for maps of fractional anisotropy values

(32); later, cortical thickness measurements were analyzed

(33). The tool is widely used, and since 2017, over 50 imaging

studies refer to ComBat as their site effect correction approach

(48). Below, we describe standard ComBat and also conceptual

extensions: ComBat-GAM provides an improved model for

nonlinear covariate effects (11), longitudinal ComBat refines

the modeling of serial measurements (36), and distributed

ComBat (49) allows to harmonize data locally without

exchanging raw features. Finally, CovBat builds on ComBat

and in addition harmonizes the covariance pattern of the

residuals (49).

Statistical foundation

As its starting point, the ComBat algorithm assumes that an

individual’s observed score Yisf for site s, individual i and feature
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f is a combination of a site effect and components not associated

with the site:

Yisf = αf + Xβf + γsf + δsf ǫisf

The non-site effect related components include: αf , the overall

mean per feature; βf the corresponding coefficients to the

covariate matrix X; and the error term ǫisf with an expected

mean of 0 and site specific variance multiplier σ 2
f
. The site-

effect related components include γfs, an (additive) offset from

the grand mean per site per feature, and δsf , a (multiplicative)

effect affecting the dispersion around the mean, thus changing

the variance of the error term to δsf ǫisf .

The ComBat algorithm is based on a location and scale (L/S)

adjustment, a procedure in which these additive effects (location,

mean) and multiplicative effects (scale, variance) are removed

per feature per site by subtracting the additive effects and

dividing by the multiplicative site effects. To do this, ComBat

can be estimated in two ways: mean only in which the estimates

for mean γ̂sf and variance δ̂sf for site s and featuref are estimated

from the sample (mean as best estimator of the mean, pooled

variance as best estimator of the variance), and in an empirical

Bayes (EB) mode, in which those best estimators (labeled γ ∗
sf

and δ∗
sf
) are obtained by a fusion between γ̂sf and δ̂sf and a

prior distribution:

γsf ∼ (γs, τ
2
s ) and δ2sf ∼ Ŵ(λs, θs)

The hyperparameters γ̂s, τ̂
2
s , λ̂s, θ̂s are estimated by assuming the

site s sample mean for feature f is the mean of all individuals

in this sample for this feature: γ̂sf =
1
ns

∑

iYsfi. Concluding, the

estimates of γ̄s (the overall mean per site across the number of

all features, F) and the corresponding variance τ2s of those site s

sample means γsf from γ̄s are given by (respectively):

γ̄s =
1

F

∑

f γ̂sf , and τ2s =
1

F − 1

∑

f (γ̂sf − γ̄s)
2.

In addition, assuming that δ̂2
sf
= 1

ns−1

∑

i(Yisf − γ̂sf )
2 (sample

variance for site s and feature f ) we can deduce that the mean

V̄s per site s of those δ̂2
sf

across the number of all features,

F, is V̄s = 1
F

∑

f δ̂
2
sf

and the corresponding variance S̄2s =

1
F−1

∑

f (δ̂
2
sf
− V̄s)

2. The sample moments of V̄s and S̄
2
s are then

set against the theoretical moments of the Inverse Ŵ distribution

with the mean θs
λs−1 and variance

θ2s
(λs−1)2(λs−2)

. Solving for λ̄s

and θ̄s results in estimates those hyperparameters as follows:

λ̄s =
V̄s + 2S̄2s

S̄2s
and θ̄s =

V̄3
s + V̄sS̄

2
s

S̄2s
.

Estimating the parametric batch effect adjustments

We place prior distributions over γsf and δ2
sf

which we

assume to have the shape:

γsf ∼ N(γ̂s, τ
2
s ) and δ2sf ∼ Inverse Ŵ(λs, θs).

For both parameters we aim to find the posterior conditional

distributions for γsf and δ2
sf
, which are denoted π(γsf |Ysf , δ

2
sf
)

and π(δ2
sf
|Ysf γsf ), respectively.

Applying Bayes’ theorem, it can be shown that the expected

values for γ ∗
sf

and δ2
∗

sf
are equal to (see detailed derivation in

the Appendix):

γ ∗
sf = Ê[γsf |Ysf , σ

2∗

sf ] =
nsτ̄

2
s γ̂sf + δ2

sf
γ̄s

nsτ̄
2
s + δ2

∗

sf

δ2∗sf = Ê[δ2sf |Ysf , γ
∗
sf ] =

θ̄s + 1
2

∑

i(Yisf − γ ∗
sf
)2

ni
2 + λ̄s − 1

As we can see from the estimates for γ ∗
sf

and δ2
∗

sf
, the two

parameters are not independent from each other - the system

does not have an exact analytical solution. Hence, the estimates

for the parameter values of γ ∗
sf

and δ2
∗

sf
need to be found

iteratively, by starting with reasonable values for γ ∗
sf

and δ2
∗

sf
and looping over several sets of parameter values and under the

constraint of a loss function - for example, within an expectation

maximization (EM) algorithm (50).

The rationale behind the EB step and creating this prior is

its robustness toward outliers, particularly in smaller samples,

by borrowing information from all features for the variance

estimate. As the EB adjustment diverges from the prior with

increasing sample size, this results in comparable results (to the

L/S adjustment) for medium sample sizes, but results in strong

adjustments for small sample sizes, protecting the site effect

mean and variance estimates from the influence of outliers (34).

Based on the estimates of of γ̂sf and δ̂2
sf
, ComBat returns

adjusted data Y∗
isf
:

Y∗
isf =

Yisf − α̂f − Xβ̂f − γ̂sf

δ̂sf
+ α̂f + Xβ̂f ,

where α̂f , γ̂sf , β̂f and δ̂sf are the respective parameter estimates.

These parameter estimates can be used to apply the correction

model to the data per feature f and site s. Beyond this, yet

depending on the implementation, ComBat allows the user to

either align data from all sites to the (grand) mean and (pooled)

variance of all sites or to that of a reference site (see Table 1).

Advantages and disadvantages

ComBat was validated in the two reports that introduced it

to neuroimaging (32, 33) and since then has been used in more

than 50 peer-reviewed neuroimaging studies. Further validation

comes from studies that compared it to other methods (see

discussion for details). The computational effort of ComBat is

low. Also, for higher dimensional data types such as voxel-based

morphometry, implementations exist in R, Matlab and Python,

reflecting its broad acceptance by neuroimaging researchers. In
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TABLE 1 List of tools and respective open source code links.

Method Code Link to software Reference Comment

ComBat R, Matlab https://github.com/Jfortin1/ComBatHarmonization (32) Reference batch function: possible

in Python and R

Python https://github.com/Jfortin1/ComBatHarmonization

ComBat R http://enigma.ini.usc.edu/protocols/statistical-

protocols

(51) Added functions: separate into

train|apply, and handling of

missing values

ComBat Python https://github.com/brentp/combat.py (34)

ComBat Python https://github.com/Warvito/neurocombat_sklearn (32)

M-ComBat R https://github.com/SteinCK/M-ComBat (52) Modified ComBat allowing for

harmonization on a reference

sample

d-ComBat R https://github.com/andy1764/Distributed-ComBat (49) Distributed ComBat allowing to

apply ComBat w/o exchange of

original site data

ComBat-GAM Python https://github.com/rpomponio/neuroHarmonize (11) Additional scripts for working with

NIFTI

Longitudinal ComBat R https://github.com/jcbeer/longCombat (36)

CovBat R, Python https://github.com/andy1764/CovBat_

Harmonization

(35) Includes a ComBat version

allowing to separate into

train|apply

Neuro-harmony Python https://github.com/garciadias/Neuroharmony;

https://mriqc.readthedocs.io

(37) Second tool (MRIQC) needed to

generate quality measures

Hierarchical Bayesian

Regression

Stan https://github.com/likeajumprope/

Bayesian_normative_models

(38) NM focusing on site effect

correction

Normative modeling

toolbox

Python https://github.com/amarquand/PCNtoolkit (53) Toolkit on NM functions

The following table lists the tools discussed in this paper, the key paper that informs on the statistical background and the link to the open source codes.

Deep learning tools are not listed here due to their more complex handling and still ongoing validation studies.

the following sections we discuss some implications that follow

from the ComBat framework and considerations that should be

kept in mind when applying ComBat:

As outlined above, the Bayesian step poses empirical priors

over the estimates for mean and variance, leading to a partial

pooling of information over the features in the data set. This

has two direct implications: First, it implicitly assumes that

signal properties of the different features are drawn from

the same distribution with a single mean and variance for

each site. However, this assumption does not hold if the

target distribution is heteroscedastic, meaning that the standard

deviation of the predicted variable is not consistent (for example

cortical thickness showing greater variance in old than in

young individuals). Second, sites with less data are more heavily

regularized than those with more data, leading to unbalanced

adjustments in case of large sample size differences between sites.

Both implications are a direct result from the modeling

of modeling noise in ComBat: within the ComBat framework,

the variance term ǫisf is modeled as an empirical average of

the variance from all data. This forces all sites to have the

same (homoscedastic) noise term ǫisf and leads to a loss of the

biological meaning that is included in heteroscedasticity (e.g

as described in the example above). Instead, the modeling of

the noise term in ComBat leads to ǫisf becoming sample size

dependent: The ǫisf in a data set with two sites with n1 = 10000

samples and n2 = 100 will be different from the ǫisf of two sites

with n1 = 500 and n2 = 500. The limitation to a unified, average

noise term within the ComBat framework also prevents the

approach to cater for the differences in precision that result from

site sample differences as described in the second implication.

To conclude, Combat is not able to model heteroscedastic

distributions and large sample differences between sites, and

should not be used in those cases.

Another disadvantage is that while covariate effects can be

preserved by ComBat, they need to be made explicit to the

algorithm. Covariate effects might be collinear with site but that
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are not specified (due to unavailability of the covariate or due to

not considering its influence) are not preserved and variability

of the imaging phenotypes explained by this (unmodelled)

covariate will be removed from the total variance. Further,

ComBat assumes that the site effects γ̂sf and δ̂2
sf
are independent

of the covariate effects modeled in Xβ̂f , and does not model

site-by-covariate interactions. This suggests that ComBat is

optimally applicable when the biological effects that are assumed

to have an effect on γ̂sf and δ̂2
sf

are equally distributed across

sites and can thus be estimated across all subjects. In scenarios

with a strong collinearity between covariates X and a site (e.g.,

one site containing a group of young subjects, yet with very

low cortical thickness values due to the scanner of that site),

problems occur: First, the algorithm may force the sample

to align with a generally assumed linear age trajectory, i.e.,

strongly increasing the values of this site. Second, this shift

may be particularly strong if no non-linear age effects are

modeled over the life-span (e.g., allowing for a stable plateau

phase in young adulthood). In this respect, Pomponio et al.

(11) recommended – based on simulation experiments – that

covariate ranges should ideally not be disjoint but should overlap

between sites.

As a practical disadvantage, different implementations

of ComBat with different functionality exist in parallel: for

example, the version of Fortin et al. (32) cannot process input

data with missing values or fit the model in a training dataset

and apply it to a test dataset. Both functions were added to

the version published by Radua et al. (51). Similarly, not all

implementations allow the user to define a subsample as a

training sample in a machine learning context (see Table 1).

Combat-GAM

Statistical foundation

ComBat-GAM (Pomponio et al., 2020) allows for modeling

of non-linear covariate effects by placing one covariate or a set

of covariates within a function f (x):

Y∗
isf =

Yisf − f (Xisf )− γ̂sf

δ̂sf
+ f (X)

where f(Xisf ) is a smooth function over covariates

x1, x2, x3, . . . , xn with f(Xisf ) = f(x1, x2, x3, . . . , xn) =

a + f1(x1) + f2(x2) + f3(x3)+, . . . ,+fn(xn). Very briefly [for

an extensive introduction and overview, see Wood (54)], the

GAM approach used by Pomponio et al., (11) divides the input

into sections and defines a spline, i.e., a piecewise polynomial fit

to the data on these sections. The points separating the splines

are called knots. f (x) is then represented by a basis expansion

by choosing a basis (a space of functions) that f (or a close

approximation to it) is an element of. One basis function is

then piecewise fit to each spline, overall approximating f . In the

simplest case, the basis function is linear, but more complex

structures have been introduced. Furthermore, smoothness

terms are added that penalize the “wiggliness” of the fitted basis

functions, to prevent overfitting. Beyond that, the use of GAMs

has led to complex ways of optimizing the placement of knots

and interpolating over several predictors.

Tomodel non-linear age effects, as a prerequisite for lifespan

studies, Pomponio et al., (11) used plate regression splines

for the basis expansion, a method that optimizes the knot

placement problem over several covariates. Model estimation

was performed using penalized regression splines with the

smoothness defined from the restricted maximum likelihood

(REML) criterion. Pomponio et al., (11) included age as non-

linear term and sex and ICV as linear terms in the model,

reducing it to f (xage, xsex, xICV ) = α + f1(xage) + b2xsex +

b3 xICV .

Advantages and disadvantages

Themain advantage of ComBat-GAM is the option tomodel

and thereby preserve non-linear covariate effects in a flexible

way during the site correction process. Pomponio et al., (11)

present its performance on several brain volume phenotypes

over a large age range, and differently shaped non-linear age

trajectories were detected in many regions (see discussion for

comparative studies). The tool is available as a python script

package and is easy to use. It also allows a user to estimate the

model in a subsample (“training sample”) and apply it to other

examples from the same sites. Further, besides feature tables

(e.g., cortical thickness of regions of interest), 3D images in

NIFTI format can be used as input data, making ComBat-GAM

useful for higher-dimensional data, for which its computational

performance is also sufficient.

In terms of disadvantages, the method inherits the

general limitations of ComBat. Mainly, ComBat-GAM cannot

preserve effects of site-confounded covariates that are not

specified. Another problem might be overfitting of non-linear

effects which could hamper the transfer of the model to

unseen cases.

CovBat

CovBat (49) extends the ComBat approach toward

harmonizing scanner-specific mean and variance of all features

separately, but also the covariance structure between features.

This additional function aims particularly to accommodate

for site effects in preparation for Multivariate Pattern Analysis

(MVPA), a method that analyzes the joint distribution and

correlation structure among multiple brain features instead of

univariate features.
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Statistical foundation

CovBat first calculates the ComBat-adjusted residuals, by

running the default version of ComBat:

eisf =
Yisf − α̂f − Xβ̂f − γ̂sf

δ̂sf

After this first step, the eisf are assumed to have a mean of

0, however, their covariance matrices 6i may still differ across

sites. In a second step, principal components analysis (PCA)

is performed on those residuals eisf . PCA identifies covariance

patterns in high dimensional data and compresses them by

reducing the number of its dimensions. Conceptually, PCA

consists of finding q orthogonal axes φk:

λ̂ik =
∑ni

j=1(ξijk −
∑ni

j=1 ξijk/ni)
2/(ni − 1). To summarize,

site differences create variation of principal component scores

from the average. Based on these assumptions, the site effects

can be removed via ξCovBat
isk

=
ξisf−µ̂sk

ρ̂sk
. As a last step, the

CovBat adjusted residuals eCovBatis are obtained by projecting

the adjusted scores into observational space, via eCovBatis =
∑K

k = 1 ξCovBat
isk

Oφk +
∑q

l = K + 1
ξiskφ̂l. Finally, the intercepts

and covariate effects from the main ComBat step are added to

obtain the final CovBat-adjusted observations:

yCovBatisf = eCovBatis + α̂f + xTis β̂f

Advantages and disadvantages

Implementations in both R and Python are available

and are clearly explained, with a call syntax highly similar

to ComBat and no relevant computational burden. CovBat

has been validated in one main report so far (35): here,

the authors explored the effect of covariance adjustment

for three different scanners on a supervised learning task

directed to diagnose Alzheimer’s disease from regional cortical

thickness values. Second, the authors evaluated to what

degree the detection of scanner effects was impaired when

age and sex as covariates were preserved. In brief, CovBat

outperformed ComBat regarding these tests, and in particular,

the detection of sites was more strongly attenuated with CovBat.

Third, four simulation scenarios (“ComBat”[no covariance

site effects], “predictor affects mean” [covariance site effects],

“predictor affects covariance” [covariance of site and predictor],

“covariance only” [no mean or variance effects, only covariance

effects of site or predictor] demonstrated that CovBat performed

as well as ComBat or better–particularly when actual covariance

differences were present between sites. Model transfer is

implemented, so a subset of the data can be used for

parameter estimation that is then applied to unseen cases (of

known sites). The user can define the number of principal

components (PCs) for harmonization directly, or indirectly by

their explained variance. The definition of a certain number of

PCs/the variance explained allows to neglect PCs that are less

relevant to the overall variance explained, and thus might add

unnecessary noise.

Problems with CovBat reportedly (35) arise in smaller

samples (N < ∼25) with many features (e.g., N ≥ 48),

particularly when no covariance site effects exist–here, even

an inflation of the detection of site effects after CovBat may

be observed. Another limitation is that the nonlinear covariate

expansion option as implemented in ComBat-GAM is not

available, not allowing for more complex biological influences

to be preserved.

Longitudinal ComBat

Statistical foundation

Longitudinal ComBat (36) specifically addresses the issue

of site effects in longitudinal data consisting of repeated

measurements of the same individuals. This is accomplished by

adding a time variable t to the model, making it time variant and

allowing one to specify multiple scanning time points along with

constant or time-varying covariates:

Y∗
isf =

Yisf (t)− α̂f − X(t)β̂f − γ̂sf − η̂if

δ̂sf

+ α̂f + X(t)β̂f + η̂if

In addition to the parameter estimates for α̂f , γ̂sf , β̂f and δ̂sf ,

longitudinal ComBat also models the dependence of multiple

within-subject observations originating from repeated scanning

of the subjects. These are modeled by a random subject-specific

intercept η̂if ∼ N(0, ρ2
f
) from the feature mean estimate at

baseline α̂f in a linear mixed model.

Similar to cross-sectional (traditional) ComBat, longitudinal

ComBat can operate in two modes: in REML (restricted

maximum likelihood estimator) mode, in which the repeated

within-subject variance ρ2
f
and the pooled error variance σ 2

f
are

estimated using the restricted maximum likelihood estimator,

or in MSR (mean square residual) mode, in which the pooled

variance is estimated from the data, similarly to the mean only

mode of traditional ComBat [(32, 33) Johnson et al.]. From a

simulation study, Beer et al., (36) concluded that both modes

of operation result in smaller standard errors for longitudinal

Combat compared with traditional ComBat. Even so, while

the MSR mode demonstrated the highest statistical power and

allowed for more clearly discernible differences between subjects

(together with unharmonized data), this method also showed an

inflated type I error. The REML mode, in contrast, controlled

better for type I error. The authors conclude that the choice of

method results in a trade-off between type I and II error.
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Advantages and disadvantages

Longitudinal ComBat represents an extension to traditional

ComBat to handle repeated measurements. The time distances

from baseline can be specified and are not necessarily

equidistant. Its advantages emerge when it comes to

comparisons with cross-sectional ComBat: both additive

and multiplicative scanner effects are controlled to a degree that

scanner or site variables were not needed in the final models

of longitudinal brain changes in Alzheimer’s disease. Another

advantage is that no overlap cohort of subjects measured on the

different scanners is needed.

What might be considered a minor limitation is that the

possibility of longitudinal MRI studies comprising a within-

subject scanner change is not considered. Beer et al. (36) have

investigated this issue and found no relevant difference between

a data set in which all individuals were scanned on the same

scanner and a data set in which the measures were obtained on

different scanners. Still, in the case of very strong scanner effects

the model may need refinement. The current implementation

does not offer the option to define a reference site or to train a

model and apply it to new subjects from trained sites.

Variations on ComBat

The following ComBat variants represent additional

variations of the ComBat principle that, however, do not

substantially alter its core statistical steps:

• Distributed ComBat (d-ComBat) (49) may be useful when

sites cannot share their original data sheets with a central

processing site (CS), as is needed for a mega-analysis. It

requires two rounds of communications between the local

sites (L) and the CS. The algorithm as whole comprises

the following steps: (1) The CS assigns each LS a site

(scanner) code. (2) Locally, summary statistics (of all

features) are calculated and sent to the CS. (3) In the

CS, by using a specific matrix decomposition, a model

is estimated that returns (per feature) estimates of (i) a

general intercept, (ii) the site specific regression coefficients

of the covariates, and (iii) site-specific shifts. (4) These

values are provided to the LS that calculate the sum of the

residuals per feature and return it to the CS. (5) This, in

turn, allows the CS to calculate the pooled variance term,

which is needed by the LS to (6) finalize ComBat and obtain

harmonized data. In a validation analysis, comparing d-

ComBat with centrally performed ComBat, practically no

difference was found in the Bayes point estimates for

location and scale and the regression coefficients (of a

single covariate) (49). An open source software to perform

these steps is available, and theoretically the principle of

d-ComBat should be transferable to longitudinal ComBat,

ComBat-GAM and CovBat.

• In modified Combat (M-ComBat) one site is chosen as

reference and all other sites are adjusted to the mean

and variance of this site rather than to the grand mean

and pooled variance of all sites. The principle was first

presented for gene expression data (52) but was soon

transferred to neuroimaging (33, 55). Reasons to choose

one site as a reference site may be its large sample size,

or its broader coverage or higher measurement reliability

of clinical and other covariates. This approach theoretically

allows for including sites incrementally without continuous

adjustment. The function is also part of the R and Python

version of standard ComBat (32, 33).

• Bootstrap ComBat (B-ComBat) is a computationally more

expensive variant of ComBat in which the parameters of

the ComBat model are repeatedly estimated (with a Monte

Carlo method) and eventually averaged for improved

robustness. For this approach, Da-ano et al. (55) report

a slight, but consistent improvement of B-ComBat in an

unsupervised hierarchical clustering example.

Neuroharmony

Statistical foundation

Another novel approach that builds indirectly on the

ComBat approach and allows a user to adjust imaging

phenotypes (in the original paper: regional volumes) from

unseen T1-weighted images has been proposed by Garcia-

Dias et al. (37). The principle of this approach (referred to

as Neuroharmony) is the use of a multivariate correlation

between imaging quality metrics (IQMs) (e.g., contrast-to-

noise rate, signal-to-noise ratio, intensity non-uniformity index)

and relative ComBat-based corrections. More specifically,

supervised ML using random forests is employed to train a

system that predicts the ComBat correction factors—separately

for each region-of-interest (ROI)—from such a set of IQMs.

For dimensionality reduction, the latter were first reduced from

68 original values generated by the validated software MRIQC

(https://mriqc.readthedocs.io) to 20 principal components.

With this 3-step technique (calculating IQMs, using them as

predictors in the ComBat coefficient prediction system, applying

the resulting coefficients to the imaging features), T1-weighted

images from unseen sites can be ComBat adjusted—as long as

their IQMs lie within the ranges of the training sample of the

original publication.

Advantages and disadvantages

Overall, a set of IQMs represents a powerful surrogate

marker system that captures scanner features and that is

transparent and interpretable. The algorithm was described

and validated in 2020 (37), and the code written in Python is

available, but has not been used in other studies so far. A clear
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advantage of Neuroharmony is that features from unseen T1-

WIs from unseen sites can be harmonized with an existing data

pool on which the random forest algorithm was trained. This

is certainly a valuable function as it theoretically allows for the

incremental build-up of samples on the basis of a representative

starting basic multi-site dataset. Another advantage is that the

tool warns the user if the IQMs of a new image lie outside the

range of the training cases.

Still, there are disadvantages at the current stage: first, the

IQMs need to be calculated for each new T1-WI, which requires

a certain amount of effort—yet, established software scripts

support this step. Second, the original implementation uses a

simple covariate system (age, sex) and a defined set of image

features that may not always be suitable for new study scenarios.

In the case, a complete re-training would be needed whichmight

represent a considerable effort, and might be considered as a

reduced readiness level of the tool.

Normative modeling

Normative modeling uses percentiles or z-scores to chart

the variation of one (or several) targeting variables orthogonal

(normed) to the variation of one (or several) covariates. The

concept is famously used in pediatric growth charts, where an

infant’s deviation from the normative variation in height or

weight may is used to track developmental milestones.

Normative modeling can be applied to any set of variables

that co-vary with each other. In neuroimaging, many studies

using this approach have included age and sex as covariates

with regional cortical thickness or functional connectivity as the

target variables. Normative modeling aims to estimate a z-score

or percentile of each individual’s brain measure relative to the

normative distribution of individuals with the same age and sex,

thus mapping the full variation in a data set and resulting in

individual deviation scores. The approach has recently been used

to investigate how structural brain measures of individuals with

common psychiatric disorders (56–58) deviate from the norm

(i.e., a normative age curve of structural brain measures).

Even though normative modeling is not a dedicated site

correction tool in itself, it can be effectively used to correct for

site effects in neuroimaging studies. The appeal of the use of

normative modeling for site effect correction lies in the fact

that the resulting z-scores derived from a normative model can

be considered “normalized” for the respective covariates (e.g.,

age and sex). In a multi-site dataset, site can be included as

an additional covariate or handled in a multilevel modeling

framework [e.g., (38, 40)]. If site is used as a (factorial) covariate,

the resulting z-scores describe the remaining variance in the

brain metric as a distribution that is orthogonal and thus not

influenced by site, enabling the comparison between z-scores

across sites. In this way, normative modeling represents a

different approach compared with the ComBat family. Instead

of harmonizing for site by removing site effects, normative

modeling models site variance as part of the normative model.

In addition, the separation of variances into aleatoric (i.e.,

variation related to inter-individual differences) and epistemic

variance (noise or modeling uncertainty, see below) allows for

an uncertainty of the individual prediction and of the site effect.

Statistical foundation

Several approaches can be used for normative modeling–for

an overview see Marquand et al. (53). Ideally, the algorithm of

choice should be able to model normative centiles continuously

as a function of the covariates, estimate them across the full

spectrum of the centiles with appropriate precision (taking into

account the varying ratio of aleatoric and epistemic variance at

sparse and more dense parts of the data) and have the ability

to estimate deviations for individuals via analytical formulae

(e.g., Z-scores) (59). So far, normativemodeling approaches have

used hierarchical linear models, polynomial regression, Bayesian

linear regression (60), quantile regression (61), generalized

additivemodels for location, scale and shape (GAMLSS) (60, 62),

support vector regression and Gaussian process regression to

create centiles for normative models (53). The version that is

considered in more detail here uses a hierarchical Bayesian

regression approach to address the site effect problem in multi-

site neuroimaging data (38). Using the example of regional

cortical thickess values, the here described normative model

with site as predictor in addition to age and sex returns a

distribution of individual z-scores zi of deviation from the

normative that are orthogonal to the site factor.

Normative modeling involves estimating a z-statistic for

each feature independently, which under Gaussian assumptions

can be computed using the formula below, where the feature

index f will be dropped:

zi =
yi − µi

√

σ 2 + σ 2
∗

Here, µi is the predictive mean from a (possibly nonlinear)

function mapping the the noise-free prediction for each

individual sample i based on the specified norm, σ 2 is the

noise variance and σ 2
∗ is the variance of the predictions. This

separation of variances is one of the key differences relative to

all the other methods and allows one to make a statement on the

uncertainty of the prediction per individual. Zooming in on µi

in turn, we see that this variable is described as a combination

of a 1 × p vector βj containing weights associated biological

variance components and a 1 × q vector us containing weights

related to site variation.

µi =

p
∑

f=1

xijβj +

q
∑

b=1

zisûs + γi
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γi is an optional component in order to add non-linearity, for

example via a Gaussian process or B-splines. Finally, this noise

free prediction is linked to the noisy observation via:

yi = µ(xi)+ ǫi

Y = µ + ǫ, with ǫ ∼ N(0, σ 2)

The model in our recently specified implementation adds

hierarchy by placing shared priors and hyperpriors θ0 over both

variance components: u ∼ N (0,6j) and us ∼ InvŴ(2, 2). All

free parameters, summarized in θ are estimated by performing

Bayesian inference:

p(θ |X, y, θ0) =
p(θ ,X, y, θ0)

p(X, y, θ0)
=

p(θ |X, y, θ0)

p(X, y, θ0)

Advantages and disadvantages

Normative modeling has several advantages, the most

important of them being that it does not remove any biological

variance of interest that might be confounded with site variance.

This characteristic makes normative modeling also applicable

in a setting when biological information is not uniformly

distributed across sites (for example, more female or more

control group individuals in one site than the other). Rather, NM

results in direct predictions of the mean and the variance for the

observed distribution, allowing to calibrate data to population

centiles. This step places all data in a common reference space,

whilst retaining the ability to relate these centiles back to the

original scale of the data (e.g., via site-specific means and

variances). The return of predictive mean and variance also

allows to validate the predictions of NM, and thus the goodness

of the subsequently calculated z-scores (see general discussion

for details).

A further advantage of NM is the hierarchical structure

within the Bayesian framework, which permits the application

and generalization to new sites and data points. For example, it

allows for or the re-use of trained posteriors as priors to inform

further estimates. This way, the normative model can also be

used to calibrate predictions for unseen sites, as demonstrated

in Kia et al. (39).

Beyond that, recent extensions of the normative modeling

approach variants of the framework can model no-Gaussian

effects via likelihood warping (60), and GAMLSS (62). Kia et al.

(40) developed a variant in which, once trained, a normative

model can be applied to decentralized neuroimaging data,

similar to decentralized Combat.

One practical disadvantage of normative modeling—yet,

depending on the non-linear algorithm of choice–is the

computational cost and complexity of the model. Gaussian

progress regression, for example, can become very time and

memory expensive with growing n (O(n3)) [see also (60)]. This

may limit its current use to low dimensional imaging data with

a few hundred features per subject but not voxel or vertex

wise maps or connectomics data that may contain over 106

features. Further, if covariates are not well-selected and show

no association with the imaging phenotype, this may lead to

the model failing to predict as there is no variance captured by

the model.

Adjustment of raw imaging data for the
purpose of site harmonization by deep
learning methods

Deep learning methods aim to harmonize raw images

by using image translation techniques rather than correcting

secondary features extracted from the post-processed images.

These can be classified as supervised methods, which typically

require traveling subjects and must be planned prospectively

(63) and in unsupervised methods, such as variational auto-

encoders (41) or CycleGAN (64) where MR images are often

separated into well-defined domains in terms of scanners

or sites.

Statistical foundation

Several deep learning methods for site correction are

based on generative adversarial networks (GANs) (65), that

have achieved remarkable results in creating, adjusting, and

enhancing images for artistic as well as scientific applications.

In one formulation of adversarial learning, the aim would be

to extract a set of predictive features from the image that are

maximally predictive of a specific outcome (e.g., classifying

Alzheimer’s disease, or any other diagnosis) and at the same time

maximally uninformative of the site or scanner where the data

originated. This “minimax game” has inspired a game-theoretic

formulation, and GANs combine and train two neural networks:

one (the generator) extracts predictive features from the input

data, while the other (the adversary) tries to distinguish which

site the data came from.

The VAE-GAN method (41) uses a variational autoencoder

to embed the predictive features into a latent space, such that

the latent space features are useful for the main task (predicting

diagnosis), but defeat the adversary that tries to predict the

site where the data originated. Practically, this is achieved

by adding a “gradient reversal layer” to shift neural network

parameters to defeat the adversary. When trained successfully,

the VAE produces a so-called scanner-invariant set of predictive

features–features that do not depend on the site of origin of

the data. A third penalty term, which is optional, and can also

be simultaneously optimized, can be used to reconstruct the

original image from the latent space as accurately as possible. As

noted below, in StyleGAN extensions of this basic approach, the

latent space data can also be combined with a site code, yielding

corrected images that match data from a certain reference site.
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Zhao et al. (66) noted that this same adversarial principle

could also be used to de-confound deep learning models

for other biological variables potentially co-varying with site,

such as age and sex. They argue that this type of adversarial

site correction is crucial to avoid training DL methods that

incorrectly learn accidental features of a cohort, and then

fail badly when applied to new datasets [the “domain shift”

problem in ML (8)]. Dinsdale et al. (67) provide a practical

implementation of this set-up for a brain age prediction task,

using multiple adversaries to adjust for multiple confounds

(including site and sex).

Advantages and disadvantages

In practice, adversarial deep learning methods are prone

to overcorrection when sites have used different scanning

parameters, and are also confounded by demographic and

clinical differences, such as clinical diagnoses, age ranges,

or ethnicity, which might lead to site corrections that

remove critical biological differences. In these situations,

the demographic and clinical conditions need to be strictly

controlled and matched.

Recently, deep learning methods have successfully achieved

diverse image translations by disentangling the image into

“content” and “style” spaces (68), where contents represent low

level information in images such as contours and orientations,

and styles may be considered as including high level information

such as colors and textures. Based on this distinction, several

methods have been proposed. Dewey et al. (43), for example,

used this breakdown (including the scanning of a small

overlap cohort) to show promising results for harmonization

of T1-weighted images from different scanners and protocols:

indeed, the consistency of segmentation results was significantly

improved. As an extension of Dewey’s work (43), a recent

MRI harmonization method, called CALAMITI (Contrast

Anatomy Learning and Analysis for MR Intensity Translation

and Integration) (69), relies on intra-site supervised image-

to-image translation and unsupervised domain adaptation for

multi-site harmonization. This requires training a disentangled

representation model with intra-site multi-contrast images (T1-

and T2-weighted images) of the same subjects and retraining

the model for a new site via domain adaptation–no sample

population imaged across sites is needed.

Unlike CALAMITI, several other methods require only

images from a single contrast and can learn multi-site

harmonization simultaneously. For example, DRIT++ (70)

embeds images in a site-invariant content space capturing

information shared across sites and a site-specific style space

for every pair of sites. The encoded content features extracted

from an image of one site are combined with style features

from another site to synthesize the corresponding harmonized

image. However, DRIT++ cannot fully utilize the entire training

dataset and can only learn from two sites at a time, causing it to

miss global features that can be learned from images of all sites.

Failure to fully utilize training data likely limits the quality of the

generated images.

A similar study by Liu et al. (44) was carried out to

harmonizeMRI images frommultiple arbitrary sites using a style

transferable GAN by jointly considering images from all sites.

The approach conceptualizes image harmonization as a pure

style transfer problem rather than a domain transfer problem:

the appearance of the harmonized image is determined by the

style features extracted from the reference image. Based on a

large, diverse training dataset, the model proved capable of being

applied to unseen images (see also Figure 3).

More recently, MURD (71) enforces explicit

disentanglement of content and style features, allowing it

to produce harmonized images with diverse appearances

and significantly better preservation of anatomical details.

Disentanglement safeguards harmonization against altering

anatomical image contents and allows gradual and controllable

harmonization through interpolation of style features. Other

than that, the harmonization target is not specified by a single

reference image, as suggested in Liu et al. (44), but rather by

a site label, which determines the output branch of the style

generator and the style encoder. A latent code sampled from the

standard Gaussian distribution then determines an appearance

specific to the site.

Discussion

The dilemma in mitigating site effects in multi-site

neuroimaging studies is illustrated in Figure 1: on one hand,

sites differ in acquisition factors that reduce the statistical

power to detect the correlations of interest. On the other hand,

sites often also reflect different clinical and neurobiological

characteristics, or in an extreme case, clinical or neurobiological

characteristics that are unique to a site. If these factors influence

the imaging measure, their contribution to the phenotypic

variance should thus not be removed (“overcorrection”).

In turn, “undercorrection” of the site effect diminishes the

power of subsequent regression analyses and leads to poor

generalization in supervised machine learning or to site factors

dominating subgroup formation in unsupervised learning, such

as clustering. All discussed methods thus aim to optimize the

power of a pooled analysis by “emulating” a situation in which

all subjects were scanned on the same imaging platform.

Validation of ComBat family methods

Regarding its basic validation in neuroimaging, Fortin

et al. (32) compared ComBat with four other correction

techniques, analyzing if unwanted variation induced by the
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scanner/acquisition protocol was removed and if between-

subject biological variability was preserved. For the latter,

an empirical validation scheme was set up, defining a pool

of voxel-wise diffusion scalars (e.g., fractional anisotropy)

associating with age vs. another pool not associating with age.

Within this scheme (which might be referred to as “silver

standard” as it is based on external knowledge, for example

biological aging assumptions, and not a neutral statistical

metric), ComBat proved superior to (1) global scaling (in

which one global shift and one scale parameters is estimated

for each site), (2) functional normalization (that models the

variation quantile functions as a function of site), (3) RAVEL

(that estimates latent factors from a control region in the brain

maps), and (4) surrogate variable analysis (that uses PCA to

remove automatically selected components). Fortin et al. (33)

extended validation work to cortical thickness measurements,

showing that site could not be predicted by a support vector

machine after harmonization and that age prediction by linear

regression and multivariate methods was not impaired by

ComBat (but also not improved). Expectedly, the combination

of unbalanced samples regarding the covariate distribution

and a method not considering the covariate system (such as

unadjusted residualization) led to removal of age-related signal,

as shown by other work (33, 72). Using simulations, Orlhac

et al. (48) studied the effect of ComBat on site-by-covariate

interactions, concluding that ComBat preserved covariate effects

where present in specific sites without introducing spurious

covariate effects where no such effect was present. To further

refine ComBat, Zhang et al. (73) suggested first analyzing

the actual deviation of moments (mean, variance, skewness,

kurtosis) from a reference site and then performing only the

adjustments needed.

How does ComBat relate to meta-analysis and mega-

analysis? Mega-analysis is known to provide larger power

compared with meta-analysis (74), and one additional argument

for mega-analysis is its potential to perform analyses across a

larger spectrum and richer variability of covariates, including

interaction analyses. Thus, a practical approach to this question

was to compare a mega-analysis on ComBat-harmonized data

with a standard random effects (RE) meta-analysis and with a

mixed effects (ME) mega-analysis where site was modeled as

a random effect (51). Accepting disease effects (schizophrenia

vs. controls) as a silver standard for which maximization

is sought, stronger group effects were detected for ComBat

compared with RE meta-analysis, and ComBat also offered a

less strong but significant advantage over ME mega-analysis.

From this perspective, d-ComBat is an interesting addition

as it combines the privacy-conserving aspect of meta-analysis

with the possibility to harmonize the data (49). Here, while

a gain for meta-analysis is expected, a formal comparison of

d-ComBat harmonized meta-analysis against classical meta-

analysis is still lacking.

ComBat-GAM extends ComBat by a flexible extension to

nonlinear covariate effects. After it was shown to preserve

lifespan aging trajectories (11), more validation papers have

followed, one showing an advantage (stronger patient|control

differences and stronger age-related declines) compared with

linear ME mega-analysis that modeled a site random effect and

age-related random slopes (75). Simulation experiments have

further corroborated the robustness of ComBat-GAM (11) with

two practical implications: first, sites with partially overlapping

ranges of the covariate of interest can be better harmonized

compared with sites that show disjoint ranges. Second, a large

total number of subjects seems to outweigh the necessity for

balanced samples (see also Box 1). Yet, it should be added that

the validation of ComBat-GAM has not been very strict in that

(1) ComBat only had a quadratic but no higher order terms and

(2) the effect of ComBat-GAM on subsequent MVPA was not

compared with the quadratic ComBat.

Longitudinal ComBat (36) is relevant for serial multi-site

imaging studies: In the ADNI sample, an advantage over cross-

sectional ComBat was demonstrated regarding the attenuation

of scanner effects and the power to detect diagnosis-by-time

effects. An alternative for the management of longitudinal

(structural MRI) studies is to use tools that combine the serial

raw images to derive a differential result and then correct this

by using standard ComBat. Examples for such approaches are

deformation based morphometry (77), edge-displacement based

approaches to measure atrophy [https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/SIENA] or specific implementations of FreeSurfer for

longitudinal studies (78).

More recently it has been shown that ComBat leaves

covariance patterns in the residuals that might still contain

scanner effects and obscure biomarker effects (35). For this,

CovBat harmonizes the covariance of the residuals after

standard ComBat. Yet, structural covariance is not only a

confound, but contains important network information (79)

and such across-subjects covariance is also present in task-

fMRI (“co-activation networks”) and structural and functional

connectomics. Overall, CovBat could be useful for large datasets

in which strong site-related covariance patterns exist and

in which a high proportion of observations over features

is available.

Despite these extensions of ComBat to incorporate non-

linear, longitudinal and covariate site effects, all variants of the

ComBat family rely on principal assumptions that limit the

application of its use. First, the ComBat algorithm requires the

noise term, ǫisf (the residuals) to be at random (Gaussianity).

At this point, no ComBat variant can accommodate for skewed

noise distributions, which have, however, been found to be

present in certain types of neuroimaging data (60). Secondly, the

variance, including the noise, has to be equal and independent

from the predictor (Homoscedasticity). ComBat should not be

used in cases where those two assumptions are violated.
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BOX 1 Caveats and preliminary conclusions for the ComBat family.

Sample size The use of Empirical Bayes can improve the estimation and removal of site

effects in datasets even with small sample sizes of at least 20–30 subjects

(32, 76), yet, samples with less than 20 subjects might overstrain the

algorithm and lead to unreliable priors and hyperparameters. The problem

might be aggravated when covariates are added that further

compartmentalize the data.

Dimensionality of features Generally, the computational burden of ComBat is low. Both extracted

features in the magnitude of dozens and hundreds up to voxel-wise

measures can be entered to the ComBat implementation. For some

implementations, 3D files need to be rewritten as [N,1] vectors. ComBat

cannot be run for a single feature (see above).

Balanced sample sizes As pointed out above, a larger total sample size seems to outweigh the

degree of balance which might serve as a hint toward a rather inclusive

strategy.

Distribution of covariates As site effects and covariate effects across all sites compete with each other

in the ComBat model, it is recommended that the distribution of covariates

are not disjunct but overlap between sites (11, 33).

Separate handling of different types of features It may be critical to combine subsets of features with a diverse range (and

different units) (for example, combining cortical thickness [range 1-5mm]

and subcortical volumes [20–100 mm3]) in one dataset for ComBat. This

may disturb the standardization step that is based on the pooled variance

across sites and all features. It is thus recommended to harmonize these

distinct feature subsets separately, which also preserves the interpretability

of the position and units of the ComBat adjusted values.

Expected non-linear covariate effects ComBat-GAMmight be considered the most flexible tool when the

envelope of the non-linearity is entirely unknown. For life-span studies, its

primary validation paper (11) thus represents a guideline. For other studies,

ComBat with a set of pre-defined non-linear extensions might be

comparably suitable.

Additional harmonization of covariance This newer extension is worthy of consideration under certain

pre-conditions (Chen et al.; 11): (1) Data exploration demonstrates that

covariance actually differs between sites (scanners), (2) sample sizes are

sufficiently large to provide reliable estimates for the covariance, (3) results

should be compared to conservative standard ComBat to understand the

impact of the additional step.

ComBat in scenarios without full access to subject-level features Here, distributed ComBat might serve as a workaround to rescue power

that is lost in classical RE meta-analysis.

Model transfer to unseen cases of known/unknown sites Unseen cases of sites known to the model can be corrected by ComBat,

ComBat-GAM or CovBat. The transfer of the corrective model to data from

unseen sites is not directly supported by the ComBat family of methods -

only through additional adaptations (e.g., Neuroharmony (37). Also see

discussion.

Beyond that, the differentiation between “wanted”

(biological) and “unwanted” (site-related) variation is not

usually clear cut. In contrast, the modeler is often confronted

with the problem that variance that is fully shared between

site and variables of interest cannot be uniquely attributed

to either. In this case one could argue that it is safest to

discard this information. This is an indirect critique toward

the ComBat method, for which it has been argued that the

step of re-adding part of the signal (the “wanted variance

confounded with site”) leads to overconfident results due

to a relative shrinkage of the noise term (46). Thus, despite

the loss of sensitivity in case site is correlated with effects of

interest, it could be argued that given the risk of the artificially

deflated residuals and the consequently (sometimes severely)

inflated Type I error, the safest way to use ComBat might

be to disregard of the estimates Xβ instead of adding them

back in.

The use of ComBat in MVPA applications

Most ComBat studies have evaluated its effects in MVPA

such as multivariate age estimation (11, 32, 33). ComBat as a

preparation step for MVPA has been the focus of a comparative

study in onco-radiology (55): Three different ComBat variants

were run before three supervised ML algorithms (multivariate

regression with LASSO, random forest, support vector

machine). Generally, ComBat harmonization improved MVPA

performance at the level of several performance measures.

Still, these improvements need a closer investigation regarding
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their generalizability as too much variance might be removed

by ComBat which may lead to overconfident estimates

further down the processing. This more general problem of

a residualisation approach is even obvious in a two factor

(site, group) ANOVA (46). Similarly, CovBat might remove

biologically relevant covariance confounded with site: For

example, neurodegeneration of a certain severity disrupts

the physiological network organization visible as structural

covariance (80). By this, a site with an imbalanced sample (e.g.,

more patients) could be falsely cleaned of relevant information.

Box 1 gives an overview over caveats and preliminary

conclusions for the ComBat family.

Normative modeling to control for site
e�ects

Normative modeling (NM) provides an alternative

approach: NM aims to map the full variability of a feature

across the population in the form of percentile scores or

z-scores onto a set of predictors (including site), resulting in

individual prediction, along with a measure of uncertainty per

individual and per site. Conceptually, it may be understood as a

normalization of brain measures per site instead of estimating

a site effect and removing it. Several methods have been

used to achieve this normalization (or mapping) step–for an

overview see Marquand et al. (53). The approach we discussed

in this paper makes use of hierarchical Bayesian regression

(HBR), modeling sites by placing a shared prior over site,

and allowing for non-linearity by adding a Gaussian process

component. This effectively pools estimates across sites, which

is a different approach to modeling site variation than pooling

across voxels or regions of interest, as is done by ComBat

and other harmonization techniques. The differentiation

between subject-related (aleatoric) variability and noise related

(epistemic) variability allows for an estimate of uncertainty

of the individual prediction, with “prediction” denoting the

prediction of the z-score of one individual per feature and the

corresponding underlying variance. In other words, epistemic

variance (noise) can be reduced by adding more data, whereas

aleatoric (subject related) variance cannot be reduced. The

z-score may be interpreted as a corrected value of this feature,

considering site and other covariates included in the model.

The fusion of the two different variance types in calculating

the z-score also means that the amount of uncertainty in

the model that can be attributed to data sparsity (epistemic

noise) is included in the z-score and can be tracked back. The

difference from other methods of calculating a z-score lies in

the differentiation of variances, which results in a z-score per

individual that does not only map onto an individualized mean,

but also to an individualized variance, as not only the mean, but

also the variance varies with the predictor. NM has been used in

various neuroimaging applications and is conceptually universal

and not specific to certain imaging modalities or features

(53, 60). Yet, its use for site effect correction is fairly new. NM

is similar to ComBat-GAM in terms of the flexible modeling of

non-linear covariate effects although it can also accommodate

non-Gaussian distributions. Other than in ComBat that uses

variance across features in the EB step, in NM the z-scores are

independently estimated for each feature. The exact derivation

of percentile scores for NM can be computationally demanding

(although less demanding approximations exist, see (53, 60)

which might lead to limitations in use in the case of large

size features (see also Box 2).

A direct comparison of NM and ComBat is difficult as

the output of the two methods results in values on different

scales (z-scores vs. adjusted data in original space): Whereas

Combat subtracts an estimate of the site effect from the data,

NM accounts for the site effect variation in the standard

deviation that the z-scores are based on. Bayer et al. (38) used a

special pipeline to make the two measures comparable: Z-scores

were calculated from the ABIDE dataset by NM that entailed

site (and other covariates) as predictor. The same data were

adjusted using ComBat with protection of the covariates and

then forwarded to NM with only the covariates (but lacking

site). This enabled us to assess the accuracy of the prediction

of (1) the mean (Pearson’s correlation between predicted and

observed values; standardized root mean square error) and

(2) the variance values (explained variance, mean standardized

log loss) that underlie the eventual z-values. According to all

these performance metrics, the NM-based correction model

with site effect included performed better. This procedure,

at the same time, highlights the downside of ComBat that

(for itself) does not allow for a direct way to validate the

truthfulness of its adjustments: this information could only be

retrieved by appending the NM step. This problem is present

both when data are projected to an artificial average site or

a reference site, and it also hampers the comparison between

independent ComBat procedures. In addition, Bayer et al. (38)

demonstrated that ComBat, even when retaining covariates, led

to a poor calibration of the predictions reflected in excessive

loss of the original variance. Interestingly, sites could still be

predicted from the NM z-values after the ComBat correction,

a sign of undercorrection. One underlying reason might be the

underestimation of the site-by-covariate interactions in ComBat,

which are better captured by the more variance conserving

normative modeling approach. This preservation of variance

in NM also makes the resulting z-statistics back-translatable

and allows for an intuitive understanding of deviations in the

original scale of the data.

Another difference to ComBat is the flexibility that is

inherent in the distribution based approach of the NM

framework. Fraza et al. (60) suggested that white matter

microstructure measures (such as mean diffusivity, fractional

anisotropy, radial diffusivity, and axial diffusivity) derived
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BOX 2 Caveats and preliminary conclusions for normative modeling.

Sample size Although the separation of variances in the NM allows one to quantify the

sparsity of data points along the predictor, the training of a normative model

requires a relatively large sample size to adequately map the variance (300–500

individuals, more is better). A normative model can also be applied at the level of

a single individual.

Dimensionality of features In the current implementation of (38) NM is applied unit-wise (feature, voxel).

This assumes that features are independent from each other and do not share

variance. 3D files need to be rewritten as [N,1] vectors. NM can be applied to

large data sets with many features, but requires a massively parallel

computational approach.

Balanced sample sizes The separation of variances in NM allows for an estimate of uncertainty based on

the density along the covariate. This prevents overconfident estimates in the case

of unbalanced samples.

Distribution of covariates Covariates do not necessarily need to overlap (but this is recommended). Missing

parts in covariate distributions may be filled in/estimated via prior distributions,

but estimates from priors will always be more noisy than from actual data.

Separate handling of different types of features Different types of features or feature sets can be processed in one run if adequate

computational power is available (also see above).

Expected non-linear covariate effects Normative modeling with a Gaussian process, or a GAM addition, allows for

non-linear covariate effects (not only with respect to the mean, but also the

variance of the prediction).

Additional harmonization of covariance Not considered.

NM in scenarios without full access to subject-level features To perform NM, full access to the raw data is needed.

Model transfer to unseen cases of known/unknown sites See discussion.

from DTI data may deviate from Gaussianity, making the

ComBat approach not applicable. They further showed how

a likelihood warping extension to a Hierarchical Bayesian

Regression normative model based on B-splines was able

successfully model skewed distributions. Work by Dinga (62)

using generalized additive models of location, scale and shape

supported this result, and also showed explicitly how NM can

be used in the case of non-linear, heteroscedastic and non-

Gaussian data.

Transfer of site correction models to
unseen data

“Unseen data” may refer to unseen subjects from known

sites, or data from totally new (unseen) sites. As ComBat

outputs average levels for each feature, covariate effects, and

site-specific position and scaling estimates, the model can be

applied to unseen subjects’ data from known sites. Technically,

this option is implemented for traditional ComBat, CovBat and

ComBat-GAM. Da-ano et al. (81) investigated if transferring

ComBat to an unseen random split subsample of the data

would compromise supervised ML; in brief, no relevant

differences were found compared to ComBat applied to the

full sample. Yet, the study dealt with tumor radiology and

nuclear medicine markers and results are likely not generalizable

to neuroimaging due to sample sizes, covariate effects and

measurement reliability. Intuitively, the transfer to new subjects

from known sites may work more robustly if the biological

covariates of interest between the training and test subsamples

are balanced. Such balance should also help MVPA studies to

attribute the overall loss of performance to (i) the site effect

model vs. (ii) the generalizability of the actual multivariate

prediction model.

The situation is more difficult if a site effect correction

needs to be applied to data from completely unseen sites.

This, however, is a requirement for fully transferable diagnostic

MVPA pipelines that do not require calibration or training. One

solution is to define a reference site for ComBat that allows for a

build-up of adjusted data—yet, the properties of such a reference

site cannot be easily formalized and depend on the context. Two-

stage systems are conceivable in which a very large multi-site

sample is harmonized first, and these harmonized data are then

used as a stable (2nd level) reference site for new sites. Overall,

so far, ComBat cannot correct for site effects of data from unseen

sites—which is a limitation regarding MVPA.

Neuroharmony (37) uses the multivariate correlation

between basic image quality metrics (IQMs) and ComBat

coefficients that can be learned by machine learning (elastic

net). For data from unseen sites, these same IQMs are then

calculated and used to predict the necessary ComBat coefficients

by the formerly trained elastic net. While the principle is elegant

and could serve as template for the ComBat family and other

image modalities, it needs retraining for different features (as

compared to the initial publication) and also for other covariate

schemes. This customizing step may hamper its wider use.

In the normative modeling context, transfer to unseen sites

can be done in three ways: first, a trained model can be used as a
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FIGURE 3

Exemplary results of a style-encoding GAN. First row shows six reference images (columns 2–7) di�ering in their contrasts between gray matter,

white matter, CSF and background, and the first column showing di�erent source images at di�erent axial slice positions. Harmonized images in

each row demonstrate well-maintained anatomical structures and at the same an alignment of the contrast features to the reference column.

See Liu et al. (44) for details. Reproduced with permission.

normative reference model for individuals from new sites. This

approach has been successfully demonstrated in Kia et al. (39)

who trained a normative model based on Hierarchical Bayesian

Regression in Python from the PNC toolkit on four different

sites and subsequently created predictions for three new sites.

Kia et al. (39) showed that the HBR approach with a calibration

step was able to make adequate predictions for the mean and

variance of the new sites, as indicated by performance measures

such as root mean squared error, mean standardized log loss and

Pearson Correlation Coefficient, and reliably revealed cortical

thickness differences between individuals from different clinical

cohorts. Second, the posterior of a trained model can be used

to inform a prior when training a model on unseen data. This

option might be useful when the new sites are small, as the

informed prior prevents overfitting. Thirdly, the posterior can

be used as a prior distribution to make predictions without

informing it with the new data. The idea behind this approach

is that a posterior from training some sites might be (at least

to some degree) informative for the range of variation in new

sites. Indeed, this approach has been shown to make only good
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predictions for the mean, but perform less well for the variance

of the new normative distribution (39).

Sharing (pooling) of information across
features

The question whether sharing or pooling of information

across features is a benefit in site effect correction methods

is an ongoing discussion. Combat uses a shared variance

component at feature level during the Empirical Bayes step

by borrowing information from other features that as a whole

hold more useful information than the single, potentially noisy,

feature. In principle, the same logic still applies to less noisy

features (for example regional cortical thickness values each

of which is based on hundreds of vertex points). NM, on

the other hand, deliberately treats features as independent,

not making any specific assumptions about the relatedness of

the features. What remains unconsidered in both ComBat and

NM is the spatially structured smoothness of the data with a

higher similarity of anatomically neighboring voxels. This could

be a further developmental step, and particularly hierarchical

Bayesian approaches have been successfully used with functional

MRI to incorporate temporal and spatial dependencies (82).

Deep learning applied to multi-site
imaging studies

Generative adversarial networks in different conceptual

realizations (see Figure 4) allow for a separation between

features predictive of the desired outcome and features that are

attributable to the sites. By accessing the latent space features,

an image of one site can then be transformed to an equivalent

of another (reference) site. The site|covariate confounding

issue remains, however, and recent extensions of the GAN

principle thus direct additional adversarial networks to covariate

effects to protect the model from losing individual biological

information. When combined with sufficiently large and diverse

training samples, the GAN principle could eventually allow

FIGURE 4

Four GAN-based deep learning harmonization models. (A) The network architecture in Moyer et al. (41). The invariant representations to and

from the images are learned using an encoder/decoder architecture, with a one-hot vector to represent the protocol identifiers. (B) General

network architecture in (67). The network is formed of three sections: the feature extractor with parameters, the label predictor with parameters,

and the domain classifier with parameters. The domain invariant features (from the feature extractor), which are used in domain-invariant label

predictions. are learned by confusing the domain classifier. The represents the input data used to train the main task with labels, and represents

the input data used to train the steps involved in unlearning scanner with labels d. (C) The architecture of the style-encoding GAN (44).

Generators learn to generate images by inputting a source image and a style code. The anatomy of the brain MRI was preserved using a

cycle-GAN architecture, and the harmonization was achieved by inserting a style code into the images. Reproduced with permission. (D) (a)

Given T1-w and T2-w images from Sites A and B, the method from Zuo et al. (69) learns the site-invariant anatomy from supervised

image-to-image translation (T1–T2 synthesis) and site-variant contrast from unsupervised image-to-image translation (harmonization), where is

learned to control the image contrast after harmonization, and is learned to preserve the anatomical information.
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for adapting the appearance of data from an unseen site to

a reference style which opens the perspective toward highly

powered pooled studies. Currently, these developments focus

on macroanatomical and diffusion MRI, and more validation

studies are needed on the risk of overcorrection and on their

effects on post-processing pipelines. For this, robust silver-

standards need to be defined that prove that neurobiological and

clinical information content is not corrupted.

When to correct for site e�ects

Opportunities to correct for site effects arise at different

stages of the processing pipeline, and they also arise at different

stages of data collection. For example, different scanner vendors

and acquisition protocols will result in different raw brain

images. Later, researchers at different research centers might use

different software products to analyze those images, on different

operating systems. Once the data are uploaded to a public server,

the meta- or mega-data analyst will already be faced with a

complex interaction between those scanner effects and other

variables that differ between scanner locations (disease status,

sex, age). Naturally, a harmonization of site effects at a stage

as early as possible, including coordinated data collection, and

at every step of the pipeline along the way would be ideal. Still,

in retrospective harmonized data analyses that are predominant

in ENIGMA and other collaborative research initiatives with

public data sets, the researcher may only have access to measures

derived from the original image, making it less feasible to correct

for site effects at an earlier stage. We recommend integrating

correction methods as soon as possible in the pipeline once the

user has access to the data to prevent confounded downstream

analyses. For this reason, we also highlight deep learning

methods—some of which operate on raw MR images.

Prospective site e�ect correcting
methods

We refer the reader to recent studies [i.e., (63, 83)] for

a discussion and comparison of the benefits of the use of

prospective site effect prevention methods, such as the use of

phantom scans or the ’traveling subjects’ approach, although we

have not focused on it here, for the following reasons.

To begin with, the target audience for this manuscript is

researchers who plan to work with open, public or consortium

data. This type of data is usually only accessible and being

pooled after data collection has been concluded—and sometimes

after several pre-processing steps have already been taken—

meaning that the user has little or no control over those

steps. Thus, we prioritized methods and strategies that can

be applied after the data has already been collected and

minimally pre-processed.

Secondly, the origin of site effects is heterogeneous and

not necessarily independent of biological variation; the extent

of any interaction is not always fully known. For example,

they can arise from scanner related factors, such as scanner

platform and sequence details, which could potentially be

alleviated using phantom scans. Yet, other factors affecting

the postprocessing (software version, processing pipeline and

operating system) equally introduce biases, and even QC

procedures deserve a harmonization step. Given this complexity

and the fact that some image modality specific intermediate

steps are needed to transform the phantom or traveling

subject information into an effective site correction, we refer

the reader to another overview paper on this matter (see

introduction of deep learning Section Adjustment of raw

imaging data for the purpose of site harmonization by deep

learning methods).

Conclusions

For multi-site neuroimaging analyses, different methods

to attenuate site effects have become available, comprising

different statistical principles, degrees of use, level of validation,

and readiness level. Well-founded approaches comprise the

ComBat family and, more recently, normative modeling that

by its flexible concept is increasingly adapted for site effect

correction. Newer developments such as adjusting raw multisite

MRI data through deep learning techniques show promise,

but call for more accessible implementations and validation.

We encourage the open sharing of site effect correction

software and a detailed explanation in the methods sections

of future manuscripts. We encourage the open sharing of

site effect correction software and a detailed explanation in

the methods sections of future manuscripts. Given that a

chosen site adjustment method can significantly influence

the outcome of the final analysis, future studies comparing

results from multiple site correction methods could improve

the replication and generalizability of large-scale, multisite

neuroimaging studies.
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