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In a companion article of the same
Research Topic, we present findings on
the relationship of fetal adaptive brain
shut-down and neuroinflammation dur-
ing hypoxic acidemia (1). The findings are
derived from the chronically instrumented
non-anesthetized near-term ovine fetus
model with and without chronic hypoxia
(defined as arterial O2Sat < 55%) sub-
jected to umbilical cord occlusions (UCOs)
of increasing severity. This model mimics
human labor and is useful for studying the
process of worsening acidemia that may
precipitate perinatal brain injury. While
the neuroinflammation overall decreases
between 24 and 48 h post UCOs, the rela-
tionship between the degree of neuroin-
flammation and the timing of the adaptive
brain shut-down reverses between these
two time points, raising the question as to
the underlying physiology.

We propose that adaptive brain shut-
down in the fetus, evidenced by changes
in EEG, may be mediated via adenosine
monophosphate kinase (AMPK) signal-
ing due to its controlling influence over
cellular metabolism and interaction with
inflammatory signaling pathways. By way
of background, consider that the intra-
cellular energy-sensor AMPK plays a key
role in cellular metabolism, increases in
cellular AMP/ATP ratio result in activa-
tion of AMPK via its phosphorylation
(2, 3). pAMPK reduces ATP-consuming
processes and promotes ATP-producing
processes. Consequently, neuronal pAMPK
decreases during the relatively less energy-
consuming NREM sleep state, which is
associated with increased EEG delta wave

activity and ATP increase in adult rats (4).
Fetal adaptive neuronal shut-down with
worsening acidemia may also be medi-
ated via adenosine A1 receptors (1, 5,
6). Notably, a combination of both A1
and AMPK signaling is also a plausible
mechanism leading to adaptive brain shut-
down. First, Gadalla et al. observed that 5-
aminoimidazole-4-carboxamide riboside
(AICA riboside), a compound with neuro-
protective properties thanks to the AMPK
activation, has an additional neuropro-
tective effect under metabolic stress via
competition with adenosine for uptake
by the nucleoside transporter leading to
an increase of extracellular adenosine and
subsequent activation of A1 receptors (7).
Second, endogenous extracellular adeno-
sine in physiological concentrations is, in
turn, equally able to activate AMPK, an
effect requiring active nucleoside trans-
porters, such as CNT2 (8, 9). Both AMPK
and A1 receptor activation result in sup-
pression of the more energy-consuming
glutamatergic excitatory synaptic neuro-
transmission (i.e., as opposed to GABAer-
gic inhibitory signaling contributing only
~20% to the neuronal oxidative energy
metabolism) (10, 11). Either way, the result
would be a relative increase of intracellular
ATP and decreasing AMPK levels.

Sag et al. demonstrated in vitro that
AMPK signaling and pro-inflammatory
mediators in macrophages are mutually
coupled via negative feedback. AMPK
suppresses pro-inflammatory responses
such as lipopolysaccharide (LPS)-induced
production of TNF-α and IL-6 and
promotes macrophage polarization to

an anti-inflammatory functional pheno-
type with increased production of IL-10
(12). Exposure of macrophages to pro-
inflammatory cytokines increases AMPK
dephosphorylation, while exposure to anti-
inflammatory cytokines results in rapid
AMPK phosphorylation, i.e., activation
(12). Activation of toll-like receptor (TLR)
4 on macrophages by LPS and resultant
NF-κB pathway activation lead to a loss
of AMPK phosphorylation (13). Hence,
the effects of AMPK on the regulation of
inflammatory status indicate that the pres-
ence of AMPK and its activation are impor-
tant to counteract inflammation. Similarly,
in vivo AMPK is down-regulated in all
immune cells during experimental autoim-
mune encephalomyelitis (EAE), the animal
model of the autoimmune disease multiple
sclerosis (14). Neuronal AMPK is widely
expressed in the embryonic and adult rat
brains in situ and promotes neuronal sur-
vival under conditions of hypoglycemia
in vitro (15).

Adenosine monophosphate kinase
activity and its anti-inflammatory con-
sequences have been studied in the context
of chronic hypoxia. Chronic hypoxia
up-regulates pAMPK in vitro in healthy
neonatal rat neuronal slice cultures, in the
human glioblastoma cells and in vivo in
the adult rats’ pulmonary vasculature (7,
16, 17). Lactate is a principal energy source
for neurons, especially in the developing
brain (11, 18, 19). However, excess lactate
within the extracellular space of the brain
contributes to neuronal injury (3, 19).
Recently, AMPK was also shown to play an
important role in controlling the degree of
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cellular inflammation in various cell types
including glial cells, thus linking cellular
metabolism and inflammation (2, 3, 20).
Brain regional lactate acidosis increases
neuronal intracellular pAMPK levels (21).
At the same time, pAMPK also restricts
microglial activation via the IFN-γ sig-
naling pathway decreasing expression of
STAT1-inducible inflammatory cytokines
in adult mice (2) and, anti-inflammatory
effects of AMPK activation have been
demonstrated on NF-κB pathway in the
primary glial cultures, notably from 1 to
3 days old rat pups, and in vivo in adult
rats (22).

In seeming contrast to the above cited
work, acute brain ischemia in adult male
gerbils results in regional (CA1) tran-
sient pAMPK and lactate increases, ATP
depletion, neuronal death, and microglial
activation [as opposed to suppression
of microglial secretory cytokine activity
shown by Meares et al. and Giri et al.
(3)]. These traits are reversed if an AMPK
inhibitor is administered (3). Notably,
these authors provided indirect evidence
that cortical neuronal pAMPK increases
within 90 min post insult, probably to com-
pensate for lack of ATP, while the glial
AMPK induction follows within 5 days,
when neuronal death is observed. The
seemingly contradictory findings regarding
the effect of AMPK on neuroinflammation
may result from the different animal mod-
els used (septic versus aseptic neuroinflam-
mation), varying temporal profiles (acute
versus chronic), and neuroinflammatory
phenotyping (cytokine secretion versus cell
morphology).

In light of the discussed AMPK phys-
iology, it is intriguing to speculate that
at 24 h post UCOs, AMPK-mediated neu-
ronal shut-down correlates to decreased
brain regional lactate levels, leading to a
pronounced decrease in neuroinflamma-
tion. In contrast, at 48 h post UCOs, the
relationship between the degree of neu-
roinflammation and the timing of the
adaptive brain shut-down may be reversed
due to several reasons. First, the fetal
brain may be less capable of metaboliz-
ing lactate under conditions of pre-existing
hypoxia with reduced metabolism and ATP
reserves unable to sustain pAMPK activa-
tion beyond an acute response. Second,
at 48 h post UCOs, regional lactate accu-
mulation may have occurred, in addition

to AMPK and inflammatory mediators.
Third, one of the side effects of AMPK
activation may be an increase in lactate
production due to glycolysis, which may
contribute to tissue injury (3). While future
studies will have to validate these mecha-
nisms in the perinatal brain, it seems plau-
sible that lactic acidosis has the potential
to induce variable degrees of microglial
activation and neuronal shut-down in an
AMPK-dependent manner, in chronically
hypoxic fetuses with worsening acidemia.
Further investigations are needed into the
potential of intrapartum EEG–FHR mon-
itoring to aid detection of adaptive brain
shut-down to improve early postnatal diag-
nostic and therapeutic strategies, such as
selecting at-risk newborns for hypothermic
interventions to decrease cerebral metabo-
lism (6, 23).
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