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Neutrophils are important components in the innate immune system. Neutrophil

hyperactivation is regarded as a characteristic of Alzheimer’s disease (AD). But in

vivo imaging tools observing neutrophil activity in AD dynamically is lacking. This

study aimed to identify neutrophil infiltration in AD transgenic mice. We used the

AD triple-mutant transgenic mouse model and identified the genotype with RT-PCR.

Behavioral experiments including an open-field test, a Morris water maze, and a Y-maze

test were performed to evaluate the status of this AD model. 18F-AV45, 18F-PM-PBB3,
68Ga-PEG-cFLFLFK, and 18F-DPA714 were synthesized according to previous reports.

We employed microPET to detect tracer uptake in the AD model and the control mice

at different stages. Western blotting was used to observe the expression of functional

proteins. We proved the successful establishment of AD models by RT-PCR, behavioral

tests, and 18F-AV45 and 18F-PM-PBB3 PET imaging. We found an increased neutrophil

accumulation in the brains of the AD mice through 68Ga-PEG-cFLFLFK PET imaging and

Western blot assay. Our studies also demonstrated an elevated level of CAP37, which

is produced by neutrophils, in the AD brain, and treatment with CAP37 promoted the

expression of Iba1, iNOS, and COX-2 in BV2 cultures. Furthermore, our 18F-DPA714 PET

imaging studies verified the raised activation of microglia in the brain of transgenic AD

mice. Collectively, our findings indicate the increased activity of neutrophils in the brain

and heart of AD model mice, 68Ga-PEG-cFLFLFK PET imaging represents a sensitive

method to observe the status of neutrophils in AD, and infiltrated neutrophils can induce

the activation of microglia by releasing CAP37 and blocking the activity of neutrophils

may be beneficial for the control of AD progression.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by the formation of
amyloid-β plaques, aggregated, hyper, and abnormally phosphorylated tau protein, activated
microglia and neuronal cell death, ultimately leading to progressive dementia. AD is the most
common cause of cognitive impairment or dementia in populations over 65 years old and, with
rising longevity, a worldwide pandemic of mild cognitive impairment (MCI), AD, and AD-related
dementia (ADRD) is anticipated (1–4). For many years, AD was viewed as a disease limited
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to the brain. Nevertheless, microglia is an innate immune cell in
the brain, and brain-initiated inflammatory responses reflected in
the periphery suggests that AD is to some extent also a systemic
inflammatory disease (5). The activation status of peripheral
innate immune cells may represent an early biomarker of the
upcoming impact on the brain.

Neutrophils are among the first leukocytes to reach a site
of injury and kill pathogens by various strategies, including
phagocytosis, degranulation, the rapid production of reactive
oxygen species (ROS) in an oxidative burst, the release of
neutrophil extracellular traps (NETs), and a process called
NETosis (6, 7). Several previous reports have shown the
presence of neutrophils in the brain of AD patients, including
in brain parenchyma with Aβ deposits and cerebral blood
vessels (8–10). In the transgenic AD model mice brain, there
is also substantial neutrophil infiltration to Aβ plaques, and
neutrophil depletion or trafficking inhibition can reduce the
AD-like neuropathology and improve the cognitive dysfunction
(10, 11). Neutrophils can also damage an AD brain via
NETosis that impairs the blood-brain barrier and neural cells
in mouse AD models (10, 12). A recent in vitro study
suggested that various proinflammatory cytokines directly
increase the percentage of senescent neutrophils and decrease
the level of immunosuppressive neutrophils, the peripheral
proinflammatory cytokine environment is instrumental in the
alteration of circulating neutrophils homeostasis in AD (7). In
consequence, the ability to detect and quantify neutrophilic
accumulation could be important not only in locating and
identifying inflammatory lesions, but also in facilitating the
determination of the pathological development and testing of
anti-inflammatory agents in AD patients (13). A previous study
investigated the expression of the cationic antimicrobial protein
of 37 kDa (CAP37), a neutrophil granule protein, in AD, and
demonstrated an upregulation of CAP37 in patients with AD
(9, 14).

Neuroimaging modalities, such as positron emission
tomography (PET), optical scanning, and magnetic resonance
imaging (MRI), have enabled the visualization of Aβ deposits
in humans with AD or AD mouse models (15). Currently, 67Ga
citrate and 111In or 99mTc labeled leukocytes ex vivo are available
clinical nuclear imaging probes for targeting and diagnosing
inflammatory lesions (16). Unfortunately, each of these tracers
possesses significant drawbacks even though they may yield
useful results in specific circumstances. Modalities utilizing the
in vitro labeling of white blood cells also suffer from certain
disadvantages. In contrast, the injection of peptides, that have a
high affinity for surface receptors on leukocytes, have emerged as
an attractive option for the in vivo detection of inflammation. In
vitro characterization of 18F-AV-45 and 18F-DPA-714 reported
an excellent affinity and specificity for Aβ plaques (17, 18).
Furthermore, 18F-PM-PBB3 was developed as a specific imaging
ligand to visualize tau pathologies in the brains of patients with
AD and related tauopathies in a tauopathy mouse model (15, 19).

The coexistence of reliable PET imaging methods with
dedicated tracers in small animals and relevant animal models of
AD is an opportunity to better understand the pathophysiological
mechanisms of the disease and to monitor potential therapeutic

approaches. The aim of this study was 2-fold: to characterize
in vivo the phenotypes and functionalities of microglial cells
in an AD animal model, and to explore the mechanisms of
neuroinflammation in the onset and progression of AD.

MATERIALS AND METHODS

Animals
The animal experimental protocol was approved by the
Institutional Animal Care and Ethics Committee of Huashan
Hospital of Fudan University. Animal experiment procedures
were performed in strict accordance with the National Research
Council’s Guide for the Care and Use of Laboratory Animals.
The AD triple-mutant transgenic (TG) model mice [B6;129-
Psen1tm1MpmTg(APPSwe,tauP301L)1Lfa/Mmjax] and female
wild-type mice (same background) were purchased from the
Jackson Laboratory. The mean bodyweight of the mice was (20±
3) g, and the age of the animals when used for the experiment was
12-month-old. The characteristics and quality of the TG model
mice were evaluated by behavioral experiments, such as an open
field test, a Morris water maze, and a Y-maze test.

Tracer Production
18F-AV-45 was radio synthesized from its precursor (Avid,
USA) in a fully automated procedure suitable for routine
clinical application (20). 18F-PM-PBB3 was synthesized
from an automatic synthesis module and kit provided by
APRINDIA therapeutics (Suzhou, China) (21). The formyl
peptide receptor (FPR)-specific peptide, PEG-cFLFLFK, was
sequentially conjugated with a DOTA, and finally labeled with
68Ga to form the 68Ga-cFLFLFK tracer (13). DPA-714 was
labeled with 18F at its 2-fluoroethyl moiety, after nucleophilic
substitution of the corresponding tosylate analog, according
to a previously reported procedure with slight modifications
(22). The radiochemical purity of the final purified products all
exceeded 95%.

PET Imaging and Data Analysis
Mice were anesthetized with isoflurane and intravenously
injected with 18F-AV45 (100 ± 20 µCi), 18F-PM-PBB3 (100
± 20 µCi), 68Ga-PEG-cFLFLFK (100 ± 20 µCi) (or unlabeled
cFLFLFK peptide for blocking FPR1 receptors), and 18F- DPA714
(100 ± 20 µCi) via the lateral tail vein in different groups.
Every mouse in each group only received one type of tracer
injection and PET imaging scans. The 15min static images were
obtained by small-animal PET/CT systems (at 1 h after injection),
and scanned at 350–650 keV energy window, with 20min
listmode acquisition and 3D rebinning followed by OSEM-
PSF reconstruction. PET images were analyzed and quantified
by PMOD software and data were calculated in 3D volumes-
of-interest (VOIs) using the following equation. The VOIs or
ROIs (regions of interest) were delineated by manual selection
of the statistical investigator blind to experimental design and
grouping in the reconstructed 3D images. After delineation, the
radioactivity values of the ROIs per unit volume were obtained,
and the percentage injected dose per gram (%ID/g) values
were calculated.
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%ID/g =
Radioactivity concentration in VOIs [µCi/g]

Injected dose [µCi]
× 100%

Western Blot Assay
The procedures of western bolt are the same as the previous
references (23). Simply, the mice were euthanized in 30min
after the last PET scan, and the brains from the AD transgenic
and control mice were dissected and lysed in animal tissue lysis
buffer. Then, the mixtures were centrifuged at 4◦C and 10,000 g
for 15min, and the supernatants were separated as total protein
samples for Western blot assays. As to the microglia BV2 cell
culture, rCAP37 protein (1µg/mL, final concentration in culture
medium) was applied and treated for 24 h according to a previous
report (24), and the cells was harvested for Western blotting.
A portion of the sample with 20 µg protein was loaded in
SDS-PAGEs. For our Western blot assays, primary antibodies
for mouse FPR1 (1:1,000), Iba1 (1:500), CAP37 (1:200), iNOS
(1:1,000), and COX-2 (1:1,000), and secondary antibodies were
purchased from Abcam.

Immunohistochemistry Assay
The transgenic AD model and WT control mice were
anesthetized and rapidly perfused and fixed with 4%
paraformaldehyde. The brains were removed and placed
in 4% paraformaldehyde for 24 h, and after dehydration in
30% sucrose, sectioned into slices 20µm thick. After antigen
repair and blocking, the slices were incubated with an anti-
myeloperoxidase (MPO) antibody (1:1,000) at 4◦C and gently
oscillated overnight. Following second antibody incubation and
wash, the nucleus was stained with hematoxylin. Then after
DAB color rendering and sealing, the slices were observed under
a microscope (Olympus BX43, Japan), and the images were
captured and stored. The integral optical density (IOD) of the
MPO stains of neutrophils per area was quantified with the Scion
Image 4.0 software (Scion Inc., Fredrick, MD).

Statistical Analysis
Numerical data are presented as mean ± SEM. The Student’s
unpaired t-test (for normal distribution) or Mann-Whitney U-
test (for non-normal distribution) were used to analyze the
differences between groups, including the results of the VOIs
radioactive uptake, and a difference at p < 0.05 was considered
statistically significant.

RESULTS

Generation and Characterization of AD
Model Mice
TheAD transgenicmodel mice (TG/model) and female wild-type
mice (WT/control) were purchased from the Jackson Laboratory.
We used RT-PCR to identify all the experimental animals in
this study as to determine whether they were homozygous
or heterozygous (Figure 1A). The content corresponding to
Figure 1 has been published as a conference abstract in the
Annual Congress of the European Association of Nuclear

Medicine, October 12–16, 2019, Barcelona, Spain (25). Based
on the literature, the animal model only produced amyloid in
6 months (26). Hence, we began the observation of animal
behaviors from 6 months of age. At the age of 12 months,
most of the TG model group exhibited behavioral abnormalities
(Supplementary Figure 1).

18F-AV45 is a classic PET imaging tracer for Aβ and is often
used to detect Aβ aggregation in preclinical and clinical studies
(27). Furthermore, 18F-PM-PBB3 is a new type of tau tracer
for PET imaging (28). In order to further confirm the animal
model, we used these two tracers to identify the 12-month-old
TG model of AD. As shown in Figures 1B–E, compared with the
control group, the %ID/g-mean of 18F-AV45 in the TG model
was significantly higher than that of control (Con, 0.53 ± 0.22;
Model, 1.08 ± 0.27, p = 0.009 vs. Con) (Figures 1B,C). The
uptake of 18F-PM-PBB3 in the TG group was significantly higher
than that in the control group (Con, 0.38 ± 0.12; Model, 0.63 ±
0.15, p= 0.012 vs. Con) (Figures 1D,E).

Taken together, we identified and confirmed the success of the
AD model according to RT-PCR, behavioral tests, and the results
of the 18F-AV45 and 18F-PM-PBB3 PET imaging.

Increased Neutrophil Infiltration in the AD
Animal Model
In order to evaluate the infiltration of neutrophils in the brain,
we used both 68Ga-PEG-cFLFLFK PET imaging and Western
blotting methods. 68Ga-PEG-cFLFLFK is a recently developed
specific tracer for the FPR1 receptor on neutrophils (29). PET
images scanned 60min after tracer injection indicated that the
%ID/g-mean of the brain and some other organs, especially the
heart, was higher in the ADmodel group than the control group,
and by blocking FPR1 receptors with the unlabeled cFLFLFK
peptide, the increased radioactive uptake in the model group
obviously diminished (Figures 2A,B). We also analyzed the
radioactive uptake (%ID/g-mean and %ID/g-max) of multiple
brain regions in the TG andWT groups (data of 14 brain regions
are shown in Supplementary Table 1). Furthermore, the results
of Western blotting showed that the expression of the FPR1
protein in the brain of AD model mice was significantly higher
than that in the control group (Figures 2C,D).

MPO is a hemoprotein which is abundantly expressed in
neutrophils and secreted during their activation. Results of an
immunohistochemistry assay with an anti-MPO antibody show
that the amount of neutrophils was significantly augmented
in the TG mice of the AD model compared with the control
(Figure 2E). In general, these results confirmed the infiltration
of neutrophils in the brain of AD transgenic mice.

Microglia Activation Induced by
Neutrophils
In order to investigate the significance of neutrophil infiltration
in the brain, we focused on the CAP37 protein and microglia.
CAP37, a specific protein secreted by neutrophils, is a potential
immune regulator in the brain. Consistent with previous studies
(9), we found that the expression of CAP37 in the TG model
group was significantly higher than that of the control group
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FIGURE 1 | Characterization of AD transgenic animal model. (A) Identification of gene expression by RT-PCR. (B) 18F-AV45 imaging in the brain of the TG model and

control mice. (C) Radioactive uptake of 18F-AV45 in the brain of mice in vivo. **P = 0.009, n = 5 mice for each group. (D) 18F-PM-PBB3 imaging in the brain of the

model and control mice. (E) Radioactive uptake of 18F- PM-PBB3 in the brain of mice in vivo. *P = 0.012, n = 5 mice for each group. This part of content has been

published as a conference abstract in the Annual Congress of the European Association of Nuclear Medicine, October 12–16, 2019, Barcelona, Spain.

(Figure 3A). This result also confirmed the infiltration of
neutrophils in the brain.

Iba1 is a marker of activated microglia which are the most
important immune cells in the brain (30). As shown in Figure 3B,
we found that exogenous administration of the CAP37 protein
gave rise to an increased expression of the Iba1 protein in the
microglia BV2 cell line in vitro. In addition, the expression levels
of iNOS and COX-2 were also notably upregulated by CAP37
treatment (Figures 3C,D).

In order to study the dynamic alterations of microglia in
vivo, we conducted an 18F-DPA714 PET imaging study. In the
control group, the brain uptake of 18F-DPA714 was relatively low.
Nevertheless, the radioactive uptake of 18F-DPA714 in the brain
of the AD model mice increased significantly compared with the
control group (%ID/g-mean) (Figures 4A,B).

DISCUSSION

Several articles have reported the relationship between the
innate immune system and AD (31). Indeed, microglia are the

typical innate immune cells in the central nervous system, while
neutrophils are a representative of peripheral innate immune
cells (32). However, the exact connection between the central and
peripheral innate immune cells in the pathophysiology of AD
remains elusive. In this study, we tried to uncover the underlying
mechanism using several molecular imaging tracers in vivo.

Firstly, we identified AD transgenic models with several
experiments, including RT-PCR, behavior tests, and 18F-AV45
and 18F-PM-PBB3 PET imaging. To the best of our knowledge,
we are the first to confirm a triple transgenic model by
Aβ and tau tracer PET imaging in vivo at the same time.
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FIGURE 2 | Increased neutrophil infiltration in the transgenic animal model. (A) Representative 68Ga-PEG-cFLFLFK PET imaging in the brain of the model and control

mice. (B) Radioactive uptake of 68Ga-PEG-cFLFLFK in the brain and heart of mice in vivo. Brain, *p = 0.036 for model vs. Con, #p = 0.043 for model+blocking vs.

model, n = 5 mice for each group; Heart, *p = 0.042 for model vs. Con, #p = 0.047 for model + blocking vs. model, n = 5 mice for each group. (C) Western blot

study showing the increase in FRP1 expression in the brain of AD model mice. (D) Quantification of the protein blot density of FRP1 in control and model mice. *P =

0.023, n = 5 mice for each group. (E) Representative results of immunohistochemistry assay with an antibody against the MPO protein. *P = 0.028, n = 10 areas

from three mice for each group.
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FIGURE 3 | Activation of microglia induced by CAP37. (A) Western blot study showing the increase in CAP37 expression in the brain of AD model mice. **P = 0.006,

n = 5 mice for each group. (B) Western blot study showing the increase in Iba1 expression in cultured microglia induced by CAP37. *P = 0.014, n = 5 for each

group. (C) Western blotting study showing the increase in iNOS expression in cultured microglia induced by CAP37. *P = 0.027, n = 5 for each group. (D) Western

blot study showing the increase in COX expression in cultured microglia induced by CAP37. *P = 0.019, n = 5 for each group.

Secondly, we proved the neutrophil infiltration in the brain of
TG mice by a specific neutrophil PET tracer in vivo and ex
vivo. Additionally, our study demonstrated that CAP37 is an

important modulator in microglia activation, which indicates
that neutrophil infiltration promotes the neuroinflammation
of AD.
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FIGURE 4 | Increased microglia activation in AD transgenic model. (A)

Representative 18F-DPA714 PET imaging in the brain of AD transgenic model

and control mice. (B) Quantification of the radioactive uptake of 18F-DPA714 in

the brain of the control and model groups. *P = 0.031, n = 5 mice for each

group.

In this study, we selected triple transgenic AD mice, which
were classical models for studying amyloid deposition, tau
pathology, and synaptic transmission. These mice expressed
three mutant genes: Psen1 M146V, APPSwe, and Tau P301L (26).
Generally, we identified them through immunohistochemistry
and behavioral tests. Molecular imaging, such as PET and SPECT,
is a very powerful tool for the diagnosis of Parkinson’s disease
(33, 34). However, most preclinical studies are based on tracers
for Aβ or tau separately (15, 35). In this study, we could better
observe the pathophysiological process of the animal using the
two tracers together. Amyloid deposits and tau fibrils are also
typical characteristics of themodel.With 18F-AV45 PET imaging,
we found that radioactive uptake is relative higher in the brain
of TG mice compared with the control group. We also observed
more serious tau fibrosis in the same model using 18F-PM-PBB3
PET imaging.

Numerous clinical trials have confirmed the high activation
of neutrophils in the peripheral blood of AD patients.
Normally, there is limited infiltration of neutrophils in the
brain. There is also a lack of direct imaging evidence to
study the neutrophil infiltration in AD patients. cFLFLFK is
a high affinity ligand for N-formylpeptide receptor 1 (FPR1),
which is highly expressed in peripheral neutrophils. Previous
studies have proved the application of 68Ga-PEG-cFLFLFK in
neutrophils imaging (29). In this study, we verified the neutrophil
infiltration by 68Ga-PEG-cFLFLFK and Western blotting. Then
we hypothesized that neutrophil infiltration, secretion proteins,
and inflammatory factors accelerate the activation of microglia,
the neuroinflammatory response, tau protein lesions, and Aβ

deposition of starch protein in the process of AD.
CAP37, originating from neutrophils, is a critical

inflammatory modulator in the immune system. Some

scholars have found the increased expression of CAP37 in
AD mice (9, 14). Consistent with these studies, we also observed
that the expression of CAP37 in the brain of AD transgenic
mice was significantly higher than control. Furthermore,
our results demonstrated that the administration of CAP37
promoted cultured microglia activation. We also confirmed
the hyper-activation of microglia in the AD model by 18F-
DPA714, a specific tracer targeting translocate protein in
activated microglia.

In AD patients and animal models, in addition to directly
interfering with the normal activity and function of neurons,
Aβ acts as a potent chemoattractant to induce the migration
of phagocytes, including neutrophils and macrophages, into
the brain, causing and maintaining neuroinflammation (36,
37). The early presence of Aβ in the AD brain activates
microglia and neutrophils and promotes the release of masses
of toxic mediators including inflammatory cytokines and ROS,
leading to the maintenance and exacerbation of harmful
pathological inflammatory responses, such as cytokine storms,
which mediates progressive neural damage and loss of function
(38–41). Neutrophils can also damage the blood-brain barrier
and lead to increased permeability through NETosis (12).
Some studies, including PET imaging, indicate that there are
neuroinflammation and microglia activation in the early stages
of AD (40–42). However, there is no direct imaging evidence of
neutrophil activation in an AD brain. This study, the first to use
PET tracer imaging in an AD animal model, showed increased
neutrophil invasion and activation in the brain of the AD model
mice. At the same time, the neutrophil constitutive granule
protein CAP37 mediates the hyper-activation of microglia in
the AD brain. Thus, neuroinflammatory reactions mediated
by neutrophils and microglia have a co-driving role in the
maintenance of progressive inflammatory brain injury in AD,
and neutrophil depletion and trafficking inhibitionmay represent
a helpful intervention to occlude neuroinflammation and
improve cognitive function in AD patients.

CONCLUSION

In summary, we found that the combination of 18F-AV45
and 18F-PM-PBB3 tracers can be used to identify the triple-
transgenic AD animal models. 68Ga-PEG-cFLFLFK is confirmed
to be an ideal PET tracer to investigate the behavior and
mechanism of neutrophils in central nervous system diseases
in vivo. In addition, CAP37 may represent an important link
between neutrophil infiltration and microglia activation in AD,
and be of potential importance in driving and sustaining
neuroinflammation and dysfunctions. Therefore, inhibiting
neutrophil infiltration and activation may be beneficial for
the amelioration of neuroinflammation and the control of
AD symptoms.
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Supplementary Figure 1 | Behavioral experimental test results for the verification

of AD transgenic mouse model. (A) Open field test result for wild-type (WT) and

AD transgenic model (TG) mice. (B) Y-maze test result for WT and TG mice. (C)

Time spent in the target area for WT and TG mice in the Morris water maze test.

(D) Number of times crossing the target area for WT and TG mice in the Morris

water mase test. N = 5 mice for each group in every test. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001 vs. WT group. #p < 0.05, ##p < 0.01 vs. TG group.

Supplementary Table 1 | Radioactive uptake values of 68Ga-PEG-cFLFLFK

targeting neutrophils in the brain scanned at 1 h after injection and comparisons

between the TG model and WT groups (n = 5 mice for each group).
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