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Susceptibility-weighted magnetic resonance imaging (MRI) (SWI) offers additional

information on conventional MRI contrasts. Central veins can be identified within lesions,

and recently, it has been suggested that multiple sclerosis (MS) lesions with slowly

expanding demyelination, so-called smoldering lesions, can be identified by a phase

rim surrounding the lesion. We analyzed post-contrast SWI in regard to intrinsic lesion

characteristics in a cohort of MS patients. A total of 294 MS patients were evaluated

using a 3-T MRI. A comprehensive MRI protocol was used including post-contrast SWI.

Lesions of at least 5 mm in size were analyzed on conventional MRI and SWI with

a structured reporting scheme with a focus on SWI lesion characteristics. A total of

1,323 lesions were analyzed: 1,246/1,323 (94%) were non-enhancing and 77/1,323 (6%)

were contrast-enhancing (CE) lesions. In CE lesions, the following patterns were seen:

contrast enhancement was nodular in 34/77, ring-shaped enhancement was present in

33/77, and areas of peripheral enhancement were present in 10/77. In CE lesions, an

association with central veins was found in 38/77 (50%). In 75/1,246 (6%) non-enhancing

lesions, a central dark dot in keeping with a central vein was seen, whereas 162/1,246

(13%) showed peripheral hypointense dots/rims, 199/1,246 (16%) showed scattered

hypointense dots mainly within the lesion area, and in 374/1,246 (30%), no SWI

hypointensity was detected. Furthermore, 436/1,246 (35%) lesions showed isointensity

to the surrounding tissue and were not visible on SWI. SWI is able to offer additional

aspects of MS pathology also when used after the application of a contrast agent. Veins

connected to lesions, a potentially useful marker in the differential diagnosis of MS, were

seen in about 50% of enhancing lesions. Susceptibility artifacts, suggested to mark the

presence of myelin-laden macrophages and smoldering inflammation, were visible in

28% of lesions as hypointense dots in and in the periphery of the lesion. Given those

results, SWI may provide practical useful additional information in the evaluation of the

lesion status in MS patients.
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INTRODUCTION

Conventional magnetic resonance imaging (MRI) techniques
play an important role in the diagnosis and monitoring of
disease evolution in multiple sclerosis (MS). Review of MS
lesion characteristics can provide insight into the acute and
chronic pathology. Hyperintense lesions on T2-weighted (T2-
w) images are thought to represent a heterogeneous pathology
such as edema, gliosis, axonal loss, and demyelination (1). New
T2 lesions on follow-up MRI are commonly employed in the
search for a recent inflammatory disease activity. In addition, the
presence of contrast enhancement on post-contrast T1-weighted
(T1w) images and occasionally hyperintensity on diffusion
weighted MRI can also indicate acute inflammatory changes (2–
5). Recently, susceptibility-weighted imaging (SWI), a velocity-
compensated three-dimensional gradient echo sequence (6), has
been shown to be sensitive to iron on the form of ferritin,
hemosiderin, and deoxyhemoglobin (7). It is sensitive to iron
accumulation in the normal-appearing brain tissue, in lesions,
and in the vessel walls of veins in MS (8). Iron is supposed
to cause damage to oligodendroctyes and myelin by oxidative
stress in the form of free radicals (9). Furthermore, areas of
active myelin breakdown also show susceptibility effects in the
form of dark dots or rims (10–12). The susceptibility effects in
those lesions are due to the presence of iron-laden activated
microglia/macrophages and reactive astrocytes at the lesion edge
(6, 8–11, 13). These lesions have been suggested to represent areas
of so-called smoldering inflammation (10, 11, 13). Furthermore,
it has been demonstrated that these lesions may increase in size
during longer observation periods. Such gradual slowly evolving
increases in lesion size can also be identified when analyzing
serial T1w MRI as it has recently been demonstrated (14). This
type of lesion has also generated high clinical interest, as it
is conceivable that it contributes to gradual clinical worsening
in MS.

Commonly, SWI is acquired before contrast agent injection,
and only a few studies evaluated contrast-enhancing (CE) lesions
on SWI after contrast application (15, 16). We investigated
characteristics of active CE and non-enhancing lesions detected
on contrast-enhanced SWI.

MATERIALS AND METHODS

Subjects
We performed a retrospective, cohort analysis of MRI in MS
patients in our MS database over a 3-year interval. Inclusion
criteria were diagnosis of MS according to the McDonald
diagnostic criteria (17) and being at least 18 years of age.
Exclusion criteria were presence of neurological conditions other
than MS, cardiovascular or respiratory disease, contraindication
to MRI, and pregnancy or breastfeeding.

MRI Studies
All MRI studies were performed on a 3.0-T MR system
[MAGNETOM Skyra, Siemens, Erlangen, Germany, 20-channel
head coil, 50-cm field of view [FOV]]. A standardized protocol
was used in all patients: (1) axial, coronal, and sagittal localizing

sequences followed by axial oblique contiguous 5-mm slices
aligned with the inferior borders of the corpus callosum; (2) T2-
w images (TR 4,000 ms/TE 78ms, FOV 220mm, slice thickness
3mm, voxel size 0.4 × 0.4 × 3.0mm); (3) fluid-attenuated
inversion recovery (FLAIR) images (TI 2,500ms/TR 8,500ms/TE
136ms, FOV 220mm, slice thickness 3mm, voxel size 0.4 × 0.4
× 3.0mm); (4) T1w images (TR 225ms/TE 2.5ms, FOV 220mm,
slice thickness 3mm, voxel size 0.7 × 0.7 × 3.0mm); (5) T2∗-
w images (TR 594 ms/TE 19.9ms, FOV 220mm, slice thickness
3mm, voxel size 0.4 × 0.4 × 3.0mm); and (6) identical to (4)
T1w images 10min after manual injection of single-dose contrast
agent of 0.1 mmol/kg body weight (Dotarem, Guerbet) followed
by (7) susceptibility-weighted imaging (TR 27ms, TE 20ms, FOV
220mm, slice thickness 1.50mm, voxel-size 0.9× 0.9× 1.5mm).
SWI and mini-IP images were generated automatically by the
scanner software provided by the manufacturer.

To exclude a possible influence of the contrast agent
on diagnostic image quality, vascular enhancement, and
parenchymal signal alterations in 10 patients were additionally
examined with SWI before and after contrast agent injection.

Data Processing and Analysis
Image interpretation was performed on a standard picture
archiving and communication system workstation. Two readers
experienced in the diagnostic and clinical reading of MS
studies examined MR images jointly. Readers were unaware of
clinical data and patient identification information. A structured
reporting scheme was used. For lesion identification, FLAIR
images were used as the “gold standard.” Only brain lesions with
a diameter >5mm on axial slices entered further analysis.

With the use of post-contrast T1w images, lesions were
classified as CE lesions (group 1) or non-enhancing lesions
(group 2), according to previously published criteria (18). All
lesions were further classified on T1w images as T1 hypointense
(19) or T1 isointense. In a second step after lesion identification
on conventional MR images, SW images were analyzed for
the corresponding lesion characteristics. As CE is seen also
on SW images, CE lesions in group 1 were categorized as
follows: (1) ring-shaped CE lesions, (2) lesions with partial
peripheral contrast enhancement, or (3) nodular homogenous
contrast enhancement. All lesions of group 1 (CE lesions) and
group 2 (non-enhancing lesions) were categorized in regard
to hypointense features potentially visible on SW images: (i)
lesions with central veins, (ii) lesions with peripheral hypointense
dots/rims, (iii) lesions with scattered hypointense dots within
the lesion, and (iv) isointense lesions not seen on SWI. These
categories were employed similar to previously suggested lesion
characteristics (10, 11, 13).

Standard Protocol Approval
This study was approved by the local institutional review
board and performed in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki
and its later amendments. Patient consent was waived owing
to the retrospective nature of the study and the lack of
patient interaction.
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FIGURE 1 | From left to right: representative post-contrast T1, post-contrast SWI, and FLAIR images of acute contrast-enhancing lesion subtypes. (A) Ring-shaped

contrast enhancement, (B) peripheral contrast enhancement, and (C) homogenous contrast enhancement. SWI, susceptibility-weighted magnetic resonance

imaging; FLAIR, fluid-attenuated inversion recovery.

RESULTS

A total of 294 patients [226 women and 68 men; mean age
36 years (range 18–69 years)] were included in the study. Two
hundred seventy-nine patients had relapsing–remitting MS, and
15 patients had secondary progressiveMS. Themedian Expanded
Disability Status Scale (EDSS) was 2.0 (range 0–7). Two hundred
twenty-four patients were on best individually selected treatment
with interferon-beta, glatiramer acetate, dimethyl fumarate,
fingolimod, or natalizumab. Seventy-six patients had an acute
relapse at the time of MRI. Forty-four patients showed CE lesions
on post-contrast T1w images.

Overall, we identified 1,323 lesions on conventional

MRI: 77 CE lesions (group 1) and 1,246 non-enhancing

lesions (group 2) (915 T1 hypointense lesions and 331

T1 isointense lesions). On T1 and SWI, 33/77 CE lesions
presented with ring-shaped contrast enhancement, 10/77 with
peripheral contrast enhancement, and 34/77 with homogenous
contrast enhancement. When comparing post-contrast T1w

TABLE 1 | MRI characteristics of contrast-enhancing lesions.

SWI

lesions

Lesions

associated with

veins on SWI

T1 hypointense

lesions

Ring-shaped enhancing

lesions on SWI

33 20

(60%)

33

(100%)

Peripheral enhancing

lesions on SWI

10 4

(40%)

9

(90%)

Homogenous enhancing

lesions on SWI

34 14

(40%)

34

(100%)

Total 77 38 (50%) 76 (98%)

SWI, susceptibility-weighted magnetic resonance imaging.

and susceptibility-weighted images in respect to contrast
enhancement, we found matching enhancement characteristics
in all lesions. Figure 1 shows exemplary images of acute lesion
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FIGURE 2 | From left to right: representative post-contrast T1, post-contrast SWI, and FLAIR images of non-enhancing lesion subtypes. (A) Homogenously

hypointense lesion, (B) ring-shaped distribution of susceptibility dots, (C) scattered distribution of susceptibility dots, and (D) lesion with a central dark region. SWI,

susceptibility-weighted magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery.

subtypes identified on SWI, and Table 1 provides an overview on
signal characteristics of CE lesions.

On SWI, lesions in the non-enhancing lesion group 2 showed
the following phenotypes: 374/1,246 lesions were homogenously
hypointense without dark susceptibility dots, 162/1,246 showed
ring-shaped distribution of susceptibility dots, 199/1,246 showed
scattered distribution of susceptibility dots, 75/1,246 showed a
central dot suggestive of a central vein, and 436/1,246 were
not visible on SWI. Figure 2 demonstrates exemplary images of

chronic lesion subtypes identified on SWI, and Table 2 provides
an overview on signal characteristics.

In the subgroup of the 10 patients examined with SWI
before and after contrast agent injection, we identified 35 non-
enhancing lesions: 6/35 lesions were homogenously hypointense
without dark susceptibility dots, 7/35 showed ring-shaped
distribution of susceptibility dots, 5/35 showed scattered
distribution of susceptibility dots, 2/35 showed a central dot
suggestive of a central vein, and 15/35 were not visible on
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TABLE 2 | MRI characteristics of non-contrast-enhancing lesions.

SWI

lesions

Lesions

associated with

veins on SWI

T1 hypointense

lesions

Homogenous

hypointense lesions

374 172

(46%)

307

(82%)

Ring-shaped distribution

of susceptibility dots

162 82

(51%)

138

(85%)

Scattered distribution of

susceptibility dots

199 86

(43%)

145

(73%)

Lesions with a central

dark region in SWI

75 26

(35%)

46

(61%)

Lesions not visible in

SWI

436 – 279

(64%)

Total 1,246 366 (29%) 915 (73%)

SWI, susceptibility-weighted magnetic resonance imaging.

SWI. When comparing pre-contrast and post-contrast SWI, the
contrast agent facilitated the visibility of small veins already seen
in pre-contrast images but had no influence on the total number
of veins detectable or diagnostic image quality and parenchymal
signal alterations. Figure 3 demonstrates an example of an MS
patient presenting a non-enhancing T1 hypointense lesion on
pre-contrast and post-contrast SWI. In this subgroup, no CE
lesions were present.

DISCUSSION

SWI is a relatively new MRI technique that has shown promise
to provide additional information to established MRI methods
in the diagnostic workup and monitoring of MS patients. We
limited the analysis of SWI characteristics to lesions of at least
5mm in diameter in order to be able to differentiate intrinsic
lesion characteristics. As a consequence, the results obtained in
this study may not or only partly apply to smaller lesions. The
results of this study bring out several interesting points.

SWI can demonstrate features of lesions otherwise not visible.
Central dots in keeping with central veins can be readily
identified, which can help to confirm a typical MS feature as
it has been described pathologically. This feature may have
value for the differential diagnosis of MS and is currently
being evaluated in regard to its potential to facilitate an early
diagnosis (20). CE lesions represent a key feature in MS and
are thought to demonstrate blood–brain-barrier permeability
changes often facilitating the fulfillment of dissemination in
time in the diagnosis of MS or demonstrating an ongoing
disease activity despite immune treatment. To date, few studies
have performed SWI after contrast application. A standard
dose of gadolinium (0.1 mmol/kg) appears to provide optimal
image quality for clinical application of contrast-enhanced SWI
(15). An earlier study applied SWI before and after contrast
agent injection in 31 healthy subjects. They found no signal
contamination or quality degradation on SWI after application
of a contrast agent (16). Other studies have demonstrated an
increased detection of small veins in brain neoplasms (21) and

MS (22–24). In our study, investigation of SWI after contrast
injection facilitated the visibility of small veins already seen in
pre-contrast SWI but had no influence on the total number of
veins detectable in this subgroup of patients. We found in the
CE lesion group that 50% of lesions are associated veins. This
underlines one of the characteristics of MS lesions, and when
considered together, a combination of (i) the location of a lesion,
(ii) contrast enhancement, and (iii) a typical associated vein may
have the potential to become highly informative and specific
elements in the diagnosis of MS lesions. In this regard, CE SWI
contains potentially valuable information for the characterization
of focal MS pathology.

Furthermore, there has been recent interest in signs of
smoldering active inflammation/presence of macrophages and
demyelination, as this might be a pathological element that could
contribute to slowly evolving clinical change (7, 25) that can be
seen and may be of interest.

Using SWI, Haacke et al. detected different phenotypes of
SWI phenomena in MS (10). This included lesions with scattered
susceptibility hypointensities and lesions surrounded by a rim
of hypointense signal suggestive of a ring-like shape of elevated
iron levels. Our results are in line with those findings. From
a histopathological point of view, lesions with a hypointense
ring seem to indicate the presence of myelin-laden macrophages
that may also participate in continuing smoldering inflammation
(12). Current studies highlight the concept of “slowly expanding
lesions” that may be best detectable on T1w MRI (12, 26).
These lesions maintain some degree of inflammatory and myelin
breakdown at the lesion edge after the demyelinating event (12).
Various studies have demonstrated that iron accumulates within
macrophages and microglia at the edges of these lesions, forming
rims (8, 27). Using 7-T post-mortem MRI, a current study
investigated iron accumulation at the edge of MS lesions. The
authors demonstrated that a hypointense rim detected on SWI
correlated histologically with iron accumulation in macrophages
and microglia expressing the pro-inflammatory markers CD86
and p22phox at the edge of slowly expanding lesions, whereas
non-rim lesions showed a tendency to shrink over time (12). The
authors concluded that the presence of iron rims on SWI MRI
might be a sign of progressive tissue injury and might serve as
a marker of a disease activity in MS patients (12). We detected
in 29% of lesions larger than 5-mm indications of smoldering
inflammatory pathology in the form of scattered or peripheral
susceptibility hypointensities. This number is larger than the
absolute number of CE lesions in this study, which may indicate
that the presence of this pathological change persists for a longer
duration than the duration of contrast enhancement. This would
be in line with the observationmade in a follow-up study (12). To
date, no comparative studies to other pathologies are available,
and it is possible that hypointense rim lesions are specific for
MS and not seen in other pathologies. This could be addressed
in future studies.

One limitation of our study is the cross-sectional nature of
the analysis and observations. We are aware that although no
serial MRI data were available, this is certainly a limitation
when trying to obtain information on dynamic phenomena of
lesion evolution.
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FIGURE 3 | Exemplary MRI of a 44-year-old woman presenting with relapsing–remitting MS. (A) T2-FLAIR, (B) pre-contrast SWI and magnification (E), (C)

post-contrast T1-weighted (T1w), and (D) post-contrast SWI and magnification (F). Conventional MRI demonstrates a chronic T1-hypointense lesion (“black hole”)

that appears homogenously hypointense on SWI. Post-contrast SWI (D) and magnification (F) facilitated the visibility of the penetrating vein already seen in

pre-contrast images but had no influence on the total number of veins detectable or diagnostic image quality and parenchymal signal alterations. MS, multiple

sclerosis; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted magnetic resonance imaging.

Our data add to the growing database of SWI in MS and point
to a potential, useful additional information when integrating the
information from CE and SWI MRI.
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