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Subarachnoid hemorrhage (SAH) is a severe subtype of stroke with high mortality.

Hyperglycemia is a common phenomenon in critically ill patients and associated with

poor clinical outcome. However, the predictive value of admission hyperglycemia for 30

and 90-day all-cause mortality in critically ill patients with SAH remains controversial.

All SAH patients between 2001 and 2012 were included based on the MIMIC-III

database and were further classified according to the tertiles of blood glucose

(BG) measured on intensive care unit (ICU) admission. Clinical information including

demographic data, comorbidities, and laboratory indicators were exacted and analyzed.

The primary outcomes were 30- and 90-day all-cause mortality. A total of 1,298 SAH

patients were included. The 30 and 90-day mortality rates were 19.80% and 22.73%,

respectively. Subjects in the high glucose tertile were older, were overweight, had

higher sequential organ failure assessment (SOFA) and Simplified Acute Physiology

Score II (SAPS II) scores, and presented higher mortality rate. Generalized additive

model revealed a U-shaped relationship between BG and 30 and 90-day all-cause

mortality. Furthermore, Kaplan–Meier (K-M) survival curve also illustrated that subjects

with admission hyperglycemia presented lower survival rate and shorter survival time.

In Cox analysis, after adjustment for potential confounders, admission hyperglycemia

was related to an increase in 30- and 90-day all-cause mortality in SAH patients. In

subgroup analysis, the association between admission hyperglycemia and all-cause

mortality was consistent. In conclusion, admission hyperglycemia is associated with

significantly increased 30- and 90-day all-cause mortality in critically ill patients with SAH.
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INTRODUCTION

Subarachnoid hemorrhage (SAH), mainly caused by intracranial aneurysm, is a severe subtype of
stroke that carries high mortality (1, 2). The estimated incidence of SAH is 6–20 per 100,000 (3).
SAH is fatal and usually strikes at a fairly young age, which makes the loss of productive life years
of SAH as serious as that of intracerebral hemorrhage or cerebral infarction, although only one
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in every 20 strokes is caused by SAH (1). The fatality rate
is 8.3–66.7% in patients with SAH, and ∼8.3% of them die
before getting to the hospital; 40% of hospitalized patients
die within 1 month after the event; and more than 30% of
those survivors suffer from major neurologic deficits (4). The
clinical outcome of SAH depends on the severity of the initial
hemorrhage; but other factors at hospital admission such as
older age, history of hypertension, larger aneurysm, and posterior
circulation aneurysm also play an important role in the clinical
prognosis (5). However, only 25% of the variation outcome could
be explained by these reported variables, indicating that other
unknown factors might have substantial effects on the clinical
outcome (5, 6). Exploring predictors of the short- or long-term
prognoses, especially if these could be modified, has great clinical
significance because this would provide the potential to improve
treatment and prognosis.

As one of the most commonly used biomarkers, blood
glucose (BG) provides important clues regarding the diagnosis
or prognosis of various disorders, including traumatic shock
(7), hypertension (8), infection after total joint arthroplasty (9),
and liver transplantation (10). Hyperglycemia was independently
associated with delayed cerebral ischemia (DCI) and poor
outcome in SAH (11–14); contrarily, lower admission BG level
was related to neurological grade improvement (15). However, a
later study reported that lactate and glucose were strongly related
(Spearman ρ = 0.55; p < 0.001), BG was only independently
associated with DCI, while lactate was independently associated
with poor outcome with multivariable analyses in a prospective
study of 285 SAH patients (16).

The relationship between admission hyperglycemia and
mortality was also extensively analyzed; Bian et al. demonstrated
that admission BG was associated with 1-year mortality after
being adjusted for other confounding factors in a study including
239 SAH patients (17). Another study from South Korea
including 553 SAH patients found that BG at admission was
not an independent predictor for 3-month mortality, although
BG level was significantly higher in non-survivors and patients
with poor outcome (18). Incidentally, there were also studies
suggesting that admission hyperglycemia predicted short-term
(30 days), but not long-term, mortality in SAH patients (19). Due
to the controversy of current evidence and limited sample size,
admission BG has not been widely considered as an independent
risk factor for poor outcome after aneurysmal SAH (3, 6, 20–
22). Based on Medical Information Mart for Intensive Care
(MIMIC) III database (12, 13), the objective of the present
study is to determine the effect of admission hyperglycemia on
the prognosis in critically ill SAH patients and also to identify
a threshold for admission BG levels that predicts unfavorable
outcome in SAH.

Abbreviations: BG, blood glucose; CIs, confidence intervals; DBP, diastolic

blood pressure; DM, diabetes mellitus; GCS, Glasgow Coma Scale; GV, glycemic

variability; HRs, hazard ratios; ICU, intensive care units; MIMIC III, Medical

Information Mart for Intensive Care; SAH, subarachnoid hemorrhage; SAPS

II, Simplified Acute Physiology Score II; SBP, systolic blood pressure; SOFA,

sequential organ failure assessment; SpO2, percutaneous oxygen saturation.

MATERIALS AND METHODS

Data Source
This is a retrospective study based on an openly available MIMIC
III (version 1.4) database (12, 13), which is a large, single-center
database compiling the clinical data of 46,520 critically ill patients
admitted to intensive care unit (ICU) at the Beth Israel Deaconess
Medical Center (Boston, Massachusetts) between 2001 and 2012
(23). In this study, all ICU admissions with SAH were included
based on MIMIC III database. To access the database, the
National Institutes of Health’s web-based course “Protecting
Human Research Participants” (No. 9014457) was completed.

This study was approved by the Institutional Review Boards
of Beth Israel Deaconess Medical Center and the Massachusetts
Institute of Technology (Cambridge, MA). To protect patient
privacy, all data were de-identified; thus, informed consent was
waived by the ethical committee of the Beth Israel Deaconess
Medical Center.

Selection of Participant
Based on the ninth revision of the International Classification of
Diseases code, SAH patients with age ≥18 years in the MIMIC-
III database were included for analysis. For patients who were
admitted to the ICU multiple times, only the first ICU admission
data were included. Patients without any BG data within 24 h
after admission or with individual data missing rate >5% were
not included. ICU patients with length of stay <24 h were
also excluded to avoid potential extremum value influence. The
workflow is shown in Figure 1.

Data Extraction
Structured Query Language (SQL) with PostgreSQL (version
9.6) was used to extract baseline characteristics, vital signs,
comorbidities, laboratory variables, and others within the first
24 h after ICU admission from MIMIC-III database. Baseline
characteristics included age, gender, ethnicity, and weight.
Severity at admission was measured by the sequential organ
failure assessment (SOFA) score, the Simplified Acute Physiology
Score II (SAPS II), and Glasgow Coma Scale (GCS). The
use of mechanical ventilation, application of dialysis, and
administration of vasopressors were also recorded. Vital signs
included the systolic blood pressure (SBP), diastolic blood
pressure (DBP), mean blood pressure, heart rate, temperature,
respiratory rate, and percutaneous oxygen saturation (SpO2).
Comorbidities including liver disease, renal failure, cardiac
arrest, congestive heart failure, hypertension, diabetes mellitus
(DM), pneumonia, respiratory failure, and malignancy were
also collected for analysis based on the recorded International
Classification of Diseases code-9 from the MIMIC-III database.
Laboratory variables were collected within the first 24 h after
admission including white blood cell count, hemoglobin,
platelet counts, BG, creatinine, blood urea nitrogen, anion gap,
sodium, potassium, chloride, bicarbonate, prothrombin time,
and activated partial thromboplastin time.

Grouping and Outcomes
To explore the effect of glucose on the prognosis of critically ill
patients with SAH, all enrolled subjects were stratified according
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FIGURE 1 | Flow chart of data extraction. ICU, intensive care unit.

to the tertiles of admission glucose values, namely, the low
glucose group (tertile 1, BG ≤122.00 mg/dl or BG ≤6.80
mmol/L), the middle glucose group (tertile 2, 122.00 < BG <

155.33 mg/dl or 6.80 mmol/L < BG < 8.65 mmol/L), and the
high glucose group (BG ≥ 155.33 mg/dl or BG ≥ 8.65 mmol/L).
Follow-up of patients began from the day of admission and ended
at death. The primary outcomes of interest were 30-day, 90-day,
and in-hospital all-cause mortality.

Statistical Analysis
All statistical analyses were performed on EmpowerStats version
2.20 (http://www.empowerstats.com/cn/, X&Y Solutions, Inc.,
Boston, MA, USA) and R software version 3.4.3. Continuous
variables were presented as mean ± standard deviation (SD)
or median ± interquartile range (IQR) and analyzed by the
Kruskal–Wallis test; categorical variables were presented as

number and percentage and analyzed by chi-square (or Fisher’s
exact) tests. Multiple imputations with multivariate imputation
by chained equation were used for handling missing values.
Variables with missing rate over 20% were converted to dummy
variables in the models to avoid possible bias caused by direct
filling missing values.

Generalized additive model (GAM) is a non-parametric
statistical model that directly deals with the non-linear
relationship betweenmultiple explanatory variables and response
variables (24, 25). GAM was used in this study to determine
the non-linear association between BG and 30- and 90-day all-
cause mortality in critically ill patients with SAH. The Kaplan–
Meier (K-M) curve followed by log-rank test was utilized to
visualize the relationship. Furthermore, the Cox proportional
hazards model was performed to determine the association
between BG and 30- and 90-day all-cause mortality in these
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patients, using the first tertile as the reference. Two multivariate
models were conducted to adjust potential confounders in the
Cox proportional hazards model, and results were presented as
hazard ratios (HRs) and 95% confidence intervals (CIs). Baseline
variables that were considered clinically relevant or change in
effect estimate exceeding 10% (26) were chosen as confounders,
including age, sex, and ethnicity in model I. Based on model I,
we further included heart rate, cardiac arrest, SBP, DBP, SOFA,
SAPS II, GCS, anion gap, white blood cell, bicarbonate, dialysis,
and mechanical ventilation as confounders in our model II.

Subgroup analysis on the correlation between BG and
30-day all-cause mortality was further conducted based
on their comorbidities (liver disease, hypertension, DM,
pneumonia, respiratory failure, and congestive heart failure),
treatment (vasopressor and ventilation utilization), and disease
severity scores (SOFA, SAPS II, and GCS) in critically ill
patients with SAH. A two-sided p < 0.05 was considered
statistically significant.

RESULTS

Baseline Characteristics of Subjects
MIMIC-III database comprises 46,520 patients admitted to the
ICU of Beth Israel DeaconessMedical Center; among them, 1,590
patients were diagnosed with SAH. After exclusion of patients
who were younger than 18 years old, ICU stay <24 h, missing
glycemic data, and survival time<0, a total of 1,298 patients (601
male and 697 female) were included in the present study with
an average age of 57.64 ± 19.79 (18–89 years old). The detailed
information of patient selection is presented in Figure 1.

The 30- and 90-day mortality rates for the overall subjects
were 19.80% (257) and 22.73% (295), respectively. The baseline
characteristics of enrolled subjects stratified by admission BG
tertiles are summarized in Table 1. There were 419 subjects in the
low glucose group, and 451 and 428 SAH patients in the middle
glucose group and high glucose group, respectively. Overall,
subjects with hyperglycemia were older; were overweight; had
more comorbidities of DM, pneumonia, renal failure, and
respiratory failure; and had higher SOFA and SAPS II scores.
They presented higher 30- and 90-day mortality rates, were more
likely to have abnormal laboratory test (such as increased white
blood cell, platelet, and creatinine), and have higher rates of
vasopressor and mechanical ventilation utilization.

Association Between Admission Blood
Glucose and All-Cause Mortality in
Subarachnoid Hemorrhage Patients
GAM analysis revealed a U-shaped relationship between
admission BG and 30-day all-cause mortality in patients with
SAH, which is consistent in 90-day all-cause mortality. As shown
in Figures 2A,B, subjects with BG <142.00 mg/dl (BG <7.91
mmol/L) were associated with a lower risk of 30- and 90-day all-
cause mortality. With the further increase of BG (BG ≥142.00
mg/dl), there is an increase of the 30- and 90-day all-cause
mortality in critically ill patients with SAH. Incidentally, our K-
M survival curve also illustrated that subjects with admission

hyperglycemia presented lower survival rate and shorter survival
time (log-rank p < 0.0001, Figure 3). Cox proportional hazards
model was used to further explore the association between BG
and all-cause mortality (Table 2). With the use of the low glucose
tertile as reference, after adjustment for the confounders of
age, sex, and ethnicity (model I), the high glucose tertile was
associated with increased risk of 30-day (HR, 95% CI: 3.00, 2.12–
4.25), 90-day (HR, 95% CI: 2.65, 1.94–3.61), and in-hospital all-
cause mortality (HR, 95% CI: 2.58, 1.76–3.77). Moreover, the
middle glucose group was only associated with increased risk
for 30-day all-cause mortality (HR, 95% CI: 1.55, 1.06–2.27). In
model II, after adjustment for heart rate, cardiac arrest, SBP, DBP,
SOFA, SAPS II, GCS, vasopressor, anion gap, white blood cell,
bicarbonate, dialysis, and mechanical ventilation on the basis of
mode I, the high-BG tertile still remained as an independent
predictor of 30-day (HR, 95% CI: 1.50, 1.02–2.19) and 90-day
all-cause mortality (HR, 95% CI: 1.42, 1.01–2.00) with the low
glucose group as reference.

Subgroup Analyses
Subgroup analysis was further conducted to assess the association
between the admission BG and 30-day all-cause mortality
based on comorbidities, treatment, and disease severity
scores. Our results showed that different comorbidities (liver
disease, hypertension, DM, pneumonia, respiratory failure, and
congestive heart failure), treatment (vasopressor and ventilation
utilization), and disease severity scores (SOFA score, SAPS II,
and GCS) had no significant interactions on the correlation
of BG and 30-day all-cause mortality (p > 0.05 in all groups)
(Table 3).

DISCUSSION

Our study demonstrated that subjects with admission
hyperglycemia presented lower survival rate and shorter
survival time, and admission hyperglycemia was an independent
predictor for 30- and 90-day all-cause mortality in critically ill
patients with SAH. In addition, SAH patients with admission BG
>142.00 mg/dl (7.91 mmol/L) had dramatically increased 30-
and 90-day all-cause mortality.

Glycemic variability (GV) is a measure of the amplitude,
frequency, and duration of glycemic fluctuations around
mean BG; encompasses both diurnal hyperglycemic peaks and
hypoglycemic troughs; and has become a reliable marker of
glycemic control (27). To date, the two most frequently used
indicators of GV are coefficient of variation and standard
deviation of BG measurements (28). Recently, Okazaki et al.
retrospectively reviewed 122 SAH patients and reported that
increased GV was an independent predictor of unfavorable
neurological outcomes in SAH (29). Admittedly, GV is
more likely to reflect glycemic fluctuations over a long
period of ICU treatment when comparing with isolated BG
measurement. But it should be noted that the assessment
of GV requires an evaluation of a patient’s BG profile
attained from multiple readings sampled over time (30).
Continuous glucose monitoring is the preferred method for
measuring GV. However, due to its costliness and relative
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TABLE 1 | The clinical characteristics of critically ill patients with subarachnoid hemorrhage based on admission blood glucose tertile.

Characteristics Glucose (mg/dl) P-value

Tertile 1 (n = 419) Tertile 2 (n = 451) Tertile 3 (n = 428)

Age (years) 53.27 ± 20.91 57.32 ± 19.42 62.25 ± 17.99 <0.001

Gender, n (%) 0.347

Male 182 (43.44) 217 (48.12) 202 (47.2)

Female 237 (56.56) 234 (51.88) 226 (52.8)

Ethnicity, n (%) 0.056

White 308 (73.51) 326 (72.28) 284 (66.36)

Black 21 (5.01) 26 (5.76) 19 (4.44)

Other 90 (21.48) 99 (21.95) 125 (29.21)

Weight, kg 75.04 ± 18.73 76.97 ± 18.52 78.93 ± 21.11 0.026

SBP, mmHg 124.02 ± 13.61 126.11 ± 12.83 125.05 ± 13.61 0.067

DBP, mmHg 63.34 ± 9.38 63.36 ± 9.78 61.24 ± 9.38 0.001

MBP, mmHg 81.21 ± 9.41 82.58 ± 9.65 80.86 ± 9.18 0.030

HR, beats/min 79.53 ± 13.85 82.20 ± 15.28 83.68 ± 14.09 <0.001

RR, beats/min 17.49 ± 3.0 17.65 ± 3.23 18.62 ± 3.47 <0.001

Temperature, ◦C 37.1 ± 0.57 37.1 ± 0.58 37.06 ± 0.56 0.529

SpO2, % 97.79 ± 1.69 98.04 ± 1.71 97.99 ± 1.89 0.019

Length of stay 125.9 ± 152.3 186.7 ± 194.4 197.8 ± 195.0 <0.001

Endovascular coil occlusion, n (%) 2.6 (11) 4.9 (22) 5.6 (24) 0.078

Endovascular embolization, n (%) 3.1 (13) 2.2 (10) 2.3 (10) 0.701

Scoring systems

SAPS II 27.48 ± 11.6 31.14 ± 12.12 36.12 ± 13.73 <0.001

SOFA 2.67 ± 2.14 3.06 ± 2.18 3.75 ± 2.68 <0.001

GCS 13.28 ± 2.78 12.98 ± 3.02 13.02 ± 3.28 0.206

Dialysis, n (%) 2 (0.5) 5 (1.1) 6 (1.4) 0.369

Vasopressor, n (%) 41 (9.6) 65 (14.7) 75 (17.4) 0.003

Ventilation, n (%) 168 (39.2) 215 (48.8) 269 (62.6) <0.001

30-Day mortality, n (%) 42 (10.0) 72 (16.0) 143 (33.4) <0.001

90-Day mortality, n (%) 54 (12.9) 82 (18.2) 159 (37.2) <0.001

Comorbidities, n (%)

Liver diseases 17 (4.0) 17 (3.9) 16 (3.7) 0.983

Renal failure 11 (2.6) 10 (2.3) 28 (6.5) 0.001

Cardiac arrest 3 (0.7) 11 (2.5) 12 (2.8) 0.060

Congestive heart failure 27 (6.3) 30 (6.8) 44 (10.2) 0.063

Hypertension 15 (3.5) 13 (3.0) 24 (5.6) 0.113

Diabetes 22 (5.1) 32 (7.3) 113 (26.3) <0.001

Pneumonia 51 (11.9) 67 (15.2) 82 (19.1) 0.014

Respiratory failure 36 (8.4) 67 (15.2) 79 (18.4) <0.001

Malignancy 6 (1.4) 6 (1.4) 9 (2.1) 0.630

Laboratory tests

WBC (K/µl) 10.94 ± 5.01 12.45 ± 5,64 14.39 ± 6.33 <0.001

Platelet (K/µl) 210.58 ± 74.41 222.24 ± 81.90 230.18 ± 94.90 0.007

Hemoglobin (g/dl) 11.96 ± 1.81 11.83 ± 1.93 11.7 ± 2.13 0.132

Creatinine (mg/dl) 0.83 ± 0.33 0.84 ± 0.36 0.93 ± 0.44 <0.001

BUN (mg/dl) 13.56 ± 7.27 15.18 ± 8.15 17.7 ± 10.45 <0.001

Anion gap (mmol/L) 13.77 ± 2.79 14.07 ± 2.86 15.42 ± 3.51 <0.001

Sodium (mmol/L) 139.52 ± 4.02 139.58 ± 4.24 139.04 ± 4.3 <0.014

Potassium (mmol/L) 3.9 ± 0.56 3.93 ± 0.54 4.01 ± 0.65 0.016

Chloride (mmol/L) 105.77 ± 4.87 106.04 ± 5.31 105.20 ± 5.44 0.053

Bicarbonate (mmol/L) 23.99 ± 3.34 23.47 ± 3.41 22.48 ± 3.64 <0.001

PT (s) 13.30 ± 2.68 13.51 ± 2.86 14.16 ± 3.89 <0.001

APTT (s) 27.02 ± 7.66 27.36 ± 12.96 28.47 ± 15.35 0.027

SAH, subarachnoid hemorrhage; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; RR, respiratory rate; HR, heart rate; SpO2, percutaneous

oxygen saturation; SOFA, sequential organ failure assessment; SAPS II, simplified acute physiology score II; GCS, Glasgow Coma Scale; WBC, white blood cell; BUN, blood urea

nitrogen; PT, prothrombin time; APTT, activated partial thromboplastin time.
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FIGURE 2 | Construction of smooth curve describing the risk of mortality against admission BG using a generalized additive model. (A) 30-day all-cause mortality; (B)

90-day all-cause mortality. Dashed curves present the 95% confidence interval.

FIGURE 3 | Kaplan–Meier survival curves for critically ill patients with SAH based on tertile of admission BG. x-Axis: survival time (h). y-Axis: cumulative survival

probability. SAH, subarachnoid hemorrhage. BG, blood glucose.

invasiveness, continuous glucose monitoring is still a challenging
technology to use in a large epidemiological setting (31).
Thus, as is generally affordable and easily access, using

admission glucose to predict the short- and long-term prognoses
and guide for treatment has great clinical significance in
SAH patients.
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TABLE 2 | HRs (95% CIs) for all-cause mortality against admission blood glucose tertile.

Variable Crude Model I Model II

HR (95% CIs) P-value HR (95% CIs) P-value HR (95% CIs) P-value

30-Day all-cause mortality

Glucose

Tertile 1 1 (ref) 1 (ref) 1 (ref)

Tertile 2 1.66 (1.14, 2.43) 0.009 1.55 (1.06, 2.27) 0.024 1.18 (0.79, 1.75) 0.416

Tertile 3 3.87 (2.74, 5.46) <0.001 3.00 (2.12, 4.25) <0.001 1.50 (1.02, 2.19) 0.037

p for trend <0.001 <0.001 <0.001

90-Day all-cause mortality

Glucose

Tertile 1 1 (ref) 1 (ref) 1 (ref)

Tertile 2 1.48 (1.05, 2.08) 0.026 1.37 (0.97, 1.94) 0.0714 1.07 (0.75, 1.53) 0.707

Tertile 3 3.42 (2.51, 4.65) <0.001 2.65 (1.94, 3.61) <0.001 1.42 (1.01, 2.00) 0.043

p for trend <0.001 <0.001 <0.001

In-hospital all-cause mortality

Glucose

Tertile 1 1 (ref) 1 (ref) 1 (ref)

Tertile 2 1.43 (0.94, 2.17) 0.096 1.43 (0.94, 2.18) 0.091 1.17 (0.76, 1.81) 0.472

Tertile 3 3.20 (2.19, 4.67) <0.001 2.58 (1.76, 3.77) <0.001 1.37 (0.91, 2.09) 0.135

p for trend <0.001 <0.001 <0.001

Crude model adjusted for none. Model I adjusted for age, gender, and ethnicity. Model II adjusted for age, gender, ethnicity, heart rate, cardiac arrest, systolic blood pressure, diastolic

blood pressure, the sequential organ failure assessment score, the Simplified Acute Physiology Score II, Glasgow Coma Scale, vasopressor, anion gap, white blood cell, bicarbonate,

dialysis, and mechanical ventilation.

Despite the relevance of hyperglycemia and that poor
outcomes in SAH patients have been extensively discussed for
years, it is worth to point out that the definition of hyperglycemia
and the evaluation indicator of poor outcomes varied among
different studies (14, 17, 19, 32, 33). For instance, a Cuban group
investigated the predictors of mortality in 64 patients with SAH,
and they reported that serum glucose (>7.0 mmol/L) was an
independent risk factor of death for those patients by using
multivariate logistic regression analysis model (34). McGirt et al.
retrieved a prospectively recorded database with 97 SAH patients
and demonstrated that persistent perioperative hyperglycemia
was an independent predictor of poor outcome evidenced by
poor Glasgow Outcome Scale scores (13). Due to the low
incidence of SAHwith 6–20/100,000 patients per year, the sample
size of the previous study was relatively small. Based on the robust
sample size, this study is the largest compilation demonstrating
the relationship between admission hyperglycemia and 30- and
90-day mortality in SAH patients and also suggests the U-
shape between BG and 30- and 90-day mortality. Besides, SAH
patients with BG >142.00 mg/dl (7.91 mmol/L) is associated
with increased 30- and 90-day all-causemortality, which provides
some internal validity strength to the present study.

The following factors could account for the association
between admission hyperglycemia and poor outcome after SAH.
Firstly, admission hyperglycemia is closely related to DCI.
As the most important complication after SAH, DCI occurs
between 3 and 14 days after hemorrhage and can progress to
irreversible cerebral infarction, which is the most important
cause of morbidity in patients surviving the initial hemorrhage

(6, 35). Patients with hyperglycemia on admission have a higher
risk of developing DCI and cerebral infarction than patients with
normal BG levels (36–38). Secondly, admission hyperglycemia
represents the abnormalities of glucose metabolism in DM or
preexistent but previously undiagnosed DM. It has been showed
that SAH patients with preexistent DM have increased risk of
DCI than have SAH patients without preexistent DM, which
suggests a link between abnormalities of glucose metabolism and
DCI in SAH patients (39, 40). Consistent with previous study,
our results also showed that SAH patients with hyperglycemia
had higher percentage of comorbidities of DM. Thirdly, subjects
with admission hyperglycemia in this study were older, were
overweight, and had higher SOFA and SAPS II scores, all of which
could be potential confounding factors causing increased 30- and
90-day all-cause mortality in SAH patients in the high tertile.
At last, hyperglycemia on admission is reported to be associated
with various in-hospital complications including nosocomial
infections, impaired wound healing, and respiratory failure, all of
which are contributors to poor outcome, while intensive insulin
treatment lowers these in-hospital complications (37, 41).

Contrary to hyperglycemia, hypoglycemia was also associated
with poor outcomes in SAH patients (42). A retrospective
study analyzed 122 SAH patients, finding that over 50% of
patients withminimum glucose<8mmol/L (90mg/dl) presented
unfavorable outcomes at discharge (29). However, our study
showed the relationship between hyperglycemia and 30/90-
day mortality, and a BG >142.00 mg/dl (7.91 mmol/L) was
identified as a threshold for BG levels predicting unfavorable
outcome. To date, the optimal glycemic control in SAH patients
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TABLE 3 | Subgroup analysis of the correlation between admission blood glucose and 30-day all-cause mortality in critically ill patients with subarachnoid hemorrhage.

N Glucose (mg/dl) p for interaction

Tertile 1 Tertile 2 Tertile 3

Liver diseases 0.877

No 1,248 1.0 (ref) 1.17 (0.78, 1.76) 1.50 (1.01, 2.22)

Yes 50 1.0 (ref) 0.99 (0.05, 19.27) 1.44 (0.04, 58.43)

Hypertension 0.337

No 1,246 1.0 (ref) 1.18 (0.78, 1.78) 1.41 (0.95, 2.11)

Yes 52 1.0 (ref) 0.03 (0.00, 19.74) 15.07 (0.28, 810.23)

Diabetes 0.489

No 1,131 1.0 (ref) 1.15 (0.76, 1.73) 1.47 (0.98, 2.21)

Yes 167 1.0 (ref) 1.82 (0.24, 13.86) 2.42 (0.43, 13.54)

Pneumonia 0.990

No 1,098 1.0 (ref) 1.13 (0.721.76) 1.32 (0.85, 2.04)

Yes 200 1.0 (ref) 1.11 (0.40, 3.09) 1.40 (0.55, 3.57)

Respiratory failure 0.934

No 1,116 1.0 (ref) 1.08 (0.69, 1.70) 1.33 (0.86, 2.05)

Yes 182 1.0 (ref) 1.17 (0.50, 2.71) 1.59 (0.68, 3.69)

Congestive heart failure 0.351

No 1,197 1.0 (ref) 1.24 (0.81, 1.89) 1.37 (0.90, 2.08)

Yes 101 1.0 (ref) 0.16 (0.03, 0.79) 0.68 (0.18, 2.61)

Vasopressor 0.293

No 1,119 1.0 (ref) 1.15 (0.73, 1.82) 1.45 (0.94, 2.26)

Yes 179 1.0 (ref) 1.10 (0.48, 2.54) 1.48 (0.61, 3.59)

Ventilation 0.429

No 648 1.0 (ref) 0.37 (0.14, 0.96) 1.09 (0.46, 2.57)

Yes 650 1.0 (ref) 1.35 (0.85, 2.14) 1.59 (1.02, 2.48)

SOFA 0.669

≥2.5 649 1.0 (ref) 1.14 (0.73, 1.77) 181 (1.19, 2.75)

<2.5 649 1.0 (ref) 1.37 (0.56, 3.36) 1.32 (0.58, 2.99)

SAPS II 0.068

≥30 683 1.0 (ref) 1.30 (0.84, 2.01) 1.49 (0.99, 2.27)

<30 615 1.0 (ref) 0.58 (0.19, 1.78) 2.03 (0.69, 5.94)

GCS 0.190

≥14 884 1.0 (ref) 1.52 (0.87, 2.64) 1.82 (1.07, 3.10)

<14 414 1.0 (ref) 0.75 (0.40, 1.40) 1.04 (0.57, 1.89)

N, number; SOFA, sequential organ failure assessment; SAPS II, simplified acute physiology score II; GCS, Glasgow Coma Scale.

is still controversial. A retrospective observational study showed
that a strictly controlled glucose at 90–120 mg/dl (5.0–6.7
mmol/L) failed to reduce mortality and was associated with
an increased incidence of hypoglycemia in SAH (43). Another
randomized controlled trial performed in 78 SAH patients after
surgical clipping found that intensive insulin therapy (4.4–6.7
mmol/L; 80–120 mg/dl) significantly reduced infection rates as
compared with maintaining BG <11.1 mmol/L (200 mg/dl).
But the benefit of strict glycemic control on mortality rates
was not affected by intensive insulin therapy (38). Based on
those findings, a moderate regimen, maintaining glucose levels
up to 7.91 mmol/l, might be reasonable in the acute phase
after SAH.

Our study has some limitations to consider. Firstly, MIMIC-
III database is a large, single-center database that included

critically ill patients admitted to ICU. Thus, caution is warranted
in extrapolating the positive findings to all patients with
SAH. Secondly, we could not exclude the possibility that
other unmeasured confounders that could not all be assessed
in this study might have affected our findings, such as the
incidence of DCI, vasospasm, re-bleeding, and the use of
other hemodynamic monitoring techniques in each group.
Thirdly, although the association between hyperglycemia and
30- and 90-day all-cause mortality has been observed, this
does not prove causality of that relation. Experimental as
well as clinical observations are needed to further explore the
mechanisms through which hyperglycemia may affect clinical
outcome after SAH. Lastly, we only used the admission BG
level to predict all-cause mortality. It may be more valuable
for prognosis prediction if continuous glucose monitoring
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would be available in a large epidemiological setting in
the future.

CONCLUSIONS

To conclude, admission hyperglycemia is associated with
increased risk of adjusted 30- and 90-day all-cause mortality in
critically ill patients with SAH and is expected to become a simple
and effective marker for prognostic evaluation in these patients.
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