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Central nervous system (CNS) degeneration occurs during multiple sclerosis (MS)

following several years of reversible autoimmune demyelination. Progressive CNS

degeneration appears later during the course of relapsing-remittingMS (RRMS), although

it starts insidiously at disease onset. We propose that there is an early subclinical phase

also for primary-progressive (PP) MS. Consensus exists that many different cell types

are involved during disease onset. Furthermore, the response to the initial damage,

which is specific for each individual, would result in distinct pathological pathways

that add complexity to the disease and the mechanisms underlying progressive CNS

degeneration. Progressive MS is classified as either active or not active, as well as

with or without progression. Different forms of progressive MS might reflect distinct

or overlapping pathogenetic pathways. Disease mechanisms should be determined

for each patient at diagnosis and the time of treatment. Until individualized and

time-sensitive treatments that specifically target the molecular mechanisms of the

progressive aspect of the disease are identified, combined therapies directed at

anti-inflammation, regeneration, and neuroprotection are themost effective for preventing

MS progression. This review presents selected therapeutics in support of the overall

idea of a multidimensional therapy applied early in the disease. This approach could limit

damage and increase CNS repair. By targeting several cellular populations (i.e., microglia,

astrocytes, neurons, oligodendrocytes, and lymphocytes) and multiple pathological

processes (e.g., inflammation, demyelination, synaptopathy, and excitatory/inhibitory

imbalance) progressive MS could be attenuated. Early timing for such multidimensional

therapy is proposed as the prerequisite for effectively halting progressive MS.

Keywords: oligodendrocytes, multiple sclerosis, CNS repair, neuroprotection, myelin repair, inflammation,

disability prevention

INTRODUCTION

Each year, multiple sclerosis (MS) affects ∼2.0 million people worldwide, resulting in ∼20,000
deaths from this disease (1). MS is a central nervous system (CNS) degenerative disease
with autoimmune demyelination and progressive CNS degeneration. Accurate disease classification
is necessary for an effective understanding and treatment of MS, with emphasis on the progressive
CNS degeneration component, which so far has eluded definitive characterization (1, 2). In 1996,
MS was classified into various disease types based on the clinical phenotypes only (3). In 2013, the
International Advisory Committee on Clinical Trials of MS proposed descriptors of the disease
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that included clinical relapse rate and imaging findings for
disease activity, combined with disease progression (4). More
recently, Lublin provided new MS phenotypic classification.
Progressive MS includes active and inactive progressive MS with
and without progression (5). Activity is defined by the presence
of clinical relapses and/or new/enlarging lesions detected by
magnetic resonance imaging, whereas progression is defined
by increased disability within a definite period (∼1 year). In
addition, MS forms include relapsing-remitting disease and the
clinically isolated syndrome. These two disease groups can also
be not active and active.

The progressive degenerative component of the disease might
always be present, albeit subclinically at disease onset. The most
important objectives for future research in progressive MS are to
determine the rate of progressive decline at the very beginning of
the disease and to identify factors that can be pharmacologically
targeted. The rate of progressive decline might be determined by
differences in the degree and activation of inflammatory cells, as
well as the CNS sites affected by inflammation.

It is possible that subclinical deterioration is present in
all MS variants, starting at the disease onset. Consistent with
this possibility, we found both remitting and progressive
processes in an animal model of relapsing-remitting MS
(RRMS) (6). We found that RR-experimental autoimmune
encephalomyelitis (RR-EAE) mice had reversible motor
impairment and progressive memory decline during the first 30
days post-immunization (6). We propose that drugs potentially
effective for progressive MS could be tested for their ability to
significantly alter the rate of memory decline in RR-EAE mice.
Should a selective pharmacological approach significantly alter
the rate of memory decline in RR-EAE mice, such drugs could
be tested for progressive MS. Consistent with our report in
the animal model of MS, clinicians have previously reported
patients with subclinical incremental cognitive deterioration, i.e.,
ongoing CNS degenerative function clinically undetectable for a
definite period during the disease (7, 8). Indeed, previous studies
found that clinically silent T2 lesions affect cognition in early
RRMS (9, 10). With regard to progressive MS, clinical studies
have also shown that primary-progressive (PP) MS patients
have an impaired ability to use newly learned information (11),
cognitive decline over time (7), and lesions in clinically silent
CNS regions (12, 13). Notably, mild cognitive impairment is
considered to precede neurodegeneration and dementia (14).

Any treatment that targets early pathogenetic mechanisms
would not be able to work over time, because early disease
mechanisms might evolve along separate pathways, and effective
treatments at later stages would require targeting themechanisms
underlying progression, but these remain to be elucidated.
Until mechanisms explaining disease progression are identified,
therapies applied at the earliest time of disease and directed
toward anti-inflammation, regeneration, and neuroprotection
are the best means to prevent the most debilitating clinical
outcomes of progressive MS and poor quality of life. This review
presents selected therapeutics in support of the overall idea of a
multidimensional therapy applied early in the disease.

Pathological differences between SPMS and PPMS reportedly
indicate separate entities (12, 15). However, whether the

heterogeneous pathological patterns found in a biopsy are
also present at the onset of the disease remain unknown.
Before the onset of either clinically evident PPMS or SPMS,
ongoing subclinical dysfunction might develop via various
pathogenetic mechanisms that eventually manifest as distinct
entities in biopsies of RRMS and PPMS patients. MS is a
multifaceted disease at onset and its complexity increases over
time; that is, the disease advances along multiple pathways
specific for each patient. An important question is whether early
in disease progression, the inflammatory response differs in RR
vs. progressive MS. Anti-inflammatory treatment is not effective
in progressive MS that is already clinically apparent; however,
a selected inflammatory component of the disease might be
present during the very early subclinical phase. We propose that
any pharmacological treatment of SPMS would have to start at
the onset (of what appears as RRMS) for an effective chance
of stopping the onset of clinically evident progressive MS. In
contrast, therapeutic intervention later would have to target the
mechanisms of progressive CNS degeneration.

Factors that have been postulated to directly affect the
progressive decline of axonal function and neurodegeneration
include microglia activation, oxidative stress, and mitochondria
deficits (16). These dynamics are in place early during the
disease and should be targeted at the very onset. In addition,
iron overload reportedly plays a role in neurodegeneration,
but perhaps at a later stage of the disease (17). Calabrese et al.
(18) reported cortical lesions and atrophy associated with
cognitive impairment in RRMS patients. Cortical lesions are
involved in some aspects of cognitive deficits, but future studies
should determine whether cortical lesions could be the cause
of the progressive nature of the CNS decline. Kutzelnigg and
Lassmann (19) reported MS lesions at cerebral cortex sites.
Such lesions, associated with the progressive phase, are both
inflammatory and demyelinating. First, chronic destruction
of myelin caused by activated microglia at these cortical sites
might indeed promote progressive cognitive losses because
myelin debris alters long-term potentiation (LTP) (20). Second,
antibodies against myelin basic protein could also have a role
since they are associated with cognitive decline after strokes
(21). Furthermore, the initial damage could be continuously
amplified since T- or B-cells at these same sites produce soluble
factors that diffuse into the cortical tissue and further destroy
myelin. Another aspect that could be responsible for the
cognitive decline is the newly formed myelin (which is generated
following brain demyelination). However, the effects of brain
demyelination/remyelination on LTP and cognitive functions
require further investigation (22–25).

HOLDING BACK PROGRESSIVE MULTIPLE
SCLEROSIS: AN EARLY CHALLENGE WITH
PROMISE

Treatment of progressive MS would have to start at the very
onset of the disease for all MS patients, because an early
pharmacological approach would have a chance of halting
degenerative processes that are clinically detectable only later
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FIGURE 1 | Holding back progressive multiple sclerosis: an early challenge with promise. Holding back progressive multiple sclerosis (MS) requires therapeutics within

a time-sensitive window during the disease process. Early on, there are many pathogenetic pathways elicited by inflammation, and the response to the initial insult(s) is

specific for each patient with distinct pathogenetic pathways in relapsing-remitting MS and primary-progressive MS. A selective pharmacological targeting requires an

analysis of the mechanisms of the disease at the time of treatment. The figure outlines several early key players that can initiate progressive central nervous system

degeneration via separate mechanisms, which poses additional challenges for any therapeutic agent to be effective later. ROS, reactive oxygen species.

during the disease (Figure 1). Effective treatments for progressive
MS could be derived from approaches targeting inflammation
and apoptosis in other diseases (26). In addition, therapeutics
proven effective in progressive CNS degenerative diseases such
as Parkinson’s and Huntington’s diseases might be tested in
MS (27), because all MS types eventually become progressive
CNS degenerative diseases. Inflammation is the most significant
event the brain experiences following diverse insults (28, 29);
it generates regions that locally damage the CNS area. During
RRMS, several inflamed regions eventually become widespread
CNS areas of degeneration during the final stages of SPMS. In
contrast, during PPMS, the CNS degeneration remains more
localized. Indeed, postmortem analyses of brains from patients
with SPMS show diffuse degeneration, whereas those from
patients with PPMS have more localized degeneration (30),
although this finding could also be explained by disease duration.

THE MANY APPROACHES FOR TREATING
MULTIPLE SCLEROSIS

Targeting Synaptic Transmission
A finely tuned ratio of excitatory to inhibitory synaptic
transmission supports neurogenesis and CNS health (31). In
contrast, an imbalance initiates excitotoxic damage together with
a pattern of CNS degeneration independent of inflammation
(32). Several studies have shown that neurodegeneration can be

caused by a synaptic transmission ratio that has been altered
due to various factors present during CNS degenerative diseases
(32, 33).

Overactivation of N-methyl-D-aspartate (NMDA) and α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors by the excitatory neurotransmitter glutamate causes
neuronal damage; whereas beneficial effects are obtained by
targeting these receptors in animal models of MS. Glutamate
is the major excitatory neurotransmitter. Elevated glutamate
concentrations have been found in MS lesions (34); an excess of
glutamate leads to calcium increases and can be antagonized via
AMPA or NMDA receptor blockers (34), with positive effects on
axons.

EAE mice treated with pharmacological treatments that target
the glutamatergic system have reduced disease activity (32, 35–
38). The weakNMDA receptor antagonist, amantadine, improves
the disease (32, 34), whereas riluzole (both a sodium channel
blocker and a kainate andNMDA receptors antagonist) decreases
inflammation, demyelination, and axonal damage (32, 35, 37).
Clinical trials involving MS patients have shown that amantadine
reduced the relapse rate in RRMS (32, 36), whereas riluzole
reduced lesion evolution and axonal loss, with no positive
effect on the formation of new lesions during PPMS (32,
37). However, riluzole treatment did not significantly reduce
brain atrophy progression in early MS (32, 37). Modulation of
synaptic transmission also presents challenges inMS patients. For
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example, the use of memantine that acts on the glutamatergic
system by blocking NMDA receptors caused neurological
impairment inMS patients, although the impairment is reversible
(32, 39).

Regarding the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA), treatments that target the
GABAergic system delay development of EAE disease and
decrease EAE severity (32, 38). Treatment of MS patients with
gabapentin (a GABA analog) ameliorated acquired nystagmus;
whereas other similar drugs such as Vigabatrin and baclofen
showed no effect in either RRMS or PPMS patients (32, 38).
Overall, studies targeting the glutaminergic system have shown
better results for MS patients than those targeting the GABAergic
system, although modest differences might be missed in this later
group of patients. In summary, in the context of neuroprotection,
targeting LTP regulation might still provide valuable benefits, so
this strategy should be further investigated.

Microglia are targeted to protect the ratio of excitatory to
inhibitory synaptic transmission because these cells can affect
the ratio in several ways. One mechanism involves microglia
acting as a physical barrier to the inhibitory transmission
(40). A second mechanism involves microglia directly pruning
synapses via a complement-mediated mechanism, which has
also been described during development and adult life (41).
Although mitoxantrone induces microglial death when used
in vitro (42), its use, which was approved for rapidly worsening
RRMS and SPMS, was discontinued due to cardiotoxicity.
Nevertheless, microglia could still be pharmacologically exploited
to increase protection and reduce damage during progressive
MS.

An earlier intervention targeting inflammation could also
protect the ratio of excitatory to inhibitory synaptic transmission.
Inflammatory cytokines released during the acute phase of
the disease change the ratio of excitatory to inhibitory
synaptic transmission (43, 44). In contrast, a massive loss
of synapses in diffuse “synaptopathy” characterizes permanent
functional deficits at a later stage of the disease (45, 46).
Among inflammatory cytokines, Interleukin 1 (IL1) alters the
ratio of excitatory to inhibitory synaptic transmission during
inflammatory demyelination (44). Other factors secreted by T-
cells such as nitric oxide (NO) and osteopontin have similar
deleterious effects (47). Notably, osteopontin levels increase
during progressive MS (48). However, whether an earlier
intervention targeting downstream signaling pathways of IL1,
NO, and osteopontin can protect the ratio of excitatory
to inhibitory synaptic transmission and prevent functional
CNS declines would require further testing. Furthermore, a
recent study has shown that IL33 treatment inhibits cognitive
dysfunction associated with experimental cerebral malaria, an
inflammatory disease of the CNS (49). Thus, by learning the
positive and negative effects of various cytokines, rationale
approaches can be used to favor the protective cytokines. In
this context, glibenclamide, an ATP-sensitive potassium channel
blocker, should be tested for progressive MS, because it decreases
the production of proinflammatory mediators (Tumor necrosis
factor [TNF-α], IL-1β, and reactive oxygen species) and the
accumulation of inflammatory cells (50).

Targeting Neurons
Neurons are vulnerable during demyelinating-inflammatory
diseases. First, demyelination changes sodium channel regulation
and nerve conduction with downstream compensatory
mechanisms involving calcium influx and changes in calcium
homeostasis (51, 52). Second, inflammation changes axonal
transport regulation (53, 54). Regarding drugs targeting sodium
channels, those directed to voltage-gated sodium channels
protect axons, reduce inflammation, and decrease disease
severity (55). Amiloride, an inhibitor of sodium entry, has
significant positive effects on neurodegeneration treatment as
measured by magnetic resonance imaging (56); whereas 4-
aminopyridine, a drug directed against potassium (K) channels,
improves mobility (57). Furthermore, blocking potassium
channels reduced axonal and neuronal degeneration in the
Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced
EAE MS model (58). Potassium channels are present on T-
cells, so blocking two-pore domain weakly inward-rectifying
K channel (TWIK)-related acid-sensitive K+ channel 1
(TASK1) also leads to less T-cell proliferation and reduced
proinflammatory cytokines, which all have beneficial effects on
neurons (59, 60) (Figure 2).

Regarding intracellular transport regulation, earlier
interventions might be effective against neuronal functional
deficits and neurodegeneration. A previous study reported
axonal transport deficits at the onset of optic neuritis in EAE
mice, whereas reduced levels of the axonal motor protein
KIF5A (kinesin heavy chain isoform 5A) were found in MS
patients (53, 54). Unfortunately, the mechanisms underlying
alterations of axonal transport regulation have largely eluded our
understanding, so rational approaches for correcting anomalies
of axonal transport are not available.

In the context of neuroprotection, early targeting of
inflammation also reduces proinflammatory molecules produced
by macrophage/microglia. Such molecules are deleterious for
the mitochondria, which provide energy for neurons (61, 62).
Several potential compounds targeting the mitochondria have
been identified (63) (Figure 2). Impairment of mitochondrial
function and subsequent energy loss is a consequence of both
reactive oxygen and nitrogen species, which are abundant in
MS lesions (64). Indeed, oxidative stress has been identified
to lead to progressive CNS degeneration in Parkinson’s disease
(65), and oxidative stress levels have been directly linked to the
progression of MS (66). Early antioxidant therapy is believed
to limit CNS progressive degeneration (66); several antioxidants
are in preclinical or already phase 1 and 2 clinical trials
for MS patients (Figure 2) (66). Benefits for neuroprotection
are obtained via activation of the Nrf2-antioxidant response
element-signaling pathway, as shown by using fumaric acid esters
(Figure 2) (67). Antioxidant therapies should start at the earliest
possible time to halt pathways underlying CNS progressive
degeneration.

Targeting Oligodendrocytes and Myelin
Improving myelin repair is expected to be neuroprotective
(68, 69). During demyelinating diseases, demyelination in the
spinal cord (70) causes a mobility defect that is remitting,
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FIGURE 2 | The many approaches for multiple sclerosis: what did we get. A wide range of pharmacological targets has been used to treat multiple sclerosis (MS).

Selective drugs for each group are shown. The many targets have addressed the multifaceted aspect of this disease, which include both inflammation and central

nervous system (CNS) cells, including neurons, oligodendrocytes, and astrocytes. Most studies have analyzed the effects of these drugs in clinically apparent

relapsing-remitting MS and primary-progressive MS. Without an identification of the mechanisms in place during this disease, potential benefits could have been

missed in those MS patients with ongoing subclinical CNS progressive degeneration.

due to remyelination and consequential functional recovery.
In contrast, the consequences of demyelination/remyelination
in the brain remain largely unknown, with emphasis on the
consequences on LTP and cognitive functions (22). Nicaise
et al. (71) showed that induced pluripotent stem-derived neural
progenitor cells from PPMS patients had defective myelin
repair. Thus, by increasing myelin repair, devastating progressive
disability should be eased (72). Fingolimod (FTY720), the
first US Food and Drug Administration (FDA)-approved oral
medication for MS, increases neural stem cell survival and
enhances their development into mature oligodendrocytes
(OLGs) (73), with benefits for myelin repair. The water-soluble
B vitamin biotin also has positive effects on myelination;
it is in clinical trials for SPMS (74). In addition, several
compounds have been shown to increase myelin. In this
respect, antihistamines and muscarinic receptor antagonists
are valuable, and selected compounds have been selected
for clinical trials. Within this group, both Clemastine and
GSK239512 led to improvement in functional assessments
and lesions (75–80). Other compounds such as benztropine,
which works as an anticholinergic, antihistamine, and dopamine
reuptake inhibitor, improves myelin levels, but no clinical
trials have been started (72). In addition, LINGO (leucine-
rich repeat and immunoglobulin-like domain-containing protein
1) and semaphorin inhibit myelination (81–87). Antibodies
to these two distinct sites have been developed. Clinical
studies have presented various challenges. However, these
approaches should be explored in more detail. Furthermore, a

variety of compounds exerts positive impacts on myelination.
These include remyelinating-promoting IgM (rHIgM22), a non-
selective G protein-coupled receptor antagonist (Quetiapine),
a dopamine 2 receptor antagonist (Domperidone), thyroid
hormone-like compounds (Liothyronine sodium, a T3 thyroid
hormone), estrogen receptor modulators, agonists for retinoic
acid receptors (RXR-γ), glucocorticoid (clobetasol), kappa opioid
receptor agonists (U-50488), adrenocorticotrophic hormone, and
erythropoietin (72, 88–97).

A new therapeutic area for improving myelin repair should
also target the cytoskeleton of OLGs. In particular, the tau protein
in oligodendrocytes is a key player during myelination (98, 99),
so focusing on oligodendrocyte tau may boost myelin repair and
CNS functions (100, 101), which would limit progressive MS
(Figure 2).

Targeting Microglia
Microglia represent an important pharmacological target
for CNS degeneration. They can exert either protective or
deleterious effects on CNS cells through separate mechanisms.
For example, microglial-mediated innate immunity results in
CNS degeneration during Alzheimer’s disease (41, 102). In
contrast, microglia can protect the CNS through M2-dependent
muscarinic receptor actions. Consistent with this effect, widely
used FDA-approved drugs for MS such as interferon beta and
Glatiramer acetate, exert neuroprotection via an M2-dependent
pathway (102) (Figure 2).
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Targeting Astrocytes
Several drugs targeting astrocytes are now available (Figure 2).
During CNS inflammation, astrocytes release cytokines, which
are deleterious to neurons (103). Fingolimod may support
neuroprotection by blocking astrocyte NO (103). Furthermore,
astrocytes are known to decrease the deleterious effects
of glutamate because they express glutamate transporter-
1, whereas decreased glutamate transporter-1 activity (in
astrocytes) occurs during several CNS degenerative diseases
(104), which lessens the ability of these cells to buffer
glutamate and its toxic effects. At the same time, during
the progressive stage of MS, selected astrocytes express
lactosylceramide (LacCer), which recruits inflammatory
monocytes from the blood (105). Thus, therapeutics that
modulate the expression of the glutamate transporter-
1 and LacCer in astrocytes might inhibit progressive
MS.

Targeting Trophic Support and Growth
Factors
Growth factors, which are essential for the health of CNS
cells, support efficient intracellular transport in neurons and
other CNS cells (106–110). Targeting nerve growth factor
(NGF) has been proposed to induce neuroprotection in
MS (108). Of interest, trophic factors such as NGF also
affect brain inflammation. NGF switches the balance of T-
helper cell type 1 and 2 cytokines within the CNS during
EAE (109). Furthermore, brain-derived neurotrophic factor
(BDNF) has been reported to increase upon Glatiramer acetate
treatment during developmental myelination, with positive
effects on myelination (106). BDNF also protects against
neuropathology in a mouse model of Alzheimer’s disease (110)
(Figure 2).

Targeting Apoptosis
Inflammatory cells release several factors that induce
apoptosis (47). Perforin and granzymes A + B, secreted
largely by CD8+ cells, cause apoptosis; whereas TNF-α,
Interferon-γ, Interleukin-17, and other cytokines secreted
by CD4+ and CD8+ cells enhance glutamate excitotoxicity
(47, 111). Protection from cell death could be obtained
by using pharmacological inhibitors of first apoptosis
signal receptor (FAS) and TNF-dependent apoptosis
(112).

Others
An aberrant immune response is believed to give rise to MS,
both for the remitting and progressive forms (113). Thus,
treatments aimed at recalibrating the dysfunctional immune
response are urgently needed. Autologous Hematopoietic Stem
Cell Transplant (AHSCT) is one such treatment (114). The
change in regulatory T-cell populations achieved following
AHSCT can certainly protect the MS patient if the treatment is
initiated early in the disease. However, since the pathogenesis
of MS disability and the mechanisms by which AHSCT exerts
protection are largely unknown, caution is warranted to avoid
overreaching expectations (114–119). An important therapeutic

approach includes the use of mesenchymal stem cells, which
have potent antioxidant effects and are neuroprotective in
vivo (120). Neuroprotection can also be achieved by targeting
multiple pathways known to regulate immunity, as the combined
use of interferon beta and fumarate has shown (113, 121).
Finally, inhibitors of protease-activated receptors and potassium
voltage-gated channels can protect against granzyme B-induced
neurotoxicity (122).

A GLIMPSE OF HOPE FOR PROGRESSIVE
MULTIPLE SCLEROSIS

Although there is a consensus that by limiting the degree of
inflammation the CNS benefits from a decrease of neuronal
damage, additional approaches directed at neuronal signaling
and in support of myelin repair are required to maximize the
ability of the CNS to limit the damage and to increase repair
(Figure 3). Anti-inflammation is achieved with drugs directed
to cells involved in inflammation and immune responses. Such
drugs inhibit cell proliferation, cell trafficking into the CNS,
and/or can deplete a selected cell population. It is known that
immunomodulation has benefits for neuroprotection. In the
context of progressive MS, recent drugs include ocrelizumab
that depletes B-cells (123–128), whereas Ibudilast suppresses
proinflammatory cytokines, inhibits macrophage migration,
upregulates the anti-inflammatory cytokine IL-10, and increases
neurotrophic factors (129) (Figure 3). It should be taken
into consideration that clinical studies might provide false
negative for the potential benefits of selected therapeutics,
since it is difficult to perfectly time the treatment with the
disease. Perhaps an intervention during the subclinal phase,
as proposed in this review, might provide better outcomes.
For example, Fluoxetine by working as selective serotonin
reuptake inhibitor, increases the amount of serotonin in the
brain, and regulates astrocytes and microglia (130). However,
the study by Mostert et al. (131) reported no benefits. Similarly,
with regard to dietary supplements, biotin positively influences
axonal remyelination and axonal hypoxia (74, 132). However,
positive benefits were reported in some studies but not
in others (133, 134). In addition, Rituximab, an anti-CD20
monoclonal antibody approved for non-Hodgkin lymphoma and
rheumatoid arthritis, impacts the inflammatory aspect of the
disease and RRMS activity, but its effect on PPMS progression
appears to be marginal (135, 136). Finally, Teriflunomide
is of potential interest. Teriflunomide primarily acts as an
inhibitor of dihydroorotate-dehydrogenase (DHODH), a key
mitochondrial enzyme involved in the de novo synthesis of
pyrimidines in rapidly proliferating cells such as T- and B-
lymphocytes, thereby diminishing the inflammatory response to
auto-antigens (137). A comprehensive analysis of selected drugs
presented in Figures 2, 3 are in previous reviews (32, 96, 138,
139).

In summary, while anti-inflammation, neuroprotection, and
myelin repair constitute the combined approach of choice for
progressive MS, early treatment is imperative to limit disability,
and inhibit the mechanisms involved in progressive MS.
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FIGURE 3 | A glimpse of hope for progressive multiple sclerosis patients. This figure shows representative drugs for each group, and how anti-inflammation,

neuroprotection, and myelin repair can be achieved. Anti-inflammation is achieved with drugs that inhibit cell proliferation, cell migration, and/or can deplete a selected

cell population. Immunomodulation achieves several positive objectives that include neuroprotection. Drugs directed to signaling decrease neuroinflammation and

promote neurogenesis. Of interest in the context of progressive multiple sclerosis (MS), recent drugs include ocrelizumab, which depletes B-cells; fluoxetine, which

regulates astrocytes and microglia; and Ibudilast and biotin. Ibudilast suppresses proinflammatory cytokines, inhibits macrophage migration, upregulates the

anti-inflammatory cytokine IL10, and increases neurotrophic factors (129). Biotin promotes axonal remyelination and reduces axonal hypoxia. Drugs enrolled in clinical

studies of secondary-progressive MS and primary-progressive MS are shown in bold.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Although this review offers general guidelines based on the
available data, more research is required to select the drugs
of choice. Overall, one or several targets at the very onset of
the disease offer an effective treatment for progressive MS. We
hypothesize that one or more of these early targets initiate a
subclinical progressive demise of the CNS that later manifests
as SPMS or much earlier as PPMS. An effective treatment
must start at disease onset. In contrast, should it start when
progressive MS becomes apparent, the critical window for
intervention would be lost, and CNS degeneration would not
be halted. Effective treatments for progressive MS must target
disease onset, and they must be tailored to where the disease
originates.

TRENDS AND OUTSTANDING QUESTIONS

I. Progressive MS presents significant therapeutic challenges.
MS is a multifaceted disease; its complexity increases over
time.

II. A combination of drugs directed toward inflammation,
neurons, and oligodendrocytes provides therapeutic options
early during MS for the prevention of progressive MS.

III. Which is the cause of progressive MS?
IV. Does the start of progressive MS occur during inflammation

in the subclinical phase of this disease?
V. Until the mechanisms underlying progressive MS

are identified, progressive MS is an early challenge
that can be treated with agents that promote
neuroprotection and myelin repair, and inhibit
inflammation.

VI. The time of treatment is critically important in limiting
the progression of the multifaceted pathways of this
disease.
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