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China, 2Shenzhen Longhua District Rehabilitation Medical Equipment Development and

Transformation Joint Key Laboratory, Shenzhen, Guangdong, China, 3Neurology Department,

Peking University Shenzhen Hospital, Shenzhen, Guangdong, China

Objective: The aim of the study was to evaluate non-invasive brain stimulation

(NIBS) [including transcranial magnetic stimulation (TMS) and transcranial

electrical stimulation (tES)] on neurological symptoms in patients with multiple

sclerosis (PwMS).

Method: We searched PubMed, Embase, Cochrane Library, Web of Science

and Ovid MEDLINE until February 2022. And we evaluated the included

studies for methodological quality by the Cochrane bias risk assessment

tool and assessed the studies’ certainty of evidence using the Grading

of Recommendations Assessment, Development and Evaluation (GRADE)

framework. We performed network meta analysis (NMA) by using Stata 15

and ranked the results of the NMA by using the surface under the cumulative

ranking curve (SUCRA) ranking chart.

Result: Twenty seven clinical trials were finally included (N = 596, 66.4%

women). For the immediate e�ects, rTMS over M1 yielded the most

optimal scheme for fatigue reduction among all the interventions compared

to the sham stimulation groups [MD = −0.85, 95% CI (−1.57, −0.14)]

(SUCRA = 82.6%). iTBS over M1 yielded the most signifcant reduced pain

level than the sham groups did [MD = −1.26, 95% CI (−2.40, −0.11)] (SUCRA

= 98.4%). tDCS over F3 was the best protocol of NIBS to improve quality

of life (QOL) [MD = 1.41, 95% CI = (0.45,2.36)] (SUCRA = 76.7%), and iTBS

over M1 may significantly reduce spasticity compared to sham stimulation

[MD = −1.20, 95% CI = (−1.99, −0.41)] (SUCRA = 90.3%). Furthermore, rTMS,

tRNS, and tDCS on certain areas may improve PwMS accuracy, response time,

manual dexterity, pain relief andQOL, but does not show statistically significant

di�erences. The evidence assessed using GRADE is very low.
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Conclusion: Based on the NMA and SUCRA ranking, we can conclude that

symptoms including fatigue, pain, spasticity, and QOL can be improved by

following NIBS protocol after treatment. Nonetheless, most of the included

studies lack a good methodology, and more high-quality randomized clinical

trials are needed.

KEYWORDS

non-invasive brain stimulation, multiple sclerosis, neurological symptom, network

meta-analysis, transcranial magnetic stimulation, transcranial direct current

stimulation

Introduction

Multiple sclerosis (MS) is a chronic inflammatory and

neurodegenerative disease with an unknown cause (1). It is

also a permanent neurological disorder affecting young adults

with the highest prevalence between the ages of 35 and 64

years regardless of race or ethnicity (2). Patients with multiple

sclerosis (pwMS) have a 7 to 14 year reduction in life expectancy

in comparison with the healthy population and approximately

50% died directly from its causes (3). A great deal of chronic

neurological disability results from MS, including disorders of

strength, sensation, coordination and balance, in addition to

visual impairment, cognitive and affective deficits (4). Currently,

there is no definitive cure for MS. Current treatment is based on

immunosuppressive and immune-modulating medications as

well as disease-modifying therapies (5). Even though significant

advances have been made in the treatment of MS, disability

progression and early mortality remain serious concerns (5).

New approaches to neuropsychiatric symptoms are therefore

needed for the MS population.

As new and developing techniques, non-invasive brain

stimulation (NIBS) techniques provide relatively new

therapeutic options which show promise in treating varieties

of neurological disorders through reducing or modulating

cortical excitability and plasticity (6). The two most common

NIBS techniques are transcranial magnetic stimulation (TMS)

and transcranial electrical stimulation (tES) (7). TMS induces

a short electrical pulse on the cortex through the use of

magnetic fields, specifically their rapid changes, which in turn

generates action potentials over the cortical region of interest

(8). There are numerous ways to use TMS, such as single

pulses, repetitive TMS (rTMS) pulses, and intermittent theta

burst stimulation (iTBS). On the other hand, tES works by

passing a weak electric current between electrodes placed on

the scalp, thereby stimulating the brain tissues between the

electrodes. tES consists of transcranial direct current stimulation

(tDCS), transcranial alternating current stimulation (tACS)

and transcranial random noise stimulation (tRNS), depending

on the type of electric current that is used (9). Among the

tES techniques, tDCS is currently the most used, while the

polarity of tDCS allows it to be further divided into anodal or

cathodal (10).

The efficacy of TMS or tDCS (alone or in combination with

conventional training) on the MS neuropsychiatric symptoms

has been demonstrated in previous studies across a number

of domains, including fatigue, motor performance, spasticity,

pain, cognitive abilities, sensory deficit, bladder function and

mood disorders (11–14). According to guidelines on rTMS, iTBS

for the contralateral leg area of M1 (or both M1) has some

potential for treating lower limb spasticity probable (Level B of

evidence) (13). A meta-analysis of 14 studies and 207 patients

found the 1.5mA subgroup of tDCS and bilateral S1 subgroup

of tDCS to be effective in fatigue reduction in PwMS, whereas

TMS and tRNS did not outperform sham stimulation (12). Using

data from 25 randomized controlled trials (RCTs) including

491 patients, Kan concluded that tDCS may improve cognitive

function and reduce fatigue for people with multiple sclerosis,

while rTMS may relieve muscle spasticity (14). Neither adverse

side effects nor deleterious pharmacotherapy interactions were

reported (12, 14, 15). In summary, TMS and tDCS may be safe

and appealing as part of the armamentarium in addition to

conventional therapy.

However, although reviews and meta-analyses have

attempted to summarize the latest evidence on the therapeutic

effects of NIBS on MS symptoms, few studies have compared

different NIBS techniques and protocols to reach the most

efficient treatment for MS neurological symptoms. In addition,

due to the limited number of clinical trials for emerging

NIBS techniques, including transcranial alternating current

stimulation (tACS) and transcranial focused ultrasound (tFUS),

previous reviews may not fully reflect the effects of NIBS on MS.

And thus, we conducted this network meta analysis (NMA) to

include the latest research and evaluate the effect of different

NIBS on the common symptoms and disabilities in pwMS.

Materials and methods

The meta analysis was registered with PROSPERO

No. CRD42022342409 and complied with the PRISMA

statement (16).
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Search strategy and exclusion criteria

The authors searched five electronic databases (Pubmed,

EMBASE, Cochrane Central Register of Controlled Trials, Web

of Science, and Ovid) up to February 2022. The detailed search

strategy is shown in Supplementary Table 1.

Based on the PICOS tool, all enrolled studies followed

the criteria: (1) Population: people with multiple sclerosis;

(2) Intervention: non-invasive brain stimulation; (3)

Comparator: sham stimulation; (4) Outcomes: neurological

symptoms and disabilities including cognition, fatigue,

spasticity, pain, manual performance, walking performance,

and quality of life (QOL); (5) Study type: clinical trials.

Studies were excluded if they were (1) Studies with

incomplete, unreported or incorrected data; (2) Studies

from reviews, letters, case reports, animal studies,

protocols, conference abstracts or correspondence; (3)

Duplicated studies.

Study selection and data extraction

The literature was screened, selected and processed using the

literature management software Endnote X9. Two investigators

(XYZ and ZQW) independently evaluated the studies for

inclusion, extracted data from the articles, and assessed their

bias risk. A standardized and pre-defined data extraction form

(Supplementary Table 2) was used to collect data under the

following headings: (1) author, (2) year of publication, (3)

country, (4) sample size, (5) number of male or female,

(6) mean age, (7) intervention, (8) control group, (9)

outcome indicators and (10) details of the interventions. Any

disagreement was adjudicated by discussion or consulting the

corresponding author.

Data analysis

We performed the NMA on STATA version 15.0 (StataCorp

LLC, College Station, TX, USA). All variables included in our

review were continuous variables and for continuous data, we

estimated the summary standardized mean difference (SMD)

with 95% confidence intervals (CI) in situation of different

kinds of rating scales or tests and the mean difference (MD)

with CI in situation of uniform scales or tests in individual

outcomes (17).

As for the analytical procedure of this study, we employed

a mixed comparison with generalized linear mixed model to

analyze the direct and indirect comparisons among the NMA

(18). In the generated network diagrams, each node represented

a different NIBS technique or the sham stimulation, the

lines connecting the nodes showed head-to-head comparisons

between interventions. The node’s size and lines’ width were

proportional to the number of studies.

Surface under the cumulative ranking curve (SUCRA), one

of the quantitative ranking methods was used. In expressing

the effectiveness or acceptability of interventions, SUCRA is a

useful indicator.

Risk of bias and level of confidence

Two authors (XZ and WY) independently assessed the risk

of bias (ROB), in accordance with the Cochrane Collaboration

software, Review Manager (RevMan) 5.3. The following

seven domains were considered: (1) randomized sequence

generation, (2) treatment allocation concealment, blinding of (3)

participants and (4) personnel, (5) incomplete outcome data, (6)

selective reporting and (7) other sources of bias. The overall risk

of bias was categorized into three groups: low, high, and unclear

risk of bias (19).

In order to check for publication bias caused by small-scale

studies, we drawn a network funnel plot of each group of studies

and examined it visually using the symmetry criterion.

With Grading of Recommendations Assessment,

Development, and Evaluation (GRADE) framework, we

additionally evaluated the certainty of evidence contributing to

network estimates for the main outcomes (20).

Results

Study selection

We searched the databases of PubMed, Embase, Web of

Science, Ovid, Cochrane Library up to Febray 18th, 2022. No

language restriction was imposed. In addition, we manually

searched for potentially eligible articles cited in relevant

review articles and meta-analyses. There were a total of 2,269

documents retrieved from the electronic database, and no

additional documents were identified through other resources.

After duplicated documents were deleted by EndNote X9

software (Thomson ResearchSoft, Stanford, CT, USA), 1,605

documents were excluded because they failed to meet the

inclusion criteria and the 667 titles and abstracts of the

remaining documents were read. The remaining 119 documents

were read in full and 77 documents were excluded (for the

reasons including: irrelevant studies, no available articles or data,

control group is of healthy population), leaving 42 articles to

be included. The results and data were extracted from the full

text of the 42 articles and reclassified into different subgroup

of symptoms. Only data with more than two interventions were

eligible for network meta analysis. Eventually 27 articles (21–43)

were included into the final analysis (Figure 1).
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FIGURE 1

Flow diagram of literature selection.

Quality assessment and GRADE

Results for the 7 items of the Cochrane Risk of Bias tool for

the 27 studies were reported in Figures 2A,B. Nine studies had

more than one item with high risk of bias (21, 22, 26, 27, 36, 38,

41, 43, 44), and 18 studies had one ormore items rated as unclear

risk of bias (23–25, 28–37, 39, 40, 42, 45–47).

Selection bias and detection bias were found to be the

top two risk factors. Six study was assessed to have a

high risk of selection bias due to pseudo-randomized in

the study (21, 22, 26, 41, 43, 44). Three studies were

rated as high risk of detection bias reporting as single-

blind study (27, 36, 38). More details can be found in

Figures 2A,B.

We incorporated the GRADE judgments in

Supplementary Tables 3, 4. For all comparisons, the certainty of

evidence for treatment effects of efficacy was very low because

of study limitation, indirectness and inconsistency.

Characteristics of the included studies

In total, we included data from 27 clinical trials, which

included 596 patients (Female 396, 66.4%) diagnosed with MS.

The NIBS techniques explored were tDCS (N = 14) (24–28,

30, 33–35, 40–43, 46), rTMS (N = 5) (21, 29, 36, 39, 45),

iTBS (N = 5) (22, 23, 32, 37, 44), tRNS (N = 2) (31, 38) and

transcutaneous spinal direct current stimulation (ts-DCS) (N

= 1) (47). The targets were the primary motor cortex (M1)

(N = 16) (21–23, 25–27, 29, 34, 37–39, 41–43, 45–47), the

left dorsolateral pre-frontal cortex (DLPFC or F3) (N = 5)

(31, 33, 35, 40, 46) and primary somatosensory cortex (S1)

(N = 3) (24, 28, 34). Countries or regions of the original

studies included Italy (N = 10) (21–25, 27, 28, 34, 38, 47),

France (N = 4) (31–33, 46), Germany (N = 3) (30, 36, 43),

Egypt (N = 2) (29, 45), Iran (N = 2) (40, 44), and USA

(N = 2) (35, 41). Detailed information can be found in

Table 1.
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FIGURE 2

(A,B) Risk of bias assessment summary according to the Cochrane risk of bias tool: Red, green, and yellow colors indicates high, low, and

unclear risk of bias, respectively. (A) Risk of bias summary: review authors’ judgements about each risk of bias item for each included study. (B)

Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.
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TABLE 1 Characteristics of the studies included in the meta-analysis.

References Year of

publication

Country

or region

Sample

size

Male/

Female

Age (mean+SD) Intervention Control Outcome

indicators

Experiment group

Electrode

placement

Intensity Area

Abdelkader et al. (45) 2013 Egypt 21 12/9 UA rTMS rTMS of low

frequency

Spasticity M1 5Hz /

Ayache et al. (46) 2016 France 16 3/13 A+C: 48.9±10.0 tDCS Sham control Pain, attention,

mood, fatigue

F3 2mA 25 cm2

Azin et al. (44) 2016 Iran 36 9/27 A: 30.8± 6.1;

C: 29.7± 7.9

iTBS Sham control Manual dexterity,

reaction time,

response accuracy

M1 5Hz /

Berra et al. (47) 2019 Italy 33 8/25 A: 57.6± 9.1;

C: 54.0± 7.79

ts-DCS Sham control Pain, fatigue,

spasticity

TSC 2mA 35 cm2

Boutière et al. (32) 2017 France 17 9/8 A: 48.2± 9.4;

C: 55.4± 11.1

iTBS Sham control Spasticity M1 10 bursts,

three stimuli at 50Hz,

repeated at a theta frequency of

5Hz every 10 s, for a total of 600

stimuli (192 s).

/

Cancelli et al. (34) 2018 Italy 10 2/8 A+C: 43.2± 13.1 tDCS Sham control Fatigue S1 1.5mA 35 cm2

Chalah et al. (33) 2017 France 10 6/4 A+C: 40.50± 11.18 tDCS Sham control Fatigue, attention F3 2mA 25 cm2

Charvet et al. (35) 2018 USA 35 12/23 A: 44.8± 16.2;

C: 43.4± 16.2

tDCS Sham control Fatigue, depression F3 2mA 25 cm2

Elzamarany et al. (29) 2016 Egypt 24 15/9 A+C: 22.97± 9.04 rTMS Sham control Manual dexterity M1 5Hz /

Ferrucci et al. (25) 2014 Italy 15 4/11 A+C: 40.3± 2.3 tDCS Sham control Fatigue M1 1.5mA 35 cm2

Gaede et al. (36) 2018 Germany 19 5/14 A: 47± 14.07;

C: 41± 4.44

rTMS Sham control Fatigue, depression PFC 5Hz /

Iodice et al. (27) 2015 Italy 20 5/15 A: 43.3± 7.5; C: 40.3

± 4.5

tDCS Sham control Spasticity M1 2mA 35 cm2

Koch et al. (21) 2008 Italy 8 3/5 UA rTMS Sham control Manual dexterity M1 5Hz /

Korzhova et al. (37) 2019 Russia 34 14/20 UA iTBS Sham control Fatgue, spasticity,

pain

M1 35Hz /

Meesen et al. (26) 2014 Belgium 31 9/22 A+C: 48.16± 10.13 tDCS Sham control Attention, fatigue,

pain, sleep

quality

M1 1mA 25 cm2

(Continued)
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TABLE 1 (Continued)

References Year of

publication

Country

or region

Sample

size

Male/

Female

Age (mean+SD) Intervention Control Outcome

indicators

Experiment group

Electrode

placement

Intensity Area

Mori et al. (22) 2010 Rome 20 7/13 A+C: 44.3± 12.5 iTBS Sham control Spasticity M1 10 bursts,

three stimuli at 50Hz,

repeated at a theta frequency of

5Hz every 10 s, for a total of 600

stimuli (200 s).

/

Mori et al. (23) 2011 Rome 20 13/7 A+C: 38.4± 11.3 iTBS Sham control Fatigue, spasticity,

QOL

M1 10 bursts,

three stimuli at 50Hz,

repeated at a theta frequency of

5Hz every 10 s, for a total of 600

stimuli (200 s).

/

Mortezanejad et al.

(40)

2020 Iran 36 6/30 A+C: 32.617± 6.345 tDCS Sham control Fatigue, QOL F3 1.5mA 35 cm2

Palm et al. (31) 2016 France 16 3/13 A+C: 47.4± 8.9 tRNS Sham control Pain, attention,

mood

F3 2mA 25 cm2

Pilloni et al. (41) 2020 New York 15 4/11 A: 52.1± 12.9;

C: 53.7± 9.8

tDCS Sham control Walking functions M1 2.5mA 25 cm2

Salemi et al. (38) 2019 Italy 17 5/12 A: 39.8± 10.4;

C: 44.2± 7.3

tRNS Sham control Fatigue, QOL M1 1.5mA 25 cm2

San et al. (39) 2019 Turkey 16 8/8 A+C: 49.93± 12.27 rTMS Sham control Fatigue, spasticity,

cognition, QOL

M1 5Hz /

Seelmann-Eggebert

et al. (43)

2021 Germany 16 10/6 A+C: 51.2± 10.6 tDCS Sham control Accuracy M1 1mA 25 cm2

Tecchio et al. (28) 2015 Italy 13 4/9 A+C: 45.8± 7.6 tDCS Sham control Fatigue, manual

dexterity

S1 1.5mA 35 cm2

Young et al. (42) 2020 Melbourne 30 6/24 A: 51.2± 9.3;

C: 49.87± 12.9

tDCS Sham control Pain, QOL M1 2mA 35 cm2

Hanken et al. (30) 2016 Germany 48 11/37 A+C: 49.08± 9.46 tDCS Sham control Fatigue P4 1.5mA 35 cm2

Mori et al. (24) 2013 Italy 20 7/13 A+C: 44.3± 12.5 tDCS Sham control QOL S1 2mA 35 cm2

A, active group; C, control group with sham stimulation; UA, unavailable; rTMS, repetitive transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation; iTBS, intermittent theta burst

stimulation; ts-DCS, transcutaneous spinal DCS; QOL, quality of life; M1, primary motor cortex; TSC, thoracic spinal cord; S1, primary somatosensory cortex; P4, right parietal cortex; F3, left dorsolateral prefrontal cortex; PFC, prefrontal cortex.
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Outcomes indicators included the following seven domains:

accuracy, reaction time, fatigue, pain, spasticity, manual

dexterity and QOL. In studies using several scales to evaluate

a certain symptom, we selected the most frequently used one.

For trials with immediate and follow-up outcomes, effects

immediately after the last session of NIBS and those after the last

session of follow-up were examined separately. Eventually, we

assessed the seven domains in the analysis of immediate effect of

NIBS (accuracy, reaction time, fatigue, manual dexterity, pain,

spasticity and QOL) and two domains (fatigue and spasticity) in

the analysis of follow-up effect, see Supplementary Table 5.

Network meta-analysis

Network plots showed the different treatments that were

compared in the network meta-analysis. As the intermediate

effect illustrated in Supplementary Figure S1 and the long

durable effect shown in Supplementary Figure S2.

Immediate e�ect

Accuracy

The results of the NMA showed that relative to the sham

stimulation, tRNS over F3 [MD= 0.58, 95% CI= (−0.38,1.54)],

tDCS over right PPC [MD = 0.59, 95% CI = (−0.52,1.70)],

tDCS over M1 [MD = 0.18, 95% CI = (−0.64,1.01)] were

superior to the sham group in improving accuracy. However,

the statistical significance was not significantly among the

difference between tDCS or tRNS treatment versus sham

stimulation. The details were shown in Supplementary Table 3A.

And according to the SUCRA results, tRNS over F3 yielded

the most increased in accuracy in MS patients among all the

interventions (SUCRA= 77.6%).

Reaction time

A comparison of the NMA results revealed that tRNS over

M1 [MD = −0.61, 95% CI = (−3.27, 2.05)] and iTBS over

M1 [MD = −0.54, 95% CI = (−3.12, 2.03)] reduced reaction

times better than sham stimulation. Although there were no

statistically significant differences observed for the outcomes.

Further details were shown in Supplementary Table 3B. And

according to the SUCRA results, tRNS over M1 yielded the

most decrease in reaction time in MS patients among all the

interventions (SUCRA= 61.7%).

Fatigue

The NMA showed that rTMS over M1 [MD = −0.85, 95%

CI (−1.57, −0.14)] and tDCS over F3 [MD = −0.67, 95% CI

= (−1.18,−0.16)] had a better effect on reducing fatigue than

sham stimulation and the above differences were statistically

significant. Other protocols including tRNS over M1 [MD =

−0.72, 95% CI = (−1.87, 0.42)], tDCS over S1 [MD = −0.58,

95% CI= (−1.30, 0.14)], tsDCS over thoracic spinal cord (TSC)

[MD = −0.46, 95% CI = (−1.36, 0.44)], tDCS over P4 [MD =

−0.41, 95% CI = (−1.15, 0.34)], tDCS over M1 [MD = −0.33,

95% CI = (−0.76, 0.10)], iTBS over M1 [MD = −0.26, 95%

CI = (−0.96, 0.44)], tRNS over F3 [MD = 0.07, 95% CI =

(−0.82, 0.97)] were superior in reducing fatigue compared to

the sham group as well, but the results were not significant. The

details are presented in Supplementary Table 3C. According to

the SUCRA results, the most significant reduction in fatigue was

observed among all interventions when rTMS was applied over

M1 (SUCRA= 82.6%).

Manual dexterity

The main result revealed that rTMS over M1 [MD

= −0.50, 95% CI = (−1.35, 0.35)] and iTBS over M1

[MD = −0.14, 95% CI = (−1.15, 0.86)] were superior to

the sham group in improving manual dexterity despite no

significant differences statistically. More details were shown in

Supplementary Table 3D. And according to the SUCRA results,

rTMS over M1 was associated with better improvement in

manual dexterity when compared with other interventions

(SUCRA= 81.6%).

Pain

Based on the NMA results, it appears that iTBS over M1

(MD = −1.26, 95% CI = (−2.40, −0.11)] may significantly

reduce pain compared to a sham control group. Other protocols

such as tDCS over M1 [MD = −0.18, 95% CI = (−1.27, 0.91)],

tDCS over F3 [MD = −0.16, 95% CI = (−1.37, 1.04)] and

tsDCS over TSC [MD = −0.06, 95% CI = (−1.04, 0.92)] were

associated with lower pain levels than the sham stimulation

groups, but that difference did not reach statistical significance,

as suggested in Supplementary Table 3E. The results of the

SUCRA study show that iTBS over M1 caused the most

significant reduction in pain level among all interventions

(SUCRA= 98.4%).

QOL

Among the main findings of the NMA, tDCS over F3 [MD

= 1.41, 95% CI = (0.45, 2.36)] was superior to the sham

group in terms of improving QOL, without any statistically

significant differences. Other protocols including tRNS over M1

[MD = 0.44, 95% CI = (−0.52, 1.41)], tDCS over S1 [MD

= 0.25, 95% CI = (−0.63, 1.13)] and tDCS over M1 [MD

= 0.51, 95% CI = (−0.12, 1.15)] improved QOL more than

the sham group despite no significant differences statistically.

And the details were shown in Supplementary Table 3F. Among

all interventions, tDCS over F3 caused the most significant

improvement in QOL in the SUCRA study (SUCRA= 76.7%).

Spasticity

The results of the NMA showed that relative to the sham

stimulation, iTBS over M1 [MD = −1.20, 95% CI = (−1.99,

−0.41)], reduce spasticity with a statistical difference. While
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other protocols of NIBS including rTMS over M1 (HF) [MD

= −0.83, 95% CI = (−1.88, 0.21)], tDCS over M1 [MD =

−0.20, 95% CI = (−1.72, 1.31)] and tsDCS over TSC [MD =

0.04, 95% CI = (−1.38, 1.45)] were superior to the sham group

in reducing spasticity despite no statistical differences. More

details were shown in Supplementary Table 3G. The results

of the SUCRA study show that iTBS over M1 caused the

most significant decreasing spasticity among all interventions

(SUCRA= 90.3%).

Longer durable e�ects (≥1 months)

Fatigue

The results of the NMA showed that tDCS over F3 [MD

= −1.19, 95% CI = (−3.11, 0.74)], rTMS over M1 [MD =

−0.84, 95% CI= (−2.33, 0.65)], tsDCS over TSC [MD=−0.87,

95% CI = (−2.92, 1.17)], tRNS over M1 [MD = −0.46, 95%

CI = (−2.60, 1.69)], iTBS over M1 [MD = −0.38, 95% CI =

(−2.33, 1.57)] and tDCS over M1 [MD = −0.08, 95% CI =

(−1.32, 1.16)] were superior to the sham group in terms of

relieving fatigue without statistically significant differences, and

the details were shown in Supplementary Table 4A. The results

of the SUCRA study show that tDCS over F3 caused the most

significant decreasing in fatigue among all (SUCRA= 73.0%).

Spasticity

The results of the NMA showed that tsDCS over TSC [MD

= −10.75, 95% CI = (−13.63, −7.86)] and iTBS over M1 [MD

= −1.21, 95% CI = (−1.85, −0.57)] were superior to the sham

group in decreasing spasticity significantly. Whereas tDCS over

M1 [MD = −0.47, 95% CI = (−1.44, 0.50)] and rTMS over M1

[MD=−0.41, 95%CI= (−1.03, 0.21)] decreased spasticity with

no statisitically significance when compared to the sham group,

and the details were shown in Supplementary Table 4B. SUCRA

showed that tsDCS over TSC led to the greatest reduction in

spasticity among all (SUCRA= 100%).

Publication bias test

Separate funnel plots were constructed for all outcome

indicators to test for publication bias. A visual examination

of the funnel plots did not reveal any significant publication

bias for all the outcome indicators. Details were shown as in

Supplementary Figures S3, S4.

Discussion

Our study is the first NMA to compare different NIBS

interventions for improving neuropsychiatric disabilities in

pwMS. We analyzed 27 studies involving 596 people with MS.

Results showed that in the short term, both rTMS over M1 and

tDCS over F3 were more effective in reducing fatigue when

compared to the sham group and iTBS over M1 was the most

superior protocol in terms of spasticity reduction. While in the

long-term run, tDCS over TSC and iTBS over M1 were the two

best approaches for the reduction of spasticity. In addition, the

use of TMS, RMS, and tDCS on certain target areas may be

beneficial for patients’ accuracy, reaction time, manual dexterity,

pain and QOL with no discernible statistical differences.

As mentioned in the Introduction section, previous reviews

have demonstrated the efficacy of anodal tDCS over left DLPFC

and bilateral S1 for fatigue, as well as HF-rTMS and iTBS over

M1 for muscle spasticity (12–14). Our findings are generally in

line with those described previously. In addition, our work has

yielded other significant findings.

First, our study showed the significant efficacy of rTMS

over M1 and tDCS over F3 in the immediate treatment

of fatigue, and we found rTMS over M1 reduced fatigue

most significantly among all interventions. The most common

complaint of patients with multiple sclerosis (PwMS) is fatigue

(48). Previous study noted MS fatigue may relate to functional

imbalance between homologous sensorimotor regions of the

two hemispheres, and thus the effect of rTMS over M1 for

the treatment of fatigue may be credited to the changes

of neuromodulation to the inter-hemispheric interaction of

primary sensorimotor areas of the brain (49). Pathogenesis of

fatigue in PwMS may also include changes in cortico-striato-

thalamo-cortical loops, increased energy demand, structural and

functional neurological alterations and Adibi et al. (50). The

mechanism behind the role of F3 in fatigue relief remains to

be elucidated. Perhaps the reason lies in the hypothesis that

F3 functions as a one of the hubs between the cortico-striato-

thalamo-cortical loops (51).

Second, our study suggested that iTBS over M1 was

found to be effective for both short-term and long-term

spasticity treatment in our studies. The therapeutic effect of

electromagnetic stimulation (rTMS or iTBS) on the affected

brain area have been previously summerized by Naro et al.

(52). Naro also reviewed that spasticity is usually caused by

damage to nerve pathways within the brain or spinal cord

(52). By enhancing corticospinal tract excitability and reducing

stretch reflex, rTMS on the motor cortex may enhance spasticity

management through the modulation of spinal excitability

(53). Moreover, our study also found that tsDCS over TSC is

significant in the long-termmanagement of spasticity for PwMS.

There is no clear mechanism for it and we can hardly found

evidence of tsDCS on the relieve of spasticity in MS patients in

other reviews. Though we found evidence of early and persistent

clinical efficacy of tsDCS on central neuropathic pain for

PwMS, probably throughmodulation of spinal nociception (47).

Further studies are needed to determine how neuromodulation

affects spinal cord function in PwMS.

Third, iTBS over M1 was proved to be the best way to

alleviate pain for pwMS in our study. Pain is a frequent

symptom experienced by up to 75 percent of MS patients
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(54). Although the mechanisms of MS pain are not fully

understood, descending pain modulatory system dysfunction

has been linked to human chronic pain conditions (54). And

in patients with MS, the processes of brain networks that

mediate pain relief may be disrupted in part (55). Stimulation

on M1 is supposed to induce analgesic effects through an

antidromic top-down modulation of thalamo-cortical pathways

(55). In addition, previous study found that in healthy volunteers

theta-burst stimulation (TBS) seemed more analgesic than high

frequency repetitive transcranial magnetic stimulation and a

higher number of pulses of prolonged continuous TBS might

result in stronger analgesic effects (56).

In addition, our study found that tDCS over F3 was the

best protocol among all the NIBS to improve QOL. MSQOL-

54 is frequently used in pwMS to assess QOL (57). There

are 12 subscales of MSQOL, which mainly involve physical

functions and emotional wellbeings. Anodal tDCS acting on the

patients’ F3 regionmay alleviate left-hemispheric hypoactivation

in the prefrontal cortex and improve psychological function and

improve patients’ QOL (58).

Although no definite conclusion was reached on the

effects of NIBS on other symptoms in PwMS including

accuracy, reaction time and manual dexterity, etc. in our

study. Our study suggested that interventions targeting on

F3 might help improve accuracy and QOL for MS patients

in the short term, and might help relieve fatigue in the

long run. And techniques targeting M1 could benefit not

only fatigue, spasticity and pain as previously described, but

might also improve reaction time and manual dexterity. The

underlying etiology of fatigue, cognitive impairment, and

pain in MS may be similar, and the overlap may be a

result of lesions in MS occurring in highly interconnected

deep gray matter, whereby their ripple effects may affect a

variety of other brain circuits (59). It has been proposed

that PwMS with impairment of hand performance may

be correlated with cortico-cortical disconnections due to

demyelination or a strict disruption of the motor network

caused by neurodegenerative processes (60). Since NIBS has

been widely used as rehabilitation treatments for neurological

diseases and various mechanisms based on neuroplasticity,

neural protection and/or regeneration induced by NIBS are

being explored, adaptation of NIBS protocols according to

different stages of brain damage and degeneration await further

research (61).

Strengths and limitations

To achieve the best possible results, we searched the

literature extensively and evaluated outcome indicators

comprehensively. We found that the estimates of treatment

effects in our study were mostly in line with previous reviews on

the same topic, but by combining direct and indirect evidence

through NMA, we were able to increase the accuracy of the

estimates. Furthermore, the main findings of our analysis

were based on the strength of evidence to highlight the most

robust findings.

It should be noted, however, that our review has

limitations. All the included studies concluded that the

available evidence had a very low level of quality due

to bias, indirectness and inconsistency, thereby reducing

their degree of certainty. In addition, the heterogeneity of

clinical and radiological features of MS makes it difficult to

determine which distinctive NIBS pattern would be most

suitable for all patients. MS symptoms and disabilities are

associated with asymmetric interhemispheric brain excitability

(62), typically caused by neuroinflammation at its onset or

degeneration as it progresses (63). Both cortical demyelination

and subcortical myelination contribute to motor cortex

excitability, resulting in variability in plasticity-inducing

effects of NIBS between individuals (64, 65). The possibility of

detecting dysfunctional cortical circuits, monitoring the disease

course and developing novel neuromodulatory interventions

represents a significant gap in the literature that needs to be

addressed (66).

Therefore, current results need to be interpreted with

caution. To improve the methodological rigor of the evidence,

more RCTs with a higher level of quality, more participants, and

a longer follow-up period are needed. Furthermore, adaptation

of NIBS protocols according to different stages of brain damage

in PwMS await further research.

Conclusion

Together, our findings presented further evidence that

NIBS might be promising and effective treatment for fatigue,

spasticity, pain and QOL in pwMS. However, large, well-

designed RCTs should be conducted to further validate

the findings.
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