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Purpose: Preliminary evidence indicated that children with a reading disorder (RD) may

have deviance in their ability to perform high demanding cognitive tasks, such as reading,

depending on somatosensory inputs. Until now, only anecdotical reports suggested

that improving somatosensory inputs may influence their ability to maintain a stable

perception of the visual world despite continuous movements of our eyes, head, and

body. Here, we investigated whether changes in upright perception, the subjective visual

vertical (SVV), were modulated by somatosensory inputs in a group of children with RD.

Method: The SVV task was used under two distinct conditions, i.e., with or without

somatosensory inputs from the foot. We enrolled a group of 20 children with reading

disorders and 20 sex-, age-, IQ- matched children with neurotypical development.

Results: Responses to the SVV task were found to be significantly less accurate in

children with RD than in children with neurotypical development (p < 0.001). In the latter,

SVV response did not depend on somatosensory inputs from the foot. In contrast, in

children with RD somatosensory inputs, either improved or worsen their SVV depending

on the tilt direction (p < 0.01).

Conclusion: Our results suggested that SVV responses in children with RD

could be related to an immaturity for heteromodal sensory integration, including

somatosensory inputs.

Keywords: brain, dyslexia, children, multisensory integration, cognitive rehabilitation

HIGHLIGHTS

This original research article brings evidence that:

- In children with neurotypical development, subjective visual vertical perception appeared
independent from the somatosensory inputs either to the tilt direction.

- Subjective visual vertical perception was deviant in children with reading disorder.
- Somatosensory inputs had an effect on visual vertical perception in children with
reading disorder.

- These results suggest an immaturity for heteromodal sensory integration in children with
reading disorder.
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INTRODUCTION

Reading disorder (RD), also called dyslexia, is a brain-
based type of learning disability that specifically impairs a
person’s ability to read. Individuals with RD typically read at
levels significantly lower than expected despite having normal
intelligence. Although, this disorder varies from person to
person, common characteristics among people with RD are
difficulties with phonological processing (the manipulation of
sounds), spelling, and/or rapid visual-verbal responding. RD
have estimated prevalence rates of at least 10 percent of any
given population (1), which imposes an enormous burden on
society by impacting a huge number of children and adults, with
far-reaching consequences across life domains.

During the last decade, consisting studies report that
individuals with RD display a deficit to the abstract visual
representation of letters. This deficit has been associated with a
hypoactivation of the ventral occipitotemporal cortex, a region
that has been closely associated with reading through the
extraction of a representation of words, which is invariant to
position, size, font, or case (2). Individuals with RD also display a
deficit in spatial body representation and localization, associated
with an impairment in their own motion detection perception
(3). This global distortion of self-spatial representation is also
correlated with a deficiency in postural control (4). Most
of these findings point toward an impairment in cerebellar
integration of complex sensory inputs. The cerebellum receives
a rich input from visual, auditory, proprioceptive, and motor
magnocellular systems (5). A desynchrony of sensory feedback
and motor outflow affects the cerebellum functions as the
control for automatizing motor skills (6). For example, in
one of our studies, we observed that the postural instability
in children with RD was more pronounced if one decreased
somatosensory input.When using foam under their feet, children
with RD significantly worsen their postural instability, compared
to children with neurotypical development (4). Children with
RD showed less accurate compensatory sensory strategies to
maintain an efficient postural stability, when further affecting the
feedback of somatosensory inputs (7).

Few studies tried to compensate for the deficit in postural
stability observed in children with RD by modulating selectively
the sensory inputs. Quercia et al. (8), however, explored the
impact of visual and somatosensory inputs on postural stability
in children with RD by studying the impact of prism and foam
on postural sway. They reported an improvement on postural
control for children with RD having both prism and foam
compared to those without prism and foam. These results suggest
that the increase of the salience of sensory information may
slightly improve the postural stability in patients with RD. By
extension, it may also participate in the improvement of their
reading disability as reported in a small number of dyslexic
children by Quercia et al. (9).

Based on this presuppose, there are anecdotical reports or
studies in which patients used prism to improve the encoding
of visual information to influence their cognitive resources
dedicated to reading. Additional studies are needed to settle
evidence, suggesting a need for reinforcing sensory integration
in children with RD to compensate for their deficit in reading.

To further understand the influence of sensory modulation
on postural stability, we decided to further explore the subjective
visual vertical (SVV) ability in children with RD. SVV is defined
by the ability to perceive gravitational orientation i.e., to estimate
verticality in relation to the earth, in the absence of any external
reference frame. SVV is essential to maintain stability and
achieve postural tasks efficiently in daily life, given that most
of our motor actions are achieved around the vertical axis (10).
SVV has a role in our ability to maintain a stable perception
of letters, despite continuous movements of our eyes, head,
and body. However, some interesting studies by Harris’s group
reported that other techniques, such as perceptual upright and/or
the subjective haptic vertical (SHV), can give more precise
information of subjective perceived direction of gravity [see (11–
13)]. Interestingly, the tasks developed to explore SVV allow
the investigation of spatial cognitions, vestibular functions and
verticality functions, involved in postural control (14). The SVV
ability relies on a specific and large brain cortical network (15)—
involving the right lateral temporo-occipital cortex, and the
bilateral temporo-occipital and parieto- occipital cortical areas—
but also the cerebellum (16).

Our present study compared the SVV in a group of 20 children
with RD and in a group of 20 sex-, age-, and IQ-matched children
with typical neurodevelopment, under two distinct conditions
depending on somatosensory inputs (using foam under their
feet). We hypothesized that children with RD displayed a more
severe SVV than children with typical neurodevelopment, and
that this impairment is worsened (in both groups but deeper
in children with RD) when interfering with the somatosensory
information, i.e., by decreasing the foot somatosensory inputs
with the foam.

METHODS

Participants
Twenty children (4 girls and 16 boys) with RD, and 20 sex-,
age-, and IQ- matched children with neurotypical development
participated in the study (see Table 1). Anova run on age means
failed to show a significant difference between the two groups
[F(1, 38) = 0.01, p = 0.90] Children with RD were recruited
at the Child and Adolescent Psychiatry Department (Robert
Debré Hospital, Paris, France) to which they were referred for
a throughout neuropsychological and phonological exploration.
To be included, children should not receive any psychotropic
drug at time of the study, should not display any personal
history of somatosensory abnormalities, should have a normal
visual acuity at both eyes and should have an IQ in the
normal range (85–115) based on the Weschler’s scale 4th edition
(mean full scale IQ was 103 ± 1.1). Control individuals were

TABLE 1 | Age (mean and standard error) and sex of the two groups of children

tested.

Age (years) Sex

Children with ND 9.43 ± 0.22 4 girls, 16 boys

Children with RD 9.39 ± 0.37 4 girls, 16 boys
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children from the general population with no personal history
of atypical neurodevelopment. Their cognitive abilities were
estimated using two subtests of the Weschler’s scale 4th edition,
i.e., the similarities subtest which was used as an estimation of
the verbal IQ and the matrix reasoning subtest which correlated
with the non-verbal IQ. There was no significant difference in the
mean scores of the two subtests when comparing children with
RD and controls (12 ± 1.0 vs. 12 ± 1.5 and 11 ± 1.0 vs. 10.8 ±

2.0, similitudes and matrix reasoning subtests, children with RD
vs. children with neurotypical development, respectively).

For each child with RD, enrolled in the study, the time
required to read a text was assessed, as well as the general text
comprehension and the ability to read words and pseudo-words,
using the L2MA battery (17). This phonologic battery developed
30 years ago was still considered as the gold standard instrument
in France to diagnose a RD in children. Children with a mean
score beyond 1.5 standard deviation at the L2MA battery were
diagnosed with RD.

The investigation adhered to the principles of the Declaration
of Helsinki and was approved by our Institutional Human
Experimentation Committee. Written informed consent was
obtained from the children’s parents after an explanation of the
experimental procedure was provided.

Subjective Visual Vertical Task
A wall case projects a laser stripe, with a precision < 0.5◦ and a
resolution < 0.1◦. This laser strip was projected on a blank wall,
in a dark room distant 2.50m from the child. This laser stripe
can be rotated silently by 15◦ toward the right (clockwise) and
likewise toward the left (counterclockwise) with a remote control.
The remote to adjust the orientation of this laser stripe could be
used step by step or in continuous movement.

Experimental Paradigm
Children had to stand up on their feet on the footprints of
the multitest-equilibrium framiral platform with their arms

alongside their body (FRAMIRAL©, see for details www.
framiral.fr). The position of their feet was on the footprints,
heels distant of 2 cm and feet spread out in a symmetric way
with respect to the sagittal axis of the child at a 30◦ angle.
Instructions were given to each child in order to perform the SVV
test properly. Each child had to inform the experimenter when
he/she saw the laser stripe perfectly vertical. At the beginning of
the experiment, the laser stripe projected on the wall, in front of
the child, was perfectly vertical; then the experimenter inclined
the laser strip in clockwise (+15◦) or counterclockwise (−15◦),
randomly. The arrow moved continuously in one direction
only. Unfortunately, this system did not allow to record the
time answer.

The child had to say when he/she saw the laser strip perfectly
vertical according to him. Simultaneously, on a computer, the
experimenter could read the tilt (in degrees) of the laser stripe
projected on the wall. During the test, children wore special
glasses, without any correction, only to retain the visual field
and to avoid visual distractors. Indeed, children with RD were
known to have a deficit in visual attention (18, 19). Thus,
using these glasses allowed the child to focus only on the laser
stripe projected in front of him/her. To evaluate the influence
of somatosensory inputs from the foot on SVV responses, we
used two different postural conditions i.e., with and without
Orthomic R© foam of 4mm (with a density of 250 and a
shore of 40) (Figure 1). These two postural conditions were
randomly tested.

Five trials in each direction (clockwise or counterclockwise)
were run randomly for each postural condition (with and
without foam) to increase reproducibility and avoid risk of
data heterogeneity.

FIGURE 1 | Experimental set up used. The child is standing on with the feet on foam (Orthomic® ), and the laser strip is projected on the wall in front of him/her. The

laser strip can be tilted at 15◦ in clockwise (CW) and in counterclockwise (CCW) directions, and the child has to inform the experimenter when he/she perceived the

laser strip vertical. The remote to the orientation of the laser strip is quiet and can be used step by step or in continuous movement.
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Data Analysis
We measured the SVV absolute values that were in degrees,
the errors from the absolute visual vertical at zero degree. For
each child, we calculated the average of the five trials performed
in each direction (clockwise or counterclockwise) and for each
postural condition (with and without foam).

Statistical Analysis
Analysis of variance (ANOVA) was performed on mean SVV
absolute values, considering the two somatosensory conditions
i.e., with or without foam, and the two tilt conditions (clockwise
and counterclockwise). Post hoc analysis was made with the
Fisher’s Least Significant Difference (LSD) test. A two-tailed P <

0.05 was considered statistically significant. All statistical analyses
were conducted using SAS statistical software (version 9.4, Cary,
North Carolina).

RESULTS

The SVV absolute measures in children with RD and in the sex-,
age-, and IQ- matched children with neurotypical development
were compared under the two distinct somatosensory conditions
(without and with foam under the feet) when performing
counterclockwise or clockwise tilt movements (Figure 2).

The ANOVA showed a significant group effect [F(1, 38)
= 22.31, p < 0.0001]; children with RD were significantly
less accurate when processing SVV than children with
neurotypical development. Whatever the conditions explored
in the experiment, subjects with RD showed a severe deficit in
SVV, reaching up to 50–80% of additional distortion compared
to controls.

The ANOVA also reported a statistically significant
interaction between groups, tilt condition, and the
somatosensory information (the presence or the absence of

FIGURE 2 | Mean subjective visual vertical and standard error measures (in

degree) in children with reading disorder and children with neurotypical

development, under two distinct somatosensory conditions (without and with

foam under the feet) performed in each tilt direction [clockwise (CW) or

counterclockwise (CCW)].

the foam) [F(1, 38) = 5.83, p < 0.02]. We observed in controls
that the SVV was not affected by the somatosensory information
whatever the tilt condition. There was no difference in the
counterclockwise condition or in the clockwise condition. At
the opposite, in the subjects with RD, we observed a significant
difference depending on the modulation of the somatosensory
input (with or without the foam), but with a divergent effect
in the counterclockwise or in clockwise conditions (both p <

0.01). However, whatever the tilt conditions, SVV perception
impairment remained significantly affected when compared
to controls.

DISCUSSION

In our exploratory study, subjects with RD showed a severe
deficit in SVV, reaching up to 50–80% of additional distortion,
compared to controls. Indeed, children with RD displayed poor
SVV perception, where somatosensory inputs either improved or
worsened their SVV depending on the tilt direction.

Note that the direction effect was unexpected; in contrast,
in line with our initial hypothesis, we reported that SVV in
patients with RD were sensitive to somatosensory information,
further stressing a potential impairment in cerebellar integration
of complex sensory inputs in RD.

The SVV response in RD children depends on the tilt
direction and on presence or absence of the foam. Indeed, the
SVV perception for RD children without foam was significantly
better in the CCW direction than in the CW direction, while
with the foam under the feet, the results were the opposite:
that is, the SVV perception was significantly better in the CW
direction with respect to CCW direction. This could be due to
the presence of attentional bias in RD population, as already
reported by Michel et al. (20) and Vieira et al. (21), leading to
such better performance in SVV measure when the vertical line
is tilted on CCW direction. Indeed, Vieira et al. (21) described,
in RD children, a proprioceptive bias in circle centering tasks,
depending on hand position starting, while in age matched
healthy children, neither asymmetry nor bias has been reported.
Similarly to this proprioceptive bias, foam under the feet could
impact SVV process.

Thus, somesthesic inputs from the foot sole influence the
perception of SVV in RD children, most likely due to their
difficulty to compensate somesthesic inputs, which are made
misleading by foam. According to several studies, the thin
thickness of such foam did not involve any change in motor
activity but only involved a misleading of somesthesic input
of sole foot, which can increase balance disorders (22–25). We
suggest that clinicians need to pay attention to the use of foot sole
in the dyslexic population. Further studies exploring the effect of
foam on a large dyslexic population are required.

The estimation of SVV involves the allocentric, gravitational,
and egocentric references, which are built by visual, vestibular,
and somatosensory afferents (10, 26). The representation of
self and environment around self is linked to these distinct
sensorial modalities and requests a precise integration of complex
sensory inputs (27). The brain structures which are involved in
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SVV modulation have been well-described, stressing the role of
cortical and subcortical structures, mainly the temporo-occipital,
parieto-temporal, parieto-occipital, and insular cortex but also
the posterior-lateral thalamus (28, 29). SVV also involves the
vestibular areas and the cerebellum (16). Part of this multimodal
network also controlled the postural stability (specifically the
cerebellum), which could explain why we previously found a
postural instability in children with RD (4). Additionally, earlier
findings reported that the ability for gravitational reference, as
well as self-representation in space around the vertical axis,
depends on postural stability (30, 31).

The role of the cerebellum is probably the corner piece in the
SSV impairment that we reported, by its role in the treatment
of complex cognitive skills and in the integration of sensory
inputs. The difficulties in accurate and fluent written word
recognition reported in patients with RSD was also associated
with a cerebellum dysfunction (32, 33). In a meta-analysis of four
functional and structural imaging studies in children (5–15 years
of age), a reduction in gray matter volume in both hemispheres
of the cerebellum were observed in individuals with RD (34).
Similarly, results were reported in large-scale studies in adults
with RD showing a decreased local gray matter volume in the
right cerebellum and in the right lentiform nucleus (35) or in the
left posterior cerebellum (36).

The potential cerebellar dysfunction in RD may explain why
the modulation of somatosensory inputs had an impact on SVV
in our study. We observed that children with RD displayed more
difficulties for fine-grain control of the SVV in the context of
somatosensory input deficit (i.e., in the presence of the foot
foam). This effect does not seem related to a change in motor
stability, as consistently reported by previous findings (24), but
only to a misleading of somatosensory input of ground.

For children with neurotypical development, we did not
observe any effect of the modulation of the somatosensory input,
suggesting that compensatory mechanisms involved in SVV
response were efficient. In one of our previous studies, we also
observed that SVV response was independent from foot sensory
inputs, whatever the tilt directions in healthy children (37).
Similar results were obtained when exploring the effect of foam
on postural control in children with neurotypical development
(4). This further suggested that perturbation of ground inputs
were counteracted by additional sensory afferences to ensure an
optimal postural stability (16).

CONCLUSION

To conclude, this current study showed that children with RD
display a deficit in SVV process compared to children with
neurotypical development. The use of foam as a proxy of sensory
input privation affected the SVV perception only in children with
RD, suggesting poor compensatory mechanisms in the treatment
of information, ensuring an appropriated representation of self
and of the environment in space. The role of sensory inputs
has to be further considered in children with RD, and could
shed new perspectives in treatment management and cognitive
rehabilitation of these patients.

LIMITATIONS

Note that SVV evaluation used in this study has some
limitations; for instance, it was not possible to control for
other confounding variables that effect the response time of
children. Further studies exploring the effect of other types
of somatosensory inputs in RD children through using other
experimental techniques, such as the Oriented CHAracter
Recognition Test (OCHART) from Harris’s group (38), will be
useful to better understand the impairment of such inputs in
visual vertical perception performance in children with RD,
allowing for the development of specific rehabilitation. Finally,
one could ask the question whether postural sway could bias
the SVV perception, given that it is well-known that children
with RD have poor postural stability (7). Further studies
recording simultaneously postural sway and SVV perception in
children with RD are needed in order to further explore their
mutual interaction.
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