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Accurate prediction of the early stage of Alzheimer’s disease (AD) is important but very

challenging. The goal of this study was to utilize predictors for diagnosis conversion to

AD based on integrating resting-state functional MRI (rs-fMRI) connectivity analysis and

structural MRI (sMRI). We included 177 subjects in this study and aimed at identifying

patients with mild cognitive impairment (MCI) who progress to AD, MCI converter

(MCI-C), patients with MCI who do not progress to AD, MCI non-converter (MCI-NC),

patients with AD, and healthy controls (HC). The graph theory was used to characterize

different aspects of the rs-fMRI brain network by calculating measures of integration and

segregation. The cortical and subcortical measurements, e.g., cortical thickness, were

extracted from sMRI data. The rs-fMRI graph measures were combined with the sMRI

measures to construct input features of a support vector machine (SVM) and classify

different groups of subjects. Two feature selection algorithms [i.e., the discriminant

correlation analysis (DCA) and sequential feature collection (SFC)] were used for feature

reduction and selecting a subset of optimal features. Maximum accuracy of 67 and 56%

for three-group (“AD, MCI-C, andMCI-NC” or “MCI-C, MCI-NC, and HC”) and four-group

(“AD, MCI-C, MCI-NC, and HC”) classification, respectively, were obtained with the SFC

feature selection algorithm. We also identified hub nodes in the rs-fMRI brain network

which were associated with the early stage of AD. Our results demonstrated the potential

of the proposed method based on integration of the functional and structural MRI for

identification of the early stage of AD.

Keywords: Alzheimer’s disease (AD), mild cognitive impairment (MCI), resting-state fMRI, graph theory, machine

learning, hub nodes

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder, known as a disconnection syndrome
that disturbs communication between different brain regions (1). It implies that the brain network
is changed during the transition from healthy condition to mild cognitive impairment (MCI) and
AD. Since intervention prior to the occurrence of overt and irreversible neuronal loss is critical for
the maintenance of normal brain function, prediction of MCI, and conversion to AD in cognitively
normal older adults is a priority for AD research.
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Approximately 15% of adults older than 65 years old suffer
from MCI and from these more than half progress to AD within
5 years (2). Prediction of early stage of AD is important and
several studies have focused on investigating this prediction.
Structural magnetic resonance imaging (sMRI) can be utilized to
reliably characterize brain volumes, areas, cortical thickness, and
curvature (3), and has been widely used to investigate alteration
of these brain measures in transition from normal aging to
AD. Patients with AD have diminished memory and executive
function. Patients with early stage AD can have MCI, and
although impaired, may perform similarly to normal older adults
on easier memory tasks. Prognostic predictions of subjects from
prodromal stages such as MCI is an area of great clinical interest
(4, 5). However, prediction of symptomatic progression remains
a relatively unexplored task. Memory impairment and dementia
are common in the elderly population. Prognostic forecasting of
symptom severity is complicated not only by the heterogeneity in
demographics and clinical presentation, but also highly variable
and non-linear symptom patterns exhibited in those suffering
from MCI (6, 7). In a recent study, Eskildsen et al. used patterns
of cortical thickness and identified cortical regions potentially
discriminative for separatingMCI patients into converters (MCI-
C), who received a diagnosis of AD dementia within 2 years, and
non-converters (MCI-NC), who remained stable for 3 years (8).
They reported promising results for the prediction of patients
with prodromal AD progressing to probable AD. Eskildsen
et al. considered “time to conversion” and separated patients in
different groups based on this time, and reported <80% accuracy
for predicting conversion to AD. Beheshti et al. utilized a voxel
based morphometric technique to extract the global and local
gray matter volumes, and then used these volumes to classify AD
and healthy controls (HC) (9).

Several studies have investigated AD induced alterations of
the brain network using the resting-state functional MRI (rs-
fMRI) (10–16). rs-fMRI has been shown to be a powerful tool
for identifying the pathophysiology of functional connectivity
not only in patients with AD but also in patients with other
neurological or neuropsychiatric conditions (17). Accumulating
evidence suggests that intrinsic connectivity at rest provides
the communication channels of task information (18). rs-fMRI
networks have been shown to be highly sensitive to AD (19).
We and other investigators have reported the ability of rs-fMRI
in identification of patients with MCI and AD (13–15, 20). We
demonstrated potential of rs-fMRI in prediction of the early
stage of AD (10). Grieder et al. suggested that cognitive decrease
symptoms in AD is directly related to reduction of complexity in
the brain network (21). It was reported that rs-fMRI functional
connectivity can show AD-related cognitive impairment in an
aging population with health, MCI, and AD (16).

Neuroimaging modalities, such as positron emission
tomography (PET), diffusion-tensor imaging (DTI), rs-fMRI,
and sMRI, have been found informative in providing biomarkers
of conversion from MCI to AD (22–27). While most of previous
studies considered a single modality approach for diagnosis
of AD (28), it is expected that a multi-modal approach can
improve accuracy of prediction of conversion to AD compared
to a single-modality approach (29). Tong et al. utilized features

extracted from sMRI, PET, cerebrospinal fluid (CSF) biomarkers,
and categorical genetic information, and classify HC, MCI
and AD with an accuracy of 60.2% (29). Peng et al. developed
a kernel-learning-based method to combine sMRI, PET, and
genetic information for AD and MCI diagnosis, and reported
classification accuracies of 96.1%, 80.3%, and 76.9% for AD vs.
HC, MCI vs. HC, and AD vs. MCI, respectively (30). Ahmed
et al. combined DTI with sMRI to improve accuracy of AD, MCI
and HC classification, and obtained an accuracy between 76%
(AD vs. MCI) to 90% (AD vs. HC) for two-group classification.
Dyrba et al. applied a multimodal approach based on sMRI, DTI,
and rs-fMRI and classify AD from HC with an area under curve
(AUC) of the receiver operating characteristic of 82% (31).

The brain topology analysis based on the graph theory
provides powerful tools to study structural and functional
characteristics of the brain network. Graph theory is a
mathematical tool that is capable of concisely quantifying the
properties of complex systems and modeling interrelationships
between the brain regions. Since a large number of local and
global graph measures, i.e., features, can be extracted from
the brain networks, reducing dimension of features is an
essential process for identifying optimal subset of features. In
this study, we employed two feature selection algorithms in a
machine learning approach to identify discriminative features
for classifying AD, MCI, and normal aging. We developed an
automatic classification algorithm that combined information
from sMRI with rs-fMRI graph measures to classify four groups
of subjects (AD, MCI-C, MCI-NC, and HC). We used baseline
rs-fMRI and sMRI data for MCI-C and MCI-NC patients. The
MCI-NC patients did not convert to AD in 36 months after
the baseline rs-fMRI, although MCI-C patients converted to AD
from 6 to 36 months after the baseline rs-fMRI. We did not use
the “time to conversion” of MCI-C patients in our algorithm
to test performance of the proposed method in a challenging
condition where this information is unknown in real clinical
application. Our aim was to develop a method with an ability
to distinguish potential “MCI-decliners” from those who remain
stable. To our knowledge, this is the first study that investigated
integration of rs-fMRI and sMRI for four-group classification
(i.e., AD, MCI-C, MCI-NC and HC).

MATERIALS AND METHODS

Overall Procedure
The overall procedure of our proposed method is shown in
Figure 1. Structural MRI (T1-weighted images) and rs-fMRI
data of 177 subjects (34 AD, 25 MCI-C, 69 MCI-NC, and 49
HC) were used in this study. After preprocessing of rs-fMRI
data, we used the Dosenbach atlas (32) to parcellate the brain
into 160 region of interests (ROIs), and the adjacency matrix
was calculated using the Pearson correlation between the time
series of each pair of brain regions. We calculated 10 local and
13 global graph measures based on the adjacency matrix in
each patient. FreeSurfer was utilized for preprocessing, cortical
reconstruction, and volumetric segmentation of sMRI images.
Volumes of the subcortical structures in addition to the surface
area, curvature, thickness, and volume of 148 cortical areas, based
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FIGURE 1 | The overall procedures of this study.

on the Destrieux atlas (33), were calculated and used as sMRI
features in our algorithm. The rs-fMRI local and global graph
measures were combined with sMRI measures to generate a
feature vector in each patient. Two feature selection algorithms
were applied to find an optimal subset of features for support
vector machine (SVM) (10). We trained, cross-validated, and
tested SVM to classify AD, MCI-C, MCI-NC, and HC using the
selected rs-fMRI and sMRI features. We performed a second
analysis on rs-fMRI data to identify hub nodes of the brain
network and identify alteration of hubs in transient from healthy
aging to AD.

Subjects
We included 34 patients with AD (average age 72.5 years,
18 female), 25 patients with MCI-C (average age 73 years, 11
female), 69 patients with MCI-NC (average age 72.9 years,
37 female), and 49 HC (average age 74.4 years, 28 female) from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
in this study. Subjects of this study were selected based on
availability of both rs-fMRI and sMRI datasets in ADNI. We
used the diagnosis variables to select the converted and non-
converted subjects. In the current study, we tried to include all
subjects, listed in ADNI database and had a complete set of
sMRI and rs-fMRI data. The MCI-C patients were converted to
AD between 6 and 36 months. The MCI-NC patients did not
convert to AD after 36 months of follow-up. The patients with
AD had a Mini-Mental State Examination (MMSE) score of 20–
26, a Clinical Dementia Rating (CDR) of 0.5 or 1.0, and met the

National Institute of Neurological and Communicative Disorders
and Stroke and the AD and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD. The patients with
MCI hadMMSE scores between 24 and 30, a memory complaint,
objective memory loss measured by education adjusted scores
on Wechsler Memory Scale Logical Memory II, a CDR of 0.5,
absence of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, and an
absence of dementia. The normal subjects were non-depressed,
non-MCI, and non-demented, and had a MMSE score of 24–30
and a CDR close to zero. Demographic information of subjects
is summarized in Table 1. Subjects for this study were selected
based on availability of both rs-fMRI and sMRI datasets.

Data Acquisition and Preprocessing
The functional and structural MRI images were collected
according to the ADNI acquisition protocol (34)1. A total of
140 functional volumes (TR/TE 3000/30ms, flip angle = 80◦,
3.313mm slice thickness, 48 slices) were obtained. Standard
preprocessing routines were applied on rs-fMRI dataset using
Data Processing Assistant for Resting State fMRI (DPARSF)

1Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) that was

launched in 2003 and led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive MCI

and early AD. For up-to-date information, see www.adni-info.org.
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TABLE 1 | Demographic and clinical information.

HC MCI-NC MCI-C AD P-value

Number 49 69 25 34

Male/Female 21/28 32/37 14/11 16/18 0.76a

Age 74.47 ± 7.68 72.95 ± 11.92 73.02 ± 11.80 72.54 ± 7.02 0.81b

MMSE score 29.35 ± 1.63 27.57 ± 2.21 26.64 ±1.85 21. 24 ± 3.37 0.0003b

CDR score 0.035 ± 0.21 0.5 ± 0.0 0.5 ± 0.0 0.92 ± 0.31 0.0001b

MMSE, mini-mental state examination; CDR, clinical dementia rating; aFisher extract test; bANOVA test.

package (35) and SPM12 toolbox (http://www.fil.ion.ucl.ac.uk/
spm). Slice-timing correction to the last slice was performed.
The fMRI time-series realigned using a six-parameter rigid-body
spatial transformation to compensate for head movement effects.
Then all images were normalized into the Montreal Neurological
Institute (MNI) space, resampled to 3-mm isotropic voxels,
detrended, smoothed using a Gaussian filter with FWHM =

4mm, and band-pass filtered (0.01–0.08Hz). To reduce the effect
of the physiological artifacts, the whole-brain signal was removed
by a multiple linear regression analysis. In addition to the global
mean signal, six head motion parameters, the cerebrospinal fluid
(CSF), and the white matter signals were removed as nuisance
covariates to reduce the effects of motion and non-neuronal
BOLD fluctuations (36).

T1-weighted MRI of all subjects were processed using
FreeSurfer (version 4.5.0). Cortical reconstruction and
volumetric segmentation were performed using the following
procedures: removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (37); automated
Talairach transformation; segmentation of the subcortical white
matter and deep gray matter volumetric structures (including
hippocampus, amygdala, caudate, putamen, and ventricles)
(37–39); intensity normalization; tessellation of gray matter and
white matter boundary; automated topology correction (40); and
deformation following intensity gradients to optimally place the
gray/white and gray/cerebrospinal fluid borders at the location
where the greatest shift in intensity defines the transition to
the other tissue class (41, 42). After completing the cortical
models, registration to a spherical atlas was performed (43),
followed by cortical parcellation based on Destrieux atlas (33),
and subcortical segmentation.

Extracting Features From rs-fMRI and
sMRI Data
An adjacency matrix was calculated using the Pearson’s
correlation between the time series of the fMRI signals of
all pairs of 160 ROIs of Dosenbach atlas. We used a similar
method detailed in our previous studies (12–15) and converted
the weighted adjacency matrices to binary ones by applying
an optimal threshold (44). By maximizing the global cost
efficiency (GCE) of the brain network (44), we identified
an optimal threshold for each adjacency matrix. To have
the same number of connections after thresholding of the
adjacency matrices of all subjects, we used an average optimal
threshold across subjects at 19.2%, and then computed the graph

measures. Then 10 local and 13 global graph measures were
calculated based on rs-fMRI adjacency matrix. The local graph
measures were betweenness centrality, clustering coefficient,
characteristic path, community structure Newman, community
structure Louvain, eccentricity, eigenvector centrality, rich club
coefficient, sub graph centrality, and participation coefficient
(45). The global graph measures were assortativity, clustering
coefficient, characteristic path, community structure Newman
output, community structure Louvain output, cost efficiency
(two measures), density, efficiency, graph radius, graph diameter,
transitivity, and small-worldness (45).

The surface area, average cortical curvature, average and
standard deviation of thickness, and volume of gray matter of 148
cortical areas (according to Destrieux atlas) were considered as
sMRI features in our algorithm. We also considered 34 features
corresponding to volumes of subcortical structures in our
algorithm. Tomakemeasurements comparable between subjects,
an anatomical normalization was performed. For each subject,
all volume quantifications were divided by the corresponding
estimated intracranial volume (eTIV) and area quantifications
were divided by the total area of the same hemisphere. Neither
cortical thickness nor curvature needed to be anatomically
normalized. After the feature extracting step, the features were
normalized in each subject individually.

Feature Selection
Solving pattern recognition or classification problems with
data of high dimensionality is a challenging issue, particularly
in neuroimaging applications with limited samples, and large
number of features. The learning models tend to overfit and
become less generalizable if input features are redundant or
irrelevant to classification. Feature selection is usually performed
to identify relevant features, reduce dimensionality of the trained
model, and improve generalization of the model (12). An
efficient feature selection algorithm is the essential part of a
machine learning approach in case of high dimensional features.
We utilized two feature selection algorithms in this study:
discriminant correlation analysis (DCA) and sequential feature
collection (SFC). We have shown efficiency of the SFC feature
selection algorithm in identifying the early stage of AD (10, 11).
Efficiency and reliability of the DCA feature selection algorithm
have also been demonstrated in several previous studies (46, 47).

DCA has been used in pattern recognition applications
for fusing the features extracted from multiple modalities or
combining different feature vectors extracted from a single

Frontiers in Neurology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 904

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hojjati et al. Identification of Early Stage of AD

modality (48). DCA has a low computational load and can
be employed in real-time applications. DAC is a variant of
principal component analysis (PCA). PCA is the most prominent
tool for reducing size of a high-dimensional feature vector,
especially in unsupervised learning. DCA was developed for
supervised learning environment, as a supervised PCA, to
maximize the discriminant capability of classification (49). The
DCA transforms features space into signal and noise subspaces.
The signal subspace of DCA is associated with classification
effectiveness and the noise subspace is not related to the
discriminant power of the classification. For a feature vector
in DCA, a within-class and a between-class scatter matrices
are constructed to represent the noise and signal subspaces,
respectively. Then transformed features to signal space are
calculated by maximizing a signal-to-noise ratio based on the
within-class and between-class scatter matrices (49). The DCA
can also perform an effective feature fusion by maximizing the
pairwise correlations across the two feature sets and, at the same
time, eliminating the between-class correlations and restricting
the correlations to be within the classes.

We developed the SFC algorithm to find an optimal subset
of features (with a small number of features) (10). The SFC
algorithm sorts all features using the multivariate minimal
redundancy maximal relevance (MRMR) feature selection
algorithm. The MRMR feature selection algorithm selects
features that have maximal statistical dependency based on
mutual information by considering relevant and redundant
features simultaneously (50). The MRMR is defined as:

MRMR = MAXs
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where the relevance of a feature set S for class C is defined by the
average value of mutual information I(.,.) between the individual
feature fi and the class C, and the redundancy of all features in the
feature set S is the average value of mutual information between
the features fi and fj. The SFC algorithm is described in detail
previously (10). Briefly, features were first sorted based on their
MRMR scores. The first and the last features in the sorted feature
vector had maximum and minimum discrimination ability,
respectively, in classification. Then a combination of filter and
wrapper feature selection algorithms were used to find optimal
subset of features with best classification accuracy.

Classification
To evaluate performance of the prosed method for classification
of four groups (AD, MCI-C, MCI-NC, and HC), we used
the k-fold cross-validation (KCV) which is one of the most
widely used resampling techniques (51), and its estimates for
the cross-validation errors nearly agree with the true errors
(52). In addition, we evaluated performance of our classification
algorithm using independent and non-training test samples. To
this end, we used a 5-fold approach and assigned 80% of subjects
in each of four groups to train/cross-validation set (n = 141; 27
AD, 20 MCI-C, 55 MCI-NC, and 39 HC) and 20% of subjects
to independent and non-training test set (n = 36; 7 AD, 5 MCI-
C, 14 MCI-NC, and 10 HC). We then used another 5-fold for

cross-validation and further divided the train/cross-validation set
to 80% for training (n= 113; 22 AD, 16MCI-C, 44 MCI-NC, and
31 HC) and 20% for cross-validation (n = 26; 5 AD, 4 MCI-C,
11 MCI-NC, and 8 HC). We used SFC or DCA algorithms for
feature selection based on a combined sMRI and rs-fMRI features
of n = 141 subjects in train/cross-validation set. An unequal
sample size may cause bias in results of a classifier. We prevented
this possible bias by using equal number of training and test
samples in four groups based on a similar approach described
in details in our previous study (11). Since MCI-C group has
minimum number of subjects, we randomly selected a subset of
subjects in HC, MCI-NC, and AD groups equal to the number of
MCI-C subjects. This random selection was repeated 1,000 times
and average performance of the classifier across this repetition
was calculated.

The selected features were used to train and cross-validate
an SVM to classify four groups of subjects (AD, MCI-C,
MCI-NC, and HC) in the train/cross-validation set. We used
SVM for classification in this study. The SVM classifier was
implemented in MATLAB using LIBSVM toolbox (53). After
training and cross-validating the SVM, the accuracy, sensitivity,
specificity, positive predictively, and the area under curve (ROC)
of the receiver operating characteristic of the trained SVM were
calculated for subjects in the test sets.

Hub Node Identification
We calculated betweenness centrality and eigenvector centrality
graph measures of the rs-fMRI brain network to identify hub
regions. It is noteworthy that the number of hub nodes can
be highly influenced by several factors, including type(s) of the
centrality measure, and the value of threshold applied on the
adjacency matrix. We selected the betweenness centrality and
eigenvector centrality graph measures because these measures
were more frequently selected by our SFC algorithm compared
to other centrality measures. In addition, these measures
conceptually aligned with the integrative role ascribed to hubs, as
they reflect the diversity of a region’s cross-network connections.
Brain regions (i.e., nodes) with betweenness centrality or
eigenvector centrality larger than mean plus two standard
deviation across all nodes were identified as hub nodes. Since
the values of graph measures depend on the level of threshold
applied on the adjacency matrix, we calculated the centrality
measures by using the threshold in a range from 0.1 to 0.3 with a
step of 0.01 (21 thresholds). For each value of the threshold, the
betweenness centrality and eigenvector centrality of nodes were
calculated and then hub nodes were identified. Next, a percentage
for identification of a node as a hub node in different threshold
values was calculated. Finally, we reported hub nodes that were
identified in more than 85% of thresholds.

RESULTS

Three- and Four-Group Classification
We performed three- and four-group classification using the
SFC and DCA feature selection algorithms. Our results revealed
that SFC outperforms DCA for feature selection in three- and
four-group classification with an extra accuracy >7% (Table 2).
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TABLE 2 | Accuracy of three- and four-group classification using the SFC and

DCA feature selection algorithms.

Three-group classification

(AD, MCI-C and MCI-NC)

SFC 67.6%

DCA 57.6%

Three-group classification

(HC, MCI-C and MCI-NC)

SFC 66.0%

DCA 58.2%

Four-group classification

(AD, HC, MCI-C and MCI-NC)

SFC 56.1%

DCA 48.8%

DCA, discriminant correlation analysis; SFC, sequential feature collection.

The accuracies of SVM with SFC feature selection algorithm
for three-group classification (“AD, MCI-C, MCI-NC” or “MCI-
C, MCI-NC, HC”) and four-group classification (“AD, MCI-C,
MCI-NC, HC”) were ∼66 and 56%, respectively (accuracy by
chance is 33 and 25%, respectively). The sensitivity, specificity,
positive predictive value (PPV) and AUC of SFC algorithm are
listed in Table 3, and the confusion matrix is shown in Figure 2.
Our algorithm is very specific (>96%) but not sensitive (24%)
in identifying MCI-C patients. In fact, the majority of miss-
classified MCI-C patients (48%) were identified as MCI-NC,
which indicates similarity of the brain network and structural
abnormalities of MCI-C patients with that of MCI-NC patients.
Our proposedmethod has a good sensitivity (62%) and specificity
(72%) for identifying MCI-NC patients. The majority of miss-
classified MCI-NC patients (21%) were identified as HC, which
points to a mild abnormalities of the brain of MCI-NC patients
compared to that of normal aging subjects.

Important Features for Four-Group
Classification
Top features that were selected by the SFC feature selection
algorithm in at least 80% of training folds were listed in Table 4

that consisted of only rs-fMRI graph measures. We, however,
found that eight sMRI features, including thickness of five
cortical areas, were selected by the SFC algorithm in at least 60%
of training folds. The top six features listed in Table 4 correspond
to the rs-fMRI graph measures and represent modularity of the
brain network in six brain regions (Figure 3). We used analysis
of variance (ANOVA) and found a significant between-group
difference (P < 0.01) in three features, i.e., community structure
Louvain in medial cerebellum and superior frontal cortex and
community structure Newman in post occipital (Table 4). Values
of these three features in AD vs. MCI-C and HC vs. MC-NC
are plotted in Figure 4. Results of this figure show that values
of these features are clustered in AD and HC but are scattered
in MCI-C and MCI-NC, indicating a similar modularity of the
brain network across subjects in AD or HC group but a diverse
modularity in patients with MCI corresponding to different rates
of dementia in these patients.

Hub Analysis
Hub nodes of the rs-fMRI brain network in four groups of
subjects (AD, MCI-C, MCI-NC, and HC) are listed in Table 5.
We identified 11 nodes as the hub nodes based on two centrality
measures, betweenness centrality, and eigenvector centrality, in

TABLE 3 | Sensitivity, specificity, positive predictive value (PPV), AUC, and

accuracy of three- and four-group classification based on the SFC feature

selection algorithm.

Three group

classification

(AD, MCI-C,

MCI-NC)

Three group

classification

(MCI-C,

MCI-NC,

HC)

Four group

classification

(AD, MCI-C,

MCI-NC,

HC)

Sensitivity (%) AD 52.3 – 46.1

MCI-C 36.0 44.0 24.0

MCI-NC 89.6 71.7 61.8

HC – 69.5 75.5

Specificity (%) AD 91.1 – 85.0

MCI-C 97.7 90.8 96.1

MCI-NC 47.5 74.7 72.0

HC – 72.6 66.3

PPV (%) AD 77.3 – 49.7

MCI-C 85 52.8 76.6

MCI-NC 67.3 75.6 65.5

HC – 63.5 53.5

AUC AD 0.72 – 0.65

MCI-C 0.67 0.68 0.60

MCI-NC 0.69 0.74 0.66

HC – 0.72 0.70

Accuracy (%) AD 53 – 47

MCI-C 36 44 24

MCI-NC 89 72 62

HC – 69 75

Number of

selected

features

rs-fMRI 12 25 25

sMRI 8 5 7

The average number of selected rs-fMRI and sMRI features (across 5-folds of training

data) by the SFC algorithm are listed in two bottom rows.

FIGURE 2 | Confusion matrix of four-group (AD, HC, MCI-C, and MCI-NC)

classification based on the SFC feature selection algorithm.

AD (6 hubs), MCI-C (5 hubs), MCI-NC (2 hubs), and HC (2
hubs). Patients with AD and MCI-C had a common hub in
the basal ganglia, and this region was not a hub in MCI-NC
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and HC. MCI patients (but not AD and HC) had a hub in the
parietal cortex. Insular cortex was a common hub in AD, MCI-
C, and HC. On the other hand, there were group-specific hubs
in each group (e.g., anterior cingulate cortex in AD, occipital
cortex in MCI-C, precentral gyrus in MCI-NC, and posterior
cingulate in HC) which were not identified in other groups as a
hub node. It is interesting to mention that 4 out of 6 features with
the most discriminant information in four-group classification
(Table 4) were associated with four hub regions (i.e., insular
cortex, occipital cortex, cerebellum, and precentral gyrus) listed
in Table 5.

DISCUSSION

We proposed a machine learning algorithm to classify patients in
the early stage of AD (MCI-C and MCI-NC), patients with AD,
and normal aging subjects (HC) by integrating rs-fMRI and sMRI
data. This study provided three main results: (1) we examined

TABLE 4 | Top six features selected by the SFC algorithm for the four-group (AD,

HC, MCI-C, and MCI-NC) classification.

rs-fMRI graph measure Brain area P-value

CSL modularity Median cerebellum 8.7 × 10−5

CSN modularity Post occipital 5 × 10−4

CSL modularity Superior frontal cortex 8.9 × 10−3

CSN modularity Occipital 1.1 × 10−2

CSL modularity Middle insula 1.4 × 10−2

CSN modularity Precentral gyrus 2 × 10−1

P-values were calculated using the analysis of variance (ANOVA) to find a significant

difference among four groups of subjects.

CSL, Community structure Louvain; CSN, Community structure Newman.

the capability of integrating rs-fMRI and sMRI in a bi-modal
approach to identify conversion from MCI to AD by evaluating
performances of three- and four-group classifications (AD, MCI-
C, MCI-NC, and HC); (2) we evaluated performances of SFC
and DCA feature selection algorithms in identification of optimal
features from a large number of rs-fMRI and sMRI features. Our
results revealed that the SFC algorithm outperformed the DCA
feature selection algorithm by providing an extra accuracy of
>7% in four-group classification; and (3) we identified hub nodes
of the rs-fMRI brain network in AD, MCI-C, MCI-NC, and HC,
and found different hubs in patients within the early stage of AD.

Prediction of the early stage of AD using rs-fMRI and
sMRI data based on a four-group classification (AD, MCI-C,
MCI-NC, and HC) remains a relatively unexplored task. We
performed three- and four-group classifications by integrating
rs-fMRI and sMRI features, and observed that combining
structural and functional MRI features improves performance of
classification. We demonstrated in our previous study that a bi-
modal (sMRI and rs-fMRI) approach outperformed a unimodal
(sMRI or rs-fMRI) approach for a two-group classification
(MCI-C and MCI-NC) with an increased accuracy up to 17%
(11). Therefore, we decided to use a bi-modal approach (sMRI
and rs-fMRI) for three- and four-groups classification in the
current study. Schouten et al. utilized functional and structural
MRI and classified 16 AD patients from 22 healthy controls,
found that combining features of two modalities improves
performance of classification, and achieved an accuracy of
89.5% in two-group (AD vs. HC) calcification (54). In another
study, Canu et al. combined features extracted from structural
MRI (cortical thickness in 68 cortical regions) and diffusion
tractography (white matter microstructure) to classify 62 early
onset AD and 27 behavioral variant of frontotemporal dementia
patients, and reported 82% classification accuracy by integrating
features of two modalities (55). Suk et al. integrated sMRI and

FIGURE 3 | Illustration of the six regions corresponding to top six rs-fMRI features for four-group (AD, HC, MCI-C, and MCI-NC) classification.
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FIGURE 4 | The community structure Louvain (CSL) modularity and community structure Newman (CSN) modularity in three areas (i.e., superior frontal gyrus—SFG,

median cerebellum, and post occipital cortex) are compared in the top and bottom panels for AD vs. MCI-C and HC vs. MCI-NC, respectively. Modularity of the brain

network in these regions were significantly different in four groups (P < 0.01; Table 4).

positron emission tomography (PET) features in a deep learning
algorithm, and reported 98.8, 90.7, 83.7, and 83.3% accuracies
in binary (two-group) classification AD/HC, MCI/HC, AD/MCI,
and MCI-C/MCI-NC, respectively (56). It is noteworthy that
Suk et al. did not test performance of their proposed algorithm
in three- or four-group classification, as we did. To our
knowledge, this is the first study which integrated rs-fMRI with
sMRI data in a four group (AD, MCI-C, MCI-NC, and HC)
classification approach. For the binary classification MCI-C vs.
MCI-NC, Zhang et al. (57) achieved 73.9% accuracy by utilizing
a multi-modal neuroimaging approach using FDG-PET, sMRI,
and cerebrospinal fluid (CSF) data. Beheshti et al. used sMRI
features in a discriminative feature ranking method to find the

most discriminative feature set, and reported 75% accuracy in
MCI-C vs. MCI-NC binary calcification (9). In another study,
Young et al. provided AD prediction model by adding the
apolipoprotein E (ApoE) genotype to FDG-PET, sMRI, and CSF
data, and reported 74% accuracy in classification of MCI-C vs.
MCI-NC (58). It is noteworthy that previous studies have shown
that MCI is a heterogeneous condition where MCI-NC subjects
appear more healthy and MCI-C subjects appear more in AD
condition (59).

Figure 2 shows that our algorithm was more accurate in
identification of HC compared to other groups of subjects, which
is expected due to the similarity of the brain structure and
network of patients with MCI and AD compared to that of HC.
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TABLE 5 | The rs-fMRI hub nodes in four groups of subjects (AD, HC, MCI-C, and

MCI-NC).

Hub nodes AD MCI-C MCI-NC HC

Basal ganglia X X – –

Temporal X – – –

Anterior cingulate cortex (ACC) X – – –

Medial frontal cortex (mFC) X – – –

Thalamus X – – –

Parietal – X X –

Insula X X – X

Cerebellum – X – –

Occipital – X – –

Precentral gyrus – – X –

Posterior cingulate – – – X

The listed areas are based on the Dosenbach atlas.

The best and worst accuracies of our algorithm were 75% for
HC and 24% for MCI-C groups, respectively (Figure 2). Results
in Table 3 show that our algorithm was specific (>90%) but not
sensitive (<44%) in identifying MCI-C group compared to other
groups, in both three- and four-group classification. Themajority
of miss-classified MCI-C patients were identified as MCI-NC
patients (Figure 2), indicating similarity of the rs-fMRI and sMRI
features of patients in the former group with that of the latter
group. On the other hand, our algorithm had a good sensitivity
and specificity in identifying MCI-NC patients.

Identifying MCI-C patients is a difficult task since we used
the baseline rs-fMRI and sMRI data in these patients and they
converted to AD 6 to 36 months after that. In addition to using
the baseline data in these patients, they had a heterogeneity
in their conversion time to AD from 6 to 36 months. MCI-
C patients who converted to AD in a longer time (e.g., at 36
months) after baseline may have a similar brain network and
structure at baseline compared to MCI-NC patients, who did not
convert to AD. On the other hand, brain network and structure
of the MCI-C patients who converted to AD in a shorter time
(e.g., at 6 months) may be similar to that of the AD patients.
Furthermore, MCI-C patients were the only unstable group of
patients who had a change of status from MCI to AD during
36 months follow-up. In fact, subjects in HC, MCI-NC, and
AD groups were stable and did not convert to another group
during at least 36 months. Moreover, we observed instability
in the MCI-C patients that some of them had conversion to
AD and then revision to MCI during 36 months follow-up. It
is noteworthy that we excluded MCI-C patients with multiple
conversion and revision in our analysis. Therefore, it is expected
that a classifier has a lower performance in identifying MCI-
C compared to other groups. In line with this expectation and
as shown in Figure 2 and Table 3, our proposed algorithm
provided a superior performance in classifying HC, MCI-NC,
and AD compared to MCI-C. It is noteworthy that we evaluated
our algorithm in identification of the early stage of AD based
on three- and four-group classification (AD, MCI-C, MCI-NC,
and HC), while most previous studied investigated a two-group
classification (e.g., AD vs. HC and AD vs. MCI) (5, 60, 61).

Top six features and brain regions that were selected by SFC
in four-group classification are listed in Table 4 and Figure 3.
These features were all related to rs-fMRI graph measures
and represent modularity of the brain network in six cortical
regions (median cerebellum, post occipital, superior frontal
gyrus, occipital, middle insula, and precentral gyrus). The
modularity was calculated based on the community structure
Louvain or community structure Newman graph measures. A
modular network has an arrangement of nodes in large modules
such that maximum possible number of edges lies within groups
and minimum possible number of edges lies between groups
(62). Modularity of the brain network has been showed to be
informative in the early stages of the neurodegenerative disease
(63). A recent study demonstrated the ability of modularity of
the brain network in discriminating AD and HC (63). Results
of ANOVA in Table 4 show that the modularity in three brain
regions, i.e., median cerebellum, post occipital and superior
frontal gyrus, were significantly different in four groups of
subjects (P < 0.01). In agreement with our results, previous
studies reported association of posterior occipital, superior
frontal cortex, occipital, and middle insula with AD (64–66).
Another observation from Table 4 is that there was no sMRI
feature among the top six features which may indicate that
rs-fMRI is more informative than sMRI in identification of
the early stage of AD. This observation was in agreement
with previous studies reported that biomarkers based on the
functional brain network may outperform biomarkers based
on the structural measures in predicting the early stage of
AD (11, 67).

In Figure 4, we compared four groups based on modularity of
the brain network in three regions (i.e., median cerebellum, post
occipital, and superior frontal gyrus) which were significantly
different in four groups (P < 0.01). Figure 4 shows that
modularity in AD or HC was clustered across subjects but the
modularity in MCI-C or MCI-NC was scattered across subjects.
This scatter of modularity in patients with MCI may be related to
the inhomogeneity in MCI group, as a transitional state between
normal aging and AD, in that characteristic of their brain may
vary between two extremes from HC to AD.

Results of our hub analyses in Table 5 are generally consistent
with previous findings in terms of localization, and provide
additional support for the underlying topological organization of
the early stage of AD. Interestingly, some hub areas in Table 5

(i.e., insular cortex, occipital, cerebellum, and precentral gyrus)
were also identified by the SFC algorithm as important areas in
classification of four groups.We found that the insular cortex was
a common hub node in AD, MCI-C, and HC, and our finding
is in agreement with previous studies showing importance of
this area in AD (68, 69). Our finding that Basal ganglia was a
common hub in AD and MCI-C is in agreement with a recent
study showing pivotal role of this area in patients with early-
onset AD (70). We found the parietal cortex as a common hub
in MCI-C and MCI-NC patients. In agreement with our finding,
association of the parietal cortex with AD has been reported
in previous studies (71, 72). Our results revealed that AD and
MCI-C subjects had larger number of hub nodes compared to
MCI-NC and HC subjects which may relate to the abnormalities
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in largescale network connectivity in AD and MCI-C brain
regions (73).
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