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Stroke is a serious global public health issue, associated with severe disability

and high mortality rates. Its early detection is challenging, and no e�ective

biomarkers are available. To obtain a better understanding of stroke prevention,

management, and recovery, we conducted lipidomic analyses to characterize

plasma metabolic features. Lipid species were measured using an untargeted

lipidomic analysis with liquid chromatography-tandem mass spectrometry.

Sixty participants were recruited in this cohort study, including 20 healthy

individuals and 40 patients with stroke. To investigate the association between

lipids related to long-term functional recovery in stroke patients. The primary

independent variable was activities of daily living (ADL) dependency upon

admission to the stroke unit and at the 3-month follow-up appointment.

ADL dependency was assessed using the Barthel Index. Eleven significantly

altered lipid species between the stroke and healthy groups were detected and

displayed in a hierarchically clustered heatmap. Acyl carnitine, triacylglycerol,

and ceramides were detected as potential lipid markers. Regarding the

association between lipid profiles and functional status of patients with stroke

the results indicated, lysophosphatidylcholines (LPC) and phosphatidylcholines

were closely associated with stroke recovery. LPC may contribute positively

role in patient’s rehabilitation process via an anti-inflammatory mechanism.

Appropriate management or intervention for lipid levels is expected to lead to

better clinical outcomes.
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1. Introduction

Stroke is a life-threatening medical condition caused by

inadequate blood supply to the brain. It is a rapidly progressive

disease and the third leading cause of death worldwide

among older adults (1, 2). Annually, more than two million

people suffer from stroke in China (3). Stroke has become

a major public health issue, resulting in increased medical

expenditures (4). Although the survival rates have improved

with modern treatment options, patients frequently experience

permanent disability after stroke (5). Reliable interventions and

accurate blood marker analyses are required to enhance the

recovery process and reduce the disability rate in patients post-

stroke.

Current stroke diagnostic techniques and pathologic

measures have not yet determined the evolution of altered

lipid metabolism in stroke and how it is associated with

other stroke-related risk factors. The diagnosis of stroke

relies mainly on several neuroimaging techniques, such

as computed tomography (CT) scans, magnetic resonance

imaging (MRI) scans, arteriography, and Doppler ultrasound.

Existing techniques entail some limitations in discriminating

the stroke type within the initial hours after the event and

may even fail to identify the association with future stroke

recovery (6–8). Investigation and understanding of the

pathophysiological mechanisms of stroke can contribute to the

promotion of secondary prevention and patient management.

Therefore, diagnostic biomarkers that can determine the

pathophysiological changes in multiple organs need to

be explored as they may explain changes related to acute

stroke, including brain injury, systemic response, and even

stroke progression.

Lipid metabolism disorders are controllable risk factors

that contribute to stroke development (9). Traditional lipid

markers, including total cholesterol, triglycerides, low-density

lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-

cholesterol (HDL-C), are often used to evaluate stroke risk

as they are altered in stroke as a result of dysfunctional lipid

and lipoprotein metabolism (10). However, they cannot help

discriminate how lipid dysfunction occurs at the molecular

level or identify metabolites associated with stroke prognosis

in an early stage. It is critical to identify novel biomarkers

that discriminate, diagnose, and classify stroke quickly

and accurately.

Lipids have emerged as potential biomarkers for various

diseases. Since lipids serve as structural components of cell

membranes, signaling mediators, cellular barriers, and energy

depots, they can reflect the pathological or physiological status

of metabolic disorders (11–13). In the central nervous system,

lipids and lipid mediators play a key role in maintaining

structure and function of brain tissue (10). To a large extent,

they can affect stroke patient’s outcomes and recovery. A

better understanding of the functional activities of distinct lipid

molecules provides an opportunity to better understand the

roles of lipids in the origin of stroke, and to identify novel

lipid biomarkers and therapeutic targets. Novel explorations

in mass spectrometry technologies for lipidomics have enabled

the simultaneous untargeted detection and quantification of

thousands of lipids, which can substantially help in diagnosing

and understanding diseases (14, 15).

In this study, we aimed to investigate the lipids associated

with physiological responses or development of stroke and

which can provide explanation to the recovery of stroke. By

integrating liquid chromatography–tandem mass spectrometry

(LC–MS) techniques and advanced bioinformatic analyses, we

applied untargeted lipidomic profiling to screen for detectable

lipids in the plasma of a cohort of patients with stroke, using

healthy participants as controls.

2. Materials and methods

2.1. Patient enrolments

This study recruited 40 patients with acute ischemic stroke

hospitalized in neurology department of Shenzhen Second

People’s Hospital from January 2021 to August 2021, within 48 h

of experiencing stroke symptoms. Twenty healthy people with

non-cardiovascular and cerebrovascular diseases in the same

physical examination center were randomly selected as non-

stroke control group. Inpatients who met the inclusion criteria

were selected by convenient sampling and they were recruited in

the study through in-hospital poster advertising.

The study was conducted in accordance with the Declaration

of Helsinki. All study protocols and methods were approved by

the Ethics Committee of Shen-zhen Second People’s Hospital

(No. 20200601044-FS01) and registered in the Chinese Clinical

Trial Registry (ChiCTR2000035352). Written consent was

obtained from all participants.

The inclusion criteria for patients with stroke were as

follows: (1) diagnosed with acute cerebral stroke via CT or

magnetic resonance imaging; (2) aged 18 years and above; (3)

admitted within 48 h of stroke onset; and (4) with no history of

cerebrovascular disease.

The exclusion criteria for patients with stroke were as

follows: (1) hemorrhagic stroke; (2) spinal cord injury, motor

neuron disease, or Parkinson’s disease; (3) autism, Alzheimer’s

disease, or developmental delay; (4) unconsciousness; (5)

intravenous thrombolytic therapy; and (6) inability to cooperate

with the evaluation.

Twenty healthy controls were recruited using the following

inclusion criteria: (1) aged 18 years or older, (2) no history of

cerebrovascular disease, and (3) no sign of stroke based on CT or

magnetic resonance imaging examination. The exclusion criteria

were the same for both groups.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.1047101
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.1047101

2.2. Clinical data collection

All data were collected in interviews in person by

professional healthcare workers, such as doctors and

physiotherapists, who were trained for this study. Baseline

characteristics, including name, sex, stroke type, and disease

duration, were documented. Participant’s weight and height

were obtained and their body mass index (BMI; kg/m2) was

then calculated. Clinical biochemical indicators were collected

from patients with stroke upon hospitalization and from the

medical examinations of healthy participants.

The ability to perform activities of daily living (ADL) of

40 patients with stroke was evaluated using the Barthel Index

(BI) (16) on admission and in the follow-up appointment

at 3 months post-stroke. Recovery was assessed at 3 months

using the BI score. The BI scoring method was based on

a previous study (17). The BI score ranges from 0 to 100,

0 indicates complete dependence for ADL and 100 indicates

complete independence for ADL. The study participants with

BI scores ≤90 were considered to have an undesirable recovery

outcome and determined to be dependent (18). To minimize

bias, two professional physiotherapists were selected from our

rehabilitation department and trained for this study to evaluate

the BI scores of all participants.

2.3. Sample preparation and lipid
extraction

Plasma collection was conducted by venipuncture into

ethylenediaminetetraacetic acid tubes upon hospitalization for

non-treatment with tissue plasminogen activator delivery or

mechanical thrombectomy. Before the experiments, the samples

were thawed at 4◦C until no ice was observed in the tubes.

Lipid extraction was performed in accordance with a previously

reported protocol (19). Briefly, 40µl of serumwas extracted with

120 µl of precooled isopropanol (IPA) and vortexed for 1min.

After incubation at ambient temperature for 10min, the mixture

was stored overnight in a refrigerator at −80◦C to facilitate

protein precipitation. The samples were centrifuged for 20min

at 16,000 × g, and the supernatant was kept at −80◦C until

the LC–MS analysis. Pooled quality control (QC) samples were

prepared to evaluate the LC–MS system conditions by mixing

equal volumes of all samples.

2.4. Lipid detection with LC–MS

The extracted lipids were separated using an ACQUITY

UPLC BEH-C18 (2.1 × 100mm, 1.7µm, Waters, Milford MA,

USA) on a Vanquish Flex system (Thermo Fisher Scientific, MA,

USA) and emitted into a Q-Exative mass spectrometer (Thermo

Fisher Scientific). A flow rate of 0.3 ml/min was applied to

mobile phase A, which included 10mMammonium formate and

0.1% formic acid (ACN:H2O= 60:40, v/v), and mobile phase B,

which contained 10mM ammonium formate and 0.1% formic

acid (IPA:ACN = 90:10, v/v). The initial elution began at 30%

B and was quickly evaluated using a linear gradient to 60% B

for the first 3.5min, followed by an increase to 100% B within

5min. Finally, B was restored to 30% over the next 0.1min and

equilibrated for 1.4min before the subsequent injection. The

ThermoQ-Exactive was operated with the following parameters:

spray voltage 4 kV (positive) and −4 kV (negative). For both

ionization modes, the sheath gas and aux gas were separately

maintained at 35 and 10 arbitrary units, while the capillary

temperature and the heater temperature were 320 and 350◦C,

respectively. The MS/MS data was acquired by data dependent

method and top 3 abundant ions were used for fragmentation.

The normalized collision energy (NCE) was set 15, 30, and

45 eV, respectively.

2.5. Data preprocessing, quantification,
and identification

ProteoWizard was used to convert raw data to mzXML

format (20). Based on the R environment, the metaX toolbox

integrated with the XCMS package read and processed

MS data, including peak picking, peak grouping, retention

time alignment, and second peak grouping (21, 22). Ion

features were detected and extracted according to retention

time (RT) and m/z using the XCMS package. A three-

dimensional matrix containing randomly assigned peak indices

(retention time-m/z pairs), sample names (observations), and

ion area was generated. Next, the raw peak areas from

the ion features were processed using the MetaX package.

Observations found in <50% of the QC samples or 80% of

the biological samples were excluded. The K-nearest neighbor

imputation method was used to handle missing values. A

probabilistic quotient normalization algorithm was introduced

to normalize the data for all samples (23). Quality control-

based robust LOESS signal correction was fitted to the QC

data with respect to the order of injection to minimize

the signal intensity drift over time (24). A partial least

squares discriminant (PLS-DA) model was built to calculate

the variable importance in projection (VIP) score for each

lipid feature.

All features were searched against MS2 libraries

using MSDIAL (version 4.0) (25). Mass tolerance

was configured as 0.01 for MS1 and 0.05 for MS2

for both positive and negative modes. The minimum

cutoff score for identification was set at 0.7. The MS2

identification entries from all files were integrated with

the features quantified by MS1 m/z and RT using an

in-house script.
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2.6. Statistical exploration and
downstream processing

All statistical analyses were performed using the R

software for statistical computing and graphics (version

4.1.0; R Foundation, Vienna, Austria). To explore potential

indicators of stroke recovery, the Shapiro-Wilk test and

Wilcoxon rank-sum test was used to verify the assumptions

of normality and to compare patients at the time of

admission and those at the 3-month follow-up appointment,

respectively. Normalized expression values were calculated for

each row (each lipid feature) using Z-scores. A hierarchical

clustering heat map was then generated to illustrate the

overall characteristics of markers or lipid species using

the ComplexHeatmap package (version 2.8.0) (26). The G-

Power (27) was ued to estimate the sample sizes for each

group based on given power value, effect sizes and α-

levels. Two boxplots supplemented with corresponding p-values

for particular lipid species were visualized to highlight the

significance of the function from the ggpubr package (version

0.4.0).

The lipid co-expression network was generated by

calculating the Pearson correlation coefficient of each lipid

pair using the igraph package (version 1.2.11) (28). Lipids were

depicted as colored vertices. The edge list consisted of pairs with

a correlation value >0.85. Edges with absolute values below

the cutoff were deleted from the network. The absolute value

of the correlation determined the thickness of each edge, and

the size of each vertex represented betweenness centrality. The

network substructure was generated by calculating community

membership modules using the Louvain method (29).

3. Results

3.1. Participant characteristics

The experimental design is illustrated in Figure 1. Sixty

participants were recruited in this cohort study including

20 healthy participants and 40 stroke patients. Demographic

information and clinical biochemical indicator results are

presented in Table 1. As indicated in Table 1, patients with

stroke had a slightly elevated BMI compared to that of

healthy participants. Patients with stroke had significantly

higher triglyceride but lower HDL levels compared with those

from the non-stroke group (all p < 0.05). Moreover, the total

protein level was significantly lower, whereas the fibronectin

level was significantly higher in the stroke group compared

to that in the non-stroke group (all p < 0.01). We also

found significantly decreased albumin levels (p < 0.01) in

patients with acute stroke compared to those observed in

healthy participants.

3.2. QC of lipidome analysis

After analyzing the raw MS data, the untargeted lipidomic

analysis generated 18,123 features in positive ion mode and

8,210 features in negative ion mode. All spectra were measured

in the m/z range of 100–1,500. The distribution curves from

the positive and negative modes revealed an appropriate

complementarity between the two modes (Figure 2A). After

peak matching, alignment, and missing value imputation, we

identified 718 and 400 features through similarity measures of

the MS/MS spectral library comparison in the positive ion mode

and negative ion mode, respectively. The identified lipids belong

to six major categories and 64 lipid species (Figure 2B). Among

these, glycerolipids, glycerophospholipids, and sphingolipids

were the three major lipid classes that covered the greatest

number of identified lipids in our data. To promote confidence

in lipid detection, we provided a peak spot graphic to illustrate

the spatial distribution of all detected lipid species in two-

dimensional spaces of RT and m/z (Figure 2C). Appropriate

identification was determined by the correct fraction (lipid

species) and matched with the correct mass and elution order.

Specifically, lipid species with mass ranging from 250 to 600 Da

eluted earlier than 5min; lipid species with mass ranging from

600 to 800 Da fell into a specific range of RT of 5–8min; and

lipid species with mass ranges of more than 800 Da eluted after

8–10 min.

3.3. Di�erential lipids analysis

All features were subjected to PLS-DA to detect lipid-

driving group separations, and those with a high VIP score

(≥1.0) were further assessed using statistical tests to identify

dysregulated lipids associated with stroke development. As

shown in Figure 3A, the score plot exhibited a clear separation

trend between the stroke and non-stroke groups. Cross-

validation was applied to the OPLS-DA model to check whether

the model was overfitting. The intercept values of R2 and Q2

from the permutation test were 0.6086 and –0.4353, respectively,

indicating there was no overfitting in the model (Figure 3B).

Features with VIP ≥ 1 and an analysis of variance p-value ≤

0.05 were selected as significantly differentially abundant lipids

(Figure 3C).

Next, we compared the feature abundances for each group

using heatmap visualization (Figure 3D). The dot plot shows the

false discovery rate, and the bar plot shows the fold change for

all differentially expressed lipid features at the top of the graph.

Lipids were considered differentially expressed and retained

based on the following criteria: fold change of ≥1.5 at t-test

and Wilcoxon rank-sum test false discovery rate ≤0.05. In

total, 90 significantly differential lipid features were detected,

which were further divided into 11 lipid groups. In particular,

eight lipid species that were upregulated in the stroke group

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.1047101
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.1047101

FIGURE 1

Flowchart illustrating the comprehensive framework of this study. A total of 60 subjects were recruited for this study, including 20 healthy and 40

acute stroke individuals. Plasma samples were collected from all study participants and pre-treated as described in the methods section. Using

the untargeted profiling strategies by LC-MS platform, lipid features were identified and quantified from plasma samples. Multivariate and

univariate analyses are used for data quality assessment and for exploring altered lipid molecular species among groups. Following that, we

explored the data on two levels. (1) Based on the three groups mentioned above, we used the T test or Wilcoxon rank-sum test to identify

di�erential lipid species in each group. (2) Based on the Barthel Index, we re-divided the patients into good and poor recovery groups. Potential

indicators were detected based on the Wilcoxon rank-sum test. In addition, we built a network to investigate the correlations or interactions

between pairs of lipid molecules.

were detected: ceramides (Cer_NS), phosphatidylethanolamine,

ether-linked phosphatidylethanolamine, triacylglycerol (TG),

ether-linked TG (ether TG), steryl esters, diradylglycerols,

and lysophosphatidylethanolamine. Two lipid species that

were downregulated in the stroke group were detected: acyl

carnitine (CAR) and ether-linked phosphatidylcholines (PC).

In summary, these results provided initial evidence that lipid

alterations may play a role in stroke pathophysiology.

3.4. Biomarkers for stroke recovery based
on BI

To investigate which biomarkers are related to stroke

recovery, the BI scores of 40 patients with stroke upon admission

and at the 3-month follow-up appointment were collected. As

suggested by previous studies (18, 30, 31), these 40 patients were

divided with stroke into two groups: ADL independent with a

BI score ≥95 and ADL dependent with a BI score ≤90 using

the BI score from the 3-month follow-up appointment. Next,

a hierarchically clustered heatmap was constructed to present

the lipids that were closely linked to these two groups. As

shown in Figure 4, all individuals could be roughly divided into

two predefined categories. The annotations for each individual

are displayed as three-colored tracks on top of the heatmap.

Moreover, significantly altered lipids were mainly involved in

two lipid species: lysophosphatidylcholines (LPC) and PC. The

Wilcoxon rank-sum test, accompanied by a boxplot, was used

to validate the alternative hypothesis that lipid abundances were

significantly different between the two groups. Furthermore, the

lipid-related network was constructed based on the correlation

coefficients of each lipid, suggesting that two major species,

LPC and PC, play a dominant role in the recovery of patients

with stroke.

4. Discussion

In this study, the lipid markers CAR, TG, and Cer_NS

were detected in patients with stroke. Notably, Cer_NS

expression levels were upregulated in the stroke group. TG

expression levels were increased, while CAR expression

levels were decreased in the stroke group. These results

provide initial evidence that lipid changes were related

to stroke pathogenesis. Furthermore, to improve the

recovery process and reduce the disability rate in patients

post-stroke, we explored the association between lipid

profiles and functional status of patients with stroke and

found that some LPC and PC were closely associated with

stroke recovery.

Dyslipidemia is strongly associated with the pathogenesis

of stroke, particularly ischemic stroke. Traditional lipid

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.1047101
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.1047101

TABLE 1 Demographic information.

Clinical parameter Total (n = 60) Non-stroke (n = 20) Stoke (n = 40) p-Value

Male 34 (56.7) 10 (50) 24 (60) 0.645

BMI 23.70± 3.57 22.34± 3.18 24.33± 3.61 0.058

Lipid levels in mg/dl

Total cholesterol 4.79± 1.05 4.93± 0.60 4.748± 1.17 0.484

Triglyceride 1.09 (0.77, 1.62) 0.72 (0.51, 1.12) 1.16 (0.91, 1.72) 0.016

HDL-C 1.15± 0.35 1.49± 0.36 1.04± 0.27 0.001

LDL-C 2.94± 0.86 2.79± 0.51 2.99± 0.95 0.360

Liver function in g/L

Total protein 70.49± 6.006 75.956± 4.597 68.85± 5.42 0.001

Albumin 41.6 (39.05, 45.25) 48.60 (46.10, 49.60) 40.9 (38.425, 43.25) 0.001

tPA administration (%) NA NA NA

Stroke recovery scoring

BI score at baseline NA 68.88± 26.57

BI score at 3 months NA 83.13± 30.35

Values are shown as n (%), mean ± SD, or median (25th and 75th percentiles). Chi-square test was utilized for the testing of categorical variables. And t-tests or Wilcoxon rank-sum tests

were used to test the statistical significance of continuous variables based on data distribution.

BMI, body mass in dex; HDL-C, high-density lipoprotein cholesterol; LDL-C, low density lipoprotein-cholesterol; tPA, tissue plasminogen activator; BI, Barthel Index.

FIGURE 2

Quality assessment for lipids. (A) Total ion chromatogram of all samples. Negative and positive ion modes are illustrated in the left and right

panels, respectively. Four colors correspond to four types of samples, including QC, non-stroke, and stroke groups. The X-axis displays the

amount of time (min) for the ions to pass through the column. The Y-axis displays the peak area based on the number of ion counts taken by

the mass spectrometer detector at the retention point. (B) Circular bar plot for identified lipids. The lipid species fall into six main categories with

di�erent colors. The numbers next to the lipid species name represents the number of lipid features that have been identified. (C) Spatial

distribution and elution order for all detected lipids, plotted against their respective retention time (min) and m/z. The color of the peak spots

indicates the lipid species, and the shape of the peak spots indicates six main lipid categories.
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FIGURE 3

Significant di�erences in lipids between stroke and non-stroke groups. (A) PLS-DA score plots of the two groups with di�erent colors. The first

two principal components of PC1 and PC2 were illustrated on the X-axis and Y-axis, respectively. (B) Cross-validation plot from 200 cycles

permutation tests for performance evaluation of the PLS-DA model. The green and purple dots represents the intercept values of R2 and Q2

from the permutation test, respectively. (C) Scatter plot of VIP vs. –log10(p-values) for significantly changed lipid species. Two red dotted lines

represent the cut-o�s for VIP > 1 and p-value < 0.05, respectively. (D) Significantly altered lipids are illustrated by a heatmap. Red indicate high

abundance and blue indicate low abundance. Z-score method was used to calculate the normalized abundances for each row. Each column

represents a specific lipid feature. And they were divided into 11 lipid classes according to their headgroups. A solid circle and triangle point

graphs provided the false discovery rate of di�erentially expressed metabolic features with T-test and Wilcoxon rank-sum test, respectively. The

bar charts provided the log2 fold change of di�erentially expressed metabolic features. Cer, ceramides; ether PE, ether-linked

phosphatidylethanolamine; TG, triacylglycerol; ether PC, ether-linked PC; PE, phosphatidylethanolamine; SE, steryl esters; DG, diradylglycerols;

ether TG, ether-linked TG; LPE, lysophosphatidylethanolamine; CAR, acyl carnitine.

parameters, such as elevated concentrations of TC, TG, LDL-

C, and reduced HDL-C concentrations, are considered as

important risk factors and predictors of cardiovascular disease,

especially for stroke (32, 33).

Tanne et al. (34) noted that excess triglycerides can increase

the risk of stroke. Their research further demonstrated that

individuals with low HDL levels were more likely to experience

a stroke (34). These results are consistent with those of our

research, and we found that several TGs showed increased

expression in patients with stroke (Figure 3). Congruently, we

observed a positively correlated with TG levels and negatively

correlated with HDL levels in the clinical and pathological

features dataset (Table 1). Therefore, these data provide further

molecular evidence supporting dyslipidemia as one of the
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FIGURE 4

Indicators for stroke rehabilitation. (A) Heatmap of the 18 significantly changed lipid features associated with stroke rehabilitation. All features

were split into five groups by lipid species. Two box plots provided the comparisons between good and poor recovery groups for LPC and PC

species, respectively. The annotations for each individual were displayed as three-colored tracks on top of the heatmap. Z-score normalization

was used to compare the lipid abundance over samples. (B) Correlation-based lipid network. Each node represents a lipid feature, and the edge

represents the correlation between lipids. All pairwise correlation values for each node were calculated under the R environment. Two

modularity classes were identified by the Louvain method of community detection and coded by the pink and green colors in the network,

respectively. The importance or essentiality of a lipid node in the network is determined by its betweenness score. A node with a larger size

indicates a higher betweenness score.

most important risk factors for stroke. Dyslipidemia is a

modifiable risk factor for stroke. Appropriate management can

be considered a key step for subsequent stroke recovery.

Moreover, Cer_NS expression levels were upregulated

in the stroke group. Cer_NS is a bioactive sphingolipid

with cellular signaling and secondary messenger capabilities,

and contributes to various physiological processes, such as

cell proliferation, senescence, adhesion, differentiation, and

apoptosis (35, 36). A study suggested that focal cerebral

ischemia increases the levels of Cer_NS in older adults

and induces inflammatory processes (37, 38). Recently,

a significant number of prospective cohort studies have

found that several plasma Cer_NS can be used as reliable

predictors to evaluate the severity or risk of stroke in

patients upon admission (39–41). Here, Cer_NS was also

significantly increased in the stroke group, suggesting that

elevation of Cer_NS levels had a negative impact on patients

with stroke.

Conversely, CAR was decreased in the stroke group.

CAR has been indicated as an endogenous compound

that is responsible for energy production through

mitochondrial metabolic pathway of free fatty acids (42).

Due to its capacity to support brain cells and promote

alertness, CAR is commonly utilized as a brain booster by

individuals of all ages. CAR has also been found toalso

reportedly exerts neuroprotective effects against stroke

by enhancing mitochondrial function and decreasing

inflammation (43, 44). Several CARs were significantly

lower in the stroke group than in the healthy group. This

evidence suggests that CAR supplementation may have

beneficial effects on stroke rehabilitation by enhancing

functional recovery.

To investigate the association between lipid profile

components and functional recovery after stroke, we screened

for that were considerably different within two groups and

we found 18 of these features (Figure 4). These lipids can

be divided into two main lipid species, PC and LPC. LPC

species are an important category of bioactive compounds

linked to inflammatory disorders (45); and participates in

many signaling pathways associated with oxidative stress and

inflammatory processes (46–48). The generation of reactive

oxygen species are closely associated with the pathogenesis of

acute ischemic stroke, inducing brain injury, and worsening

neurological prognosis (49). Inflammatory responses are

involved in all stages of the ischemic cascade in stroke, from

early adverse events to late regenerative processes after stroke

(50). Anti-inflammatory therapy is considered one of the most

promising methods for promoting neurorehabilitation after a

stroke (51). Moreover, previous in vivo and in vitro experiments

have demonstrated that LPC has a potential protective effect

in preventing ischemic injury or neuronal death in patients

with stroke (52). Therefore, we speculated that plasma LPC

levels can serve as a potential biomarker for stroke care

and recovery.
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Similar to LPC, PC exhibited the same trend, with higher

intensities in the BI ≥95 group. LPC is primarily produced

by the turnover of PC and can be recycled to PC with the

help of LPC acyltransferase (53). Furthermore, most lipids from

these two species have mono- or polyunsaturated bonds in their

carbon chains. Our network analysis also revealed that they are

closely associated with each other. This evidence indicates that

LPC and PC can be implemented as effective biomarkers for

stroke recovery. Furthermore, anti-inflammatory interventions

during stroke rehabilitation are expected to be an important

means of reducing brain injury and achieving a better quality

of life.

Our study had some limitations. First, this was

only a small patient cohort study in China and further

research with broader populations is needed to validate

our findings. Second, targeted metabolomics technology

in other samples is required to confirm the changes in

lipid signatures. Finally, it is necessary to confirm the

level of endogenous LPC and determine the clinical

therapeutic value of LPC in patients with stroke or

animal models.

5. Conclusions

We used LC–MS to analyze the plasma lipidomic profiles

of individuals with stroke. Several lipid species, including

CAR, TG, and Cer_NS, exhibited significant differences in

their quantity. LPC and PC were found to be closely

associated with stroke recovery. These lipid species have

been implicated in the inflammatory response, antioxidative

effects, and cell membrane protection. As a result, our

findings might provide helpful information for achieving

better clinical outcomes through management or intervention

of lipid levels during the rehabilitation process of patients

with stoke.
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