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In this paper, we analyze the strong feedback limit of two negative feedback
schemeswhich have proven to be efficient formany biological processes (protein
synthesis, immune responses, breathing disorders). In this limit, the nonlinear
delayed feedback function can be reduced to a function with a threshold
nonlinearity. This will considerably help analytical and numerical studies of
networks exhibiting different topologies. Mathematically, we compare the
bifurcation diagrams for both the delayed and non-delayed feedback
functions and show that Hopf classical theory needs to be revisited in the
strong feedback limit.
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1 Introduction

The new multi-disciplinary field of Network Physiology concentrates on coordinated
network interactions among distinct organs in the human body (Ivanov et al., 2016; Ivanov,
2021; Schöll et al., 2022). These coordinated network interactions are essential to generating
distinct physiological states such as wake, sleep and sleep stages, rest and exercise, stress and
anxiety, cognition, consciousness and unconsciousness. Disrupting organ communications
can lead to dysfunction of individual systems or trigger a cascade of failures leading to a
breakdown and collapse of the entire organism, such as sepsis, coma and multiple organ
failure. In Refs. (Bashan et al., 2012; Ivanov et al., 2014), the authors considered a dynamical
network consisting of ten nodes representing six physiological systems: brain activity (five
EEG waves), cardiac, chin muscle tone, leg and eye movements. They observed changes in
network topology during different sleep stages (deep, light, and wake). In addition, they
recorded time delays between fluctuations in the output signals of one physiological system,
such as cardiovascular, and the emergence of corresponding modulations in another, such
as the respiratory. According to the authors, the longer the period during which this delay is
constant the stronger the coupling between the two systems.

To develop adequate tools for network physiology, recent efforts focused on
understanding the network dynamics of coupled excitable or oscillatory units. Traxl
et al. (Traxl et al., 2014) study the effects of noise and global coupling strength on
coupled oscillators with different network topologies and different node dynamics. They
report a general scaling law for the synchronization of such networks. The inclusion of time
delays between interacting nodes has a clear impact on the stability of the network. Inspired
by leaky integrate-and-fire models for neuronal networks (Politi and Luccioli, 2010),
Mafahim et al. (Mafahim et al., 2015) investigate the dynamics of interacting neurons
described by

dxi

dt
� S − γxi + k∑

j≠i
Lijf t − τj( ) (1)
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where k is the control parameter and Lij describes the coupling
between neurons. Note that i = 1, .N where N is the total number of
neurons (nodes). The function f(t) is a Dirac delta-function. Each
neuron moves along the x − axis starting at the rest state x = 0 and
fires when it reaches the threshold x = 1. When the neuron fires it
forces all the neurons linked to it to make a step ahead or backward
by the quantity k according to whether Lij = 1 (excitatory) or Lij = −1
(inhibitory). The authors highlight the role of inhibitory links in
controlling global network dynamics. While considering a simple
delayed coupling mechanism between neurons is reasonable for
populations of active neurons, delayed nonlinear feedbacks could be
more appropriate as communication mechanisms between distinct
organs in the body. The mathematical problem then takes the form

dxi

dt
� g xi( ) +∑

j≠i
Aijf xj t − τj( )( ) (2)

where g(xi) describes the dynamics of xi in the absence of
coupling. The Aij measures the (small or strong) coupling
strengths between nodes. The nonlinear function f (xj (t − τj))
models the delayed feedback of node j with respect to node i. The
complexity of the dynamical problem when N > 2 have motivated
simplifications which have been explored both analytically and
numerically. Networks of delayed coupled Kuramoto oscillators
are popular dynamical problems because the state of an oscillator
is described by a single angular variable (Laing, 2016; Bick et al.,
2020). Another simplification is to consider ring geometries of
(unidirectional or bidirectional) coupled nodes (Yuan and
Campbell, 2004; Bungay and Campbell, 2007; Ibrahim et al.,
2021; Bukh et al., 2023). But the main difficulty remains the fact
that we are dealing with coupled delay differential equations
(DDEs). If the feedback is strong, however, the feedback function
may approach a function exhibiting a threshold nonlinearity
which will considerably simplify Eq. 2. In this paper, we
consider two delayed negative feedback functions of biological
interest and analyze the strong feedback limit. This analysis has
never been done and, as we shall demonstrate, Hopf bifurcation
theory needs to be revisited.

Negative feedback is one of fundamental mechanisms in
cellular networks (Tyson et al., 2003; Tsai et al., 2008; Alon,
2019), which fulfils a variety of functions such as mediating
adaptation (Yi et al., 2000; Ma et al., 2009; Ni et al., 2009),
stabilizing the abundance of biochemical components (Hasty
et al., 2002; Tyson et al., 2003; Alon, 2019), inducing
oscillations (Tsai et al., 2008; Elowitz and Leibler, 2000;
Kholodenko, 2000; Novak et al., 2007) and decoupling signal
and response time (Tyson et al., 2003). Negative feedbacks are
shown to be present in many biochemical systems including
bacterial adaptation (Yi et al., 2000; Kollmann et al., 2005),
mammalian cell cycle (Novak et al., 2010; Ferrell et al., 2011),
stress response in yeast (Klipp et al., 2005; Schaber et al., 2012).

A negative feedback control slows of stops a reaction. It may
involve a time delay which is needed for signal transduction and
transcription, translation and formation of biochemical species
(Hoffmann et al., 2002; Börsch and Schaber, 2016). If the delay is
too large, however, the control loop loose its landmarks (it does not
remember its state so long ago) and exhibit oscillations. The simplest
model problem is described by the first order DDE

dx

dt
� f x t − τ( )( ) − bx (3)

where prime means differentiation with respect to time t, x(t) is
the state variable, and x (t − τ) is its value at time t − τ. τ > 0 is the
delay and b > 0 is a constant that measures the rate to equilibrium
in the absence of feedback. The nonlinear function f(x)
corresponds to a negative feedback loop: f = 1 if x (t − τ) is
small (production is activated) and f = 0 if x (t − τ) is large
(production stops).

We first consider the case

f x( ) � −tanh κx( ) and b � 0, (4)
and analyze the limit κ → ∞. implying the limit f(x) = ∓1 as
x → ±∞. Eqs 3, 4 appear in the modeling of delayed coupled cells
(Yuan and Campbell, 2004; Bungay and Campbell, 2007) and for a
minimal description of ENSO oscillations (Ghil et al., 2008; Keane
et al., 2017). Compared to a purely cubic nonlinearity, the negative
feedback function 4) saturates as |x| increases and is a more realistic
feedback function.

We next consider the bifurcation diagram of Eq. 3 with the
Hill function

f x( ) � 1
1 + xp

and b> 0, (5)

and analyze the limit p→∞ implying the limit f(x)→ 1 − H (x −
1) where H(y) is the Heaviside function. Originally, Eqs 3, 5 were
modeling the control of hematopoiesis (production of blood
cells). Proliferation and maturation of blood cells takes time, so
there is a delay, τ, between the detection of a deficiency in a
circulating population, x, and the appearance in the bloodstream
of cells to replenish this population (Mackey and Glass, 1977;
Glass and Mackey, 1979). Today, it is known as the Mackey-
Glass equation and is considered as a reference DDE for any
biological process involving a delayed negative feedback [(Fall
et al., 2002) p249, (Beuter et al., 2003) p263, (Milton and Ohira,
2014) p236].

The plan of the paper is as follows. In Section 2, we consider the
delayed sigmoidal feedback function 4) and determine the
bifurcation diagram of the time-periodic solutions. The diagram
shows two distinct domains, namely, one close to the Hopf
bifurcation point where the amplitude grows parabolically and a
larger domain where the amplitude increases linearly. In Section 3,
we analyze the delayed Hill feedback function 5). The bifurcation
diagram again exhibits two domains with different oscillatory
waveforms. Close to the bifurcation point, the small amplitude
oscillations quickly change from harmonic to pulsating
oscillations. It motivates the analysis of two singular Hopf
bifurcations detailed in Section 3.2. In the last section, we
emphasize the role of a delayed exponential function appearing
in several negative feedback problems and discuss the limit of large
delays as another singular limit of physical interest.

2 Sigmoidal feedback function

In this section, we analyze Eqs 3, 4 using τ as our
bifurcation parameter.
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2.1 Hopf bifurcation analysis

From the linearized theory, we determine the first Hopf
bifurcation located at

τ � τ0 ≡
π

2κ
. (6)

Wemay construct a small amplitude periodic solutionnear τ= τ0 by using
the Lindstedt-Poincaré method (Erneux, 2009; Smith, 2011). We find

x � 2
τ − τ0
τ0

( )1/2

cos s( )

+1
6

τ − τ0
τ0

( )3/2

cos 3s( ) + O
τ − τ0
τ0

( )5/2⎛⎝ ⎞⎠.

(7)

By comparing the first two terms in (Eq. 7) in the limit κ large, we
note that this expansion becomes non uniform if (τ − τ0)/τ0 = O (1),
or equivalently, if

τ − τ0 � O κ−1( ). (8)
In other words, the domain where the amplitude of the periodic
solution increases parabolically as

x � ± 2
τ − τ0
τ0

( )1/2

(9)

is only valid if τ − τ0 ≪ κ−1.

2.2 Sawtooth oscillations

By contrast to our Hopf bifurcation analysis where we were looking
for a small amplitude solution and then investigated its behavior for
large κ, we now seek a periodic solution of arbitrary amplitude but take

advantage of the large value of κ. A typical numerical solution for κ = 10
and τ = 0.4 > τ0 = 0.157 is shown in Figure 1. This solution consists of a
succession of straight lines connected at extrema located at t = (1 + 2n)τ
(n = 0, 1, . . . ). It motivates to construct an analytical solution by using
the method of matched asymptotic expansions (Kevorkian and Cole,
1996; Bender andOrszag, 1999; O’Malley, 2014). Themethod considers
two distinct approximations valid for different intervals of time. The
outer approximation, valid for a large subdomain, is obtained by
treating the problem as a regular perturbation problem. The inner
approximation solves a separate perturbation problem valid in a small
subdomain where the outer solution is inaccurate. This area is often
referred to as a transition layer. Outer and inner solutions are then
combined through a process called “matching” in such a way that a
solution for the whole domain is obtained.

2.3 Outer solution

Noting that tanh (κx) = 1 if κx≫ 1 and tanh (κx) = −1 if κx≪ 1,
the leading approximation of Eqs 3, 4 satisfies

dx0

dt
� −1 if x0 t − τ( )> 0

1 if x0 t − τ( )< 0

∣∣∣∣∣∣∣ . (10)

Consequently, x0(t) is alternatively increasing and decreasing as

x0 � t 0< t< τ( ), (11)
x0 � τ − t − τ( ) τ < t< 3τ( ), (12)

x0 � −τ + t − 3τ( ) 3τ < t< 4τ( ), (13)
and so on. Eq. 10 has been studied by Fridman et al. (Fridman et al.,
2002) who showed that only the 4τ-periodic solution is stable, whereas
the 4τ/(4n + 1) -periodic oscillations (n = 1, 2, . . . ) are unstable.

2.4 Inner solution

We now examine Eqs 3, 4 near t = τ and x = τ. To this end, we
introduce the variables s and X defined by

t � τ + κ−1s, x � τ + κ−1X (14)
We note from Figure 1 (square in the figure) that

x t − τ( ) � t − τ � κ−1s (15)
when t is close to τ. Eqs 3, 4 then implies that the leading order
equation for X = X0 is

dX0

ds
� −tanh s( ). (16)

The solution of this equation needs to satisfy matching conditions as
s → ±∞. They are obtained by first introducing (14) into (11).
We find

x � τ + κ−1X0 � t � τ + κ−1s (17)
which implies the condition

X0 � s s → −∞( ). (18)
Second, by introducing (14) into (12), we obtain

FIGURE 1
Periodic solution of Eqs 3, 4 for κ = 10 and τ = 0.4. The figure
shows x(t) (black), x (t − τ) (red), and the leading asymptotic
approximation provided by (Eqs 26, 27) (grey). The square shows x (t −
τ) ≃ t − τ when t is close to τ.
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x0 � τ + κ−1X0 � τ − t − τ( ) � τ − κ−1s (19)
which leads to the condition

X0 � −s s → ∞( ). (20)
The solution of Eq. 16 is

X0 � −ln cosh s( )( ) + C (21)
whereC is a constant of integration.We examine the limits s→ ±∞ of
(Eq. 21) which need to match (18) and (20). We find the conditions.

X0 s → −∞( ) → − ln exp −s( )/2( ) + C � s + ln 2( ) + C � s (22)
X0 s → ∞( ) → − ln exp s( )/2( ) + C � −s + ln 2( ) + C � −s. (23)

Both conditions requires that

C � −ln 2( ). (24)
The solution Eq. 21 now is given by

X0 � −ln 2 cosh s( )( ). (25)

Figure 2 represents the numerical bifurcation diagram of the
periodic solutions for κ = 10 together with Hopf local approximation
9) and the large κ approximation given by (Eq. 28). Similar inner
solutions may be constructed for the other extrema. An uniform
solution combining outer and inner solutions leads to.

x � τ − κ−1 ln(2 cosh κ t − τ( )( ) 0< t< 2τ( ), (26)
x � −τ + κ−1 ln(2 cosh κ t − 3τ( )( ) 2τ < t< 4τ( ) (27)

and so on. These approximations are compared to the numerical solution
(grey line in Figure 1). The reason for such good agreement comes from
the fact that the first correction to the leading outer approximation x =
x0(t) is notO (κ−1) but much smaller likeO (exp (−κ)). This is because the
expansion of tanh (κx) as κx→ ±∞ is tan(κx) = ±1–2 exp (∓κx) + as κx
→ ±∞. The extrema of the oscillations are obtained from (Eq. 26) and
(Eq. 27) at t = τ and t = 3τ, respectively:

x � ± τ − κ−1 ln 2( )( ). (28)

3 Hill feedback function

By the end of the seventies two independent papers devoted to
the development of red blood cells generated considerable
mathematical interest. The paper by Wazewska-Czyzewska and
Lasota (Wazewska-Czyzewska and Lasota, 1976) and the one by
Mackey and Glass (Mackey and Glass, 1977) appeared in 1976 and
1977, respectively. Without knowing each other at that time, these
authors published almost simultaneously two models very similar in
several points. The one from Wazewska and Lasota is given by
(Wazewska-Czyzewska and Lasota, 1976)

dx

dt
� a exp −cx t − τ( )( ) − bx (29)

where a, b, and c are all positives. The other, today known as one of the
two Mackey-Glass equations, is given by Eqs. 3, 5 (Mackey and Glass,
1977; Glass andMackey, 1979) where p > 0 and b > 0. TheWazewska-
Lasota Eq. 29 was derived from an age structured partial differential
equation, and delay was a consequence of its integration. On the other
hand, theMackey-Glass equation Eqs. 3, 5 had been set up directly into
a delay differential equation. The nonlinear function 5) is Hill function
which is based on the law of mass action for the binding of molecules
(Milton and Ohira, 2014). Eqs. 3, 5 has been the source of many
numerical and analytical studies. In particular, the limit of a strong
feedback (p → ∞) allows to simplify 5) and obtain an analytical
approximation. Our objective is to compare its bifurcation diagram
with the one obtained numerically from the original DDE with a fixed
value of p. As we shall demonstrate, the agreement between the two
diagrams is excellent except near the Hopf bifurcation points.

Eqs. 3, 5 admit a unique steady state which is unstable if bH1 <
b < bH2. The critical points b = bH1 and b = bH2 are Hopf bifurcation
points. Their analytical determination is documented at several
places (Fall et al., 2002) p249, (Milton and Ohira, 2014),
p243 and we briefly detail their conditions. From the steady state
equation, we first determine b as a function of x

b � 1
x 1 + xp( ). (30)

The characteristic equation for the growth rate λ is

λ � − pxp−1

1 + xp( )2 exp −λτ( ) − b. (31)

Inserting λ = iω into Eq. 31, we obtain from the real part a simple
expression for xp given by

xp � − 1
p cos z( ) + 1

> 0 (32)

where z ≡ ωτ. From the imaginary part, we determine the following
equation for τ as a function of z and b

τ � − z

b tan z( ). (33)

Eqs 30, 32, 33 are the equations defining the Hopf bifurcation in
parameter space. Using Eq. 32 for xp and determining x � (xp)1/p

FIGURE 2
Bifurcation diagram of the periodic solutions of Eqs. 3, 4 for κ =
10. The numerical bifurcation diagram of the extrema (black) is
compared to Hopf local approximation (9) (blue). The straight lines
(red) correspond to the approximation (28).
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for x, we obtain b = b(z) from Eq. 30. The expression for b is then
introduced in Eq. 33 allowing us to determine τ = τ(z). By
continuously increasing z (π/2 < z < π), we determine the Hopf
bifurcation line in the (τ, b) parameter space. See Figure 3. The lines
denotes by baH1 and baH2 are the large p approximations of the upper
and lower parts of the Hopf bifurcation line. They are determined in
the appendix and their expressions will be useful in the next sections.
The lowest Hopf bifurcation point admits the approximation

baH2 �
π

2pτ
. (34)

The approximation of the upper bifurcation point is provided in
parametric form (π/2 < z0 < π is the parameter).

τ � − z0
tan z0( ), (35)

baH1 � 1 + ln p( )
p

− 1
p

x1 + exp x1( )( ), (36)

x1 � −ln −cos z0( )( ) π/2< z0 < π( ). (37)

3.1 Bifurcation diagrams

By the end of the seventies and early eighties, Mathematicians
discovered that piecewise linear (Glass and Mackey, 1979; Mackey and
an der Heiden, 1984) or piecewise constant functions (An der Heiden
andWalther, 1983) as nonlinearities can make dynamics generated by a
scalar delay differential equation accessible, and that one can compute
periodic solutions explicitly. In the large p limit, the nonlinear function 5)
approaches the function 1 − H (x − 1) where H(y) is the Heaviside step
function. Consequently, Eqs 3, 5 simplify as

dx

dt
� −bx + 0 if x t − τ( )> 1

1 if x t − τ( )< 1

∣∣∣∣∣∣∣ . (38)

A typical periodic solution of Eq. 38 is shown in Figure 4. Eq. 38
consists of a pair of ordinary differential equations which can be
solved by the method of steps (An der Heiden and Mackey, 1982).
The application of the method is well documented in (Mackey and
Glass, 1977; Mackey et al., 1996). The method is also used for a
delayed negative feedback problem (Milton, 2003) modeling
changes in pupil size. The periodic solution consists of
increasing and decreasing exponentials. The extrema of the
oscillations are given by.

xmin � exp −bτ( ), (39)
xmax � 1 − b−1( )exp −bτ( ) + b−1 (40)

while the period is

P � −b−1 ln 1 − bxmax

1 − bxmin
.
xmin

xmax
[ ]. (41)

The expressions (Eq. 39) and (Eq. 40) for the extrema and the
Period (Eq. 41) are compared to the numerical bifurcation diagrams
obtained from Eqs 3, 5 with p = 20. See Figure 5.

The same construction of the solution is proposed in Ref.
(Coombes and Laing, 2009). but with τ as the bifurcation
parameter instead of b. The amplitude of the oscillations xmax −
xmin increases like τ and saturates at a fixed value as τ → ∞.

The analytical approximations obtained in the limit p → ∞
correctly match the bifurcation branches obtained numerically from
Eqs 3, 5 except near the two Hopf bifurcation points where the
period becomes infinite. According to Hopf bifurcation theory, the
oscillations near the bifurcation point should be nearly sinusoidal
and exhibit a fixed period. So how may we understand the radical
change of the oscillations from harmonic to pulsating in the vicinity
of the two Hopf bifurcation points ? To resolve this problem, we
need to take into account the large value of p in the construction of a
small amplitude solution near each bifurcation points. To this end,
we plan to scale the deviation b − bH with respect to p−1 and then
reexamine the large p limit.

3.2 Singular hopf bifurcations

We note from Eq. 39 and Eq. 40 that if b→ 0+, xmin → 1, xmax

→ 1 + τ, and P→ b−1 ln (1 + τ)→∞. On the other hand, if b→ 1−,
xmin → exp (−τ), xmax → 1+, and P → − ln (1 − b) → ∞. Eq. 38
fails to provide the solution of Eqs 3, 5 near b = 0 and b = 1
because the period P become infinite at these points. We also
need to realize that our analytical construction of the limit-cycle
assumed that x(t) is sequentially larger and less that 1. This is not
the case near the two Hopf bifurcation points where the
oscillations remains either above or below 1. Figure 6 shows
the limit-cycle oscillations obtained numerically from Eqs 3, 5
for b slightly above bH2 ≃ 0.048. The oscillations are sinusoidal
for b = 0.05 and are clearly above x = 1 while the oscillations for
b = 0.1 have their minima close to x = 1.

Our asymptotic theory based on the large value of p needs to be
revised near the two Hopf bifurcation points. We first consider the
lower Hopf bifurcation point b = bH2 ~ 0 for which the analysis is
simpler than the case b = bH1 ~ 1.

FIGURE 3
Hopf bifurcation line in the (τ, b) parameter space (p = 20). ba

H1

and ba
H2 denote the large p analytical approximations determined in

the appendix.
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3.2.1 b = bH2 ~ 0
The analysis of the Hopf bifurcation point detailed in the

appendix suggests that xp = O(p) and b = O(p−1). We introduce
the new bifurcation parameter b1 = O(1) defined by

b � p−1b1 (42)
and take into account that xp (t − τ) is anO(p) large quantity. Eqs 3, 5
then simplifies as

x′ � x−p t − τ( ) 1 + O p−1( )( ) − p−1b1x. (43)
We next introduce the new dependent variable u defined by

x � 1 + p−1 ln p( ) + p−1u (44)
where the p−1 ln(p) term is motivated by the expansion of x at the
Hopf bifurcation b = bH2 (see Appendix). We determine x−p (t − τ)
and obtain1

x−p t − τ( ) � 1
p
exp −u t − τ( )( ). (45)

From Eq. 43, we then find that the leading order problem is O (p−1)
and is given by

u′ � exp −u t − τ( )( ) − b1. (46)

Eq. 46 belongs to the family of Wright’s equation (Wright’s
equation is Eq. 46 with b1 = 1). It admits a Hopf bifurcation at b1 = π/
(2τ). The bifurcation diagram of Eq. 46 is shown in terms of the
extrema of x in Figure 72. The agreement between the minima of the
oscillations is excellent but the maxima diverges as soon as b > 0.06.

3.2.2 b = bH1 ~ 1
The analysis of the Hopf bifurcation point detailed in the

appendix indicates that xp = O (p−1) for the upper Hopf
bifurcation branch. Eqs 3, 5 then simplifies as

x′ � 1 − xp t − τ( ) + O p−2( ) − bx (47)

FIGURE 4
Periodic solution of Eq. 38. b = 0.4 and τ = 1.8.

FIGURE 5
Bifurcation diagram. The fixed parameters are τ = 1.8 and p = 20.
The black lines show the extrema and the period of the limit-cycle
oscillations of Eqs 3, 5. The red lines are the approximations of the
extrema and period provided by Eqs 39–41.

FIGURE 6
Limit-cycle oscillations close to the Hopf bifurcation point b =
bH2 = 0.048. p = 20 and τ = 1.8. The value of b is indicated in the figure.
The oscillations for b = 0.05 are sinusoidal with a period P = 3.89 close
to the Hopf bifurcation period PH2 ≃ 2π/(π/2 + p−1) = 3.88. The
oscillations for b = 0.1 exhibit minima slightly below x = 1 and the
waveform approaches two successive exponentials. The period has
increased and equals P = 4.88.

1 ln(x−p) � −p ln(x) � −p ln(1+p−1 ln(p) + p−1u) � −p[(p−1 ln(p) +p−1u)] and

thus: x−p = p−1 exp (−u)

2 In our simulations, we consider the logistic equation equivalent to Eq. 46

after the change of variables u = − ln(v). It is given by

v′ � v(b1 − v(t − τ)). and x = x(v) then is

x � 1 + ln[(p/v)1/p].
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We introduce the new dependent variable u and new control
parameter b1 = O(1) as.

x � 1 − ln p( )
p

+ 1
p
u, (48)

b � 1 + ln p( )
p

+ 1
p
b1 (49)

where the ln(p)/p correction term is motivated by the asymptotic
expressions of x and b at b = bH1 (see Supplementary Appendix).
Using (Eq. 48), we first determine the leading approximation of xp.
We obtain3

xp t − τ( ) � 1
p
exp u t − τ( )( ). (50)

Second, we evaluate bx using (Eq. 48) and (Eq. 49). We find

bx � 1 + 1
p

b1 + u( ). (51)

Inserting (Eq. 48), (Eq. 50), and (Eq. 51) into Eq. 47, we find that the
leading problem for u is O(p−1) and is given by

u′ � −exp u t − τ( )( ) − u + b1( ). (52)
The steady state solution u = u(b1) in implicit form is

b1 � − u + exp u( )( ) (53)
and the conditions for a Hopf bifurcation are.

cos z( ) � −exp −u( ), (54)
τ � −z/ tan z( ). (55)

The expression (Eq. 49) with (Eq. 53) and x1 replacing u is
identical to Eq. 64 in the appendix. Eqs 54, 55 are identical to (66)
and (63) in the appendix with x1 replacing u and z0 replacing z.

Figure 8 compares the bifurcation diagram of the original
equations (Eqs 3, 5) and the bifurcation diagram obtained using
the reduced Eq. 52. The agreement between the maxima is excellent
but the minima quickly diverges as we deviate from the Hopf
bifurcation point.

4 Discussion

The new field of network physiology is based on the observation
that a healthy body requires good synchronization between different
organs. When perturbing elements disturb this equilibrium, many

FIGURE 7
Bifurcation diagrams near b = bH2. The black lines correspond to
the bifurcation diagram of Eqs 3, 5. The red dots mark the bifurcation
diagram of Eq. 46. bn

H2 � 0.048 is the Hopf bifurcation point obtained
numerically from Eqs 3, 5 and ba

H2 � 0.044 � π/(2pτ) is its
analytical approximation. The fixed parameters are p = 20 and τ = 1.8.

FIGURE 8
Bifurcation diagrams near b = bH1. The black lines correspond to
the bifurcation diagram of Eqs 3, 5. The red dots mark the bifurcation
diagram of Eq. 52. The analytical Hopf bifurcation point at ba

H1 � 1.04
matches the bifurcation point determined numerically. Fixed
parameters are p = 20 and τ = 1.8.

FIGURE 9
Periodic solution obtained numerically from Eqs 3, 5. The
parameters are τ = 100, b = 0.1, and p = 20. The red curves are the
large p approximations obtained from solving Eq. 38. Fast transition
layers appears at t = 0, t = tm and t = P.

3 ln(xp) � p ln(x) � p ln(1 − ln(p)
p + 1

p u) � p[−ln(p)
p + 1

p u] = − ln(p) + u

and thus: xp = p−1 exp(u)
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physiological processes are changing from metabolism, immune
function to cardiovascular regulation. An example of a simple and
well studied network is the circadian network. Circadian rhythms are
generated by the autonomous circadian clock, the suprachiasmatic
nucleus (SCN), and clock genes that are present in all tissues (Buijs
et al., 2016). The SCN times these peripheral clocks, as well as behavioral
and physiological processes. Recent studies have shown that frequent
violations of conditions set by our biological clock, such as shift work, jet
lag, sleep deprivation, or simply eating at thewrong time of the day,may
have deleterious effects on health. On the long run, these perturbations
are desynchronizing the circadian network.

In this paper, we hypothesize that strong delayed negative feedback
loops between elements of the network are essential for a good
synchronization. This idea is motivated by the importance of
negative feedback in cellular processes. We have considered two
delayed negative feedback which have proven to be useful for
combined analytical and numerical studies. The limit of strong
feedback allows to reduce the delayed function to a function
exhibiting a threshold nonlinearity. We have shown that Hopf
bifurcation theory needs to be revisited in the case of a strong
negative feedback. By treating the Hopf problem as a singular
perturbation problem, we determine small amplitude solutions
which are quickly changing waveforms as we deviate from the
bifurcation point. Like Wazewska and Lasota Eq. 29, the reduced
problems for the twoHopf bifurcations ofMackey-Glass equation (Eqs
3, 5) exhibit a delayed exponential nonlinearity. The latter also
appeared in a minimal model for periodic or episodic star
formation (Alice et al., 2008).

The singularity of the Hopf bifurcation caused by the strong
feedback limit is not the only one of physical interest. The limit of
large delay is another case where harmonic oscillations quickly
become 2τ − periodic square-waves as we deviate from the Hopf
bifurcation point (Erneux et al., 2004). From the analytical solution
of Eq. 38, we note that the square-wave is switching from 0 to b−1

through fast transition layers consisting of decaying exponentials.
Figure 9 shows the time-periodic solution of Mackey-Glass
equations Eqs 3, 5 for a large value of the delay τ.

Author contributions

TE: Writing–original draft.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The author acknowledges useful discussions with MC Mackey.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnetp.2024.1399272/
full#supplementary-material

References

Alice, C., Quillen, A. C., and Bland-Hawthorn, J. (2008). When is star formation
episodic? A delay differential equation ‘negative feedback’ model. Mon. Not. R. Astron.
Soc. 386, 2227–2234. doi:10.1111/j.1365-2966.2008.13193.x

Alon, U. (2019) An introduction to systems biology: design principles of biological
circuits. Boca Raton: Chapman and Hall/CRC.

An der Heiden, U., andMackey,M. C. (1982). The dynamics of production and destruction:
analytic insight into complex behavior. J. Math. Biol. 16, 75–101. doi:10.1007/bf00275162

AnderHeiden, U., andWalther,H.O. (1983). Existence of chaos in control systemswith
delayed feedback. J. Diff. Equations 47, 273–295. doi:10.1016/0022-0396(83)90037-2

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. C. (2012).
Network physiology reveals relations between network topology and physiological
function. Nat. Commun. 3, 702. doi:10.1038/ncomms1705

Bender, C. M., and Orszag, S. A. (1999) Advanced mathematical methods for scientists
and engineers. New York: Springer.

Beuter, A., Glass, L., Mackey, M. C., and Titcombe, M. (2003) Nonlinear dynamics in
physiology and medicine. New York: Springer.

Bick, C., Goodfellow, M., Laing, C. R., and Martens, E. A. (2020).
Understanding the dynamics of biological and neural oscillator networks
through exact mean-field reductions: a review. J. Math. Neurosci. 10 (1), 9.
doi:10.1186/s13408-020-00086-9

Börsch, A. B., and Schaber, J. (2016). How time delay and network design shape
response patterns in biochemical negative feedback systems. BMC Syst. Biol. 10, 82.
doi:10.1186/s12918-016-0325-9

Buijs, F. N., León-Mercado, L., Guzmán-Ruiz, M., Guerrero-Vargas, N. N., Romo-
Nava, F., and Buijs, R. M. (2016). The circadian system: a regulatory feedback network
of periphery and brain. Physiol. (Bethesda) 31 (3), 170–181. doi:10.1152/physiol.00037.
2015

Bukh, A. V., Shepelev, I. A., Elizarov, E. M., Muni, S. S., Schöll, E., and Strelkova, G. I.
(2023). Role of coupling delay in oscillatory activity in autonomous networks of
excitable neurons with dissipation. Chaos 33, 073114. doi:10.1063/5.0147883

Bungay, S., and Campbell, S. A. (2007). Patterns of oscillation in a ring of identical
cells with delayed coupling. Int. J. Bifurcation Chaos 17 (9), 3109–3125. doi:10.1142/
s0218127407018907

Coombes, S., and Laing, C. R. (2009). Instabilities in threshold-diffusion equations
with delay. Phys. D. 238, 264–272. doi:10.1016/j.physd.2008.10.014

Elowitz, M. B., and Leibler, S. (2000). A synthetic oscillatory network of
transcriptional regulators. Nature 403 (6767), 335–338. doi:10.1038/35002125

Erneux, T. (2009) Applied delay differential equations. New York: Springer.

Erneux, T., Larger, L., Won Lee, M., and Goedgebuer, J. P. (2004). Ikeda Hopf
bifurcation revisited. Phys. D. 194, 49–64. doi:10.1016/j.physd.2004.01.038

Frontiers in Network Physiology frontiersin.org08

Erneux 10.3389/fnetp.2024.1399272

https://www.frontiersin.org/articles/10.3389/fnetp.2024.1399272/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnetp.2024.1399272/full#supplementary-material
https://doi.org/10.1111/j.1365-2966.2008.13193.x
https://doi.org/10.1007/bf00275162
https://doi.org/10.1016/0022-0396(83)90037-2
https://doi.org/10.1038/ncomms1705
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1186/s12918-016-0325-9
https://doi.org/10.1152/physiol.00037.2015
https://doi.org/10.1152/physiol.00037.2015
https://doi.org/10.1063/5.0147883
https://doi.org/10.1142/s0218127407018907
https://doi.org/10.1142/s0218127407018907
https://doi.org/10.1016/j.physd.2008.10.014
https://doi.org/10.1038/35002125
https://doi.org/10.1016/j.physd.2004.01.038
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1399272


Fall, C. P., Marland, E. S., Wagner, J. M., and Tyson, J. J. (2002) Computational cell
biology. New York: Springer.

Ferrell, J. E., Tsai, T. Y.-C., and Yang, Q. (2011). Modeling the cell cycle: why do
certain circuits oscillate? Cell 144 (6), 874–885. doi:10.1016/j.cell.2011.03.006

Fridman, L., Fridman, E., and Shustin, E. (2002). “Steady modes and sliding modes in
relay control systems with delay,” in Sliding mode control in engineering. Editors
J. P. Barbot and W. Perruguetti (New York: Marcel Dekker), 264–295.

Ghil, M., Zaliapin, I., and Thompson, S. (2008). A delay differential model of ENSO
variability: parametric instability and the distribution of extremes. Nonlin. Process.
Geophys. 15, 417–433. doi:10.5194/npg-15-417-2008

Glass, L., and Mackey, M. C. (1979). Pathological conditions resulting from
instabilities in physiological control systems. Ann. N. Y. Acad. Sci. 316, 214–235.
doi:10.1111/j.1749-6632.1979.tb29471.x

Hasty, J., Dolnik, M., Rottschäfer, V., and Collins, J. J. (2002). Synthetic gene network
for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88 (14), 148101.
doi:10.1103/PhysRevLett.88.148101

Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002). The IkappaB-
NF-kappaB signaling module: temporal control and selective gene activation. Science
298 (5596), 1241–1245. doi:10.1126/science.1071914

Ibrahim, M. M., Kamran, M. A., Mannan, M. M. N., Jung, I. H., and Kim, S. (2021).
Lag synchronization of coupled time-delayed FitzHugh–Nagumo neural networks via
feedback control. Sci. Rep. 11 (1), 3884. doi:10.1038/s41598-021-82886-x

Ivanov, P. C. (2021). The new field of network physiology: building the human
physiolome. Front. Netw. Physiol. 1, 711778. doi:10.3389/fnetp.2021.711778

Ivanov, P. C., and Bartsch, R. P. (2014). “Network physiology: mapping interactions
between networks of physiologic networks,” in Networks of networks: the last frontier of
complexity. Editors G. D’Agostino and A. Scala (Berlin, Germany: Springer
International Publishing Switzerland), 203–222.

Ivanov, P. C., Liu, K. K. L., and Bartsch, R. P. (2016). Focus on the emerging new fields
of network physiology and network medicine. New J. Phys. 18, 100201. doi:10.1088/
1367-2630/18/10/100201

Keane, A., Krauskopf, B., and Postlethwaite, C. M. (2017). Climate models with delay
differential equations. Chaos 27 (11), 114309. doi:10.1063/1.5006923

Kevorkian, J., and Cole, J. D. (1996)Multiple scale and singular perturbation methods.
Berlin: Springer-Verlag.

Kholodenko, B. N. (2000). Negative feedback and ultrasensitivity can bring about
oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267 (6),
1583–1588. doi:10.1046/j.1432-1327.2000.01197.x

Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., and Hohmann, S. (2005).
Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23 (8),
975–982. doi:10.1038/nbt1114

Kollmann, M., Løvdok, L., Bartholomé, K., Timmer, J., and Sourjik, V. (2005). Design
principles of a bacterial signalling network.Nature 438 (7067), 504–507. doi:10.1038/nature04228

Laing, C. R. (2016). Travelling waves in arrays of delay-coupled phase oscillators.
Chaos 26, 094802. doi:10.1063/1.4953663

Ma,W., Trusina, A., El-Samad, H., Lim,W. A., and Tang, C. (2009). Defining network
topologies that can achieve biochemical adaptation. Cell 138 (4), 760–773. doi:10.1016/j.
cell.2009.06.013

Mackey, M. C. (1996). “Mathematical models of hematopoietic cell replication and
control,” in The art of mathematical modelling: case studies in ecology, physiology and
biofluids. Editors H. G. Othmer, F. R. Adler, M. A. Lewis, and J. C. Dallon (Hoboken,
New Jersey, USA: Prentice Hall), 149–178.

Mackey, M. C., and an der Heiden, U. (1984). The dynamics of recurrent inhibition.
J. Math. Biol. 19, 211–225. doi:10.1007/BF00277747

Mackey, M. C., and Glass, L. (1977). Oscillation and chaos in physiological control
systems. Science 197, 287–289. doi:10.1126/science.267326

Mafahim, J. U., Lambert, D., Zare, M., and Grigolini, P. (2015). Complexity
matching in neural networks. New J. Phys. 17, 015003. doi:10.1088/1367-2630/17/
1/015003

Milton, J. (2003). “Pupil light reflex: delays and oscillations,” in Nonlinear dynamics in
physiology and medicine. Interdisciplinary applied mathematics. Editors A. Beuter, L. Glass,
M. C. Mackey, and M. S. Titcombe Berlin: Springer.

Milton, J., and Ohira, T. (2014)Mathematics as a laboratory tool. New York: Springer.

Ni, X. Y., Drengstig, T., and Ruoff, P. (2009). The control of the controller: molecular
mechanisms for robust perfect adaptation and temperature compensation. Biophys. J. 97
(5), 1244–1253. doi:10.1016/j.bpj.2009.06.030

Novak, B., Kapuy, O., Domingo-Sananes, M. R., and Tyson, J. J. (2010). Regulated
protein kinases and phosphatases in cell cycle decisions. Curr. Opin. Cell Biol. 22 (6),
801–808. doi:10.1016/j.ceb.2010.07.001

Novak, B., Tyson, J. J., Gyorffy, B., and Csikasz-Nagy, A. (2007). Irreversible cell-cycle
transitions are due to systems-level feedback.Nat. Cell Biol. 9 (7), 724–728. doi:10.1038/
ncb0707-724

O’Malley, R. E. (2014)Historical developments in singular perturbations. NewYork: Springer.

Politi, A., and Luccioli, S. (2010). “Dynamics of networks of leaky-integrate-and-fire
neurons,” in Network science: complexity in nature and technology (Berlin, Germany:
Springer), 217–242.

Schaber, J., Baltanas, R., Bush, A., Klipp, E., and Colman-Lerner, A. (2012). Modelling
reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in
yeast. Mol. Syst. Biol. 8, 622. doi:10.1038/msb.2012.53

Schöll, E., Sawicki, J., Berner, R., and Ivanov, P. C. (2022). Editorial: adaptive networks
in functional modeling of physiological systems. Front. Netw. Physiol. 2, 996784. doi:10.
3389/fnetp.2022.996784

Smith, H. (2011) An introduction to delay differential equations with applications to
the life Sciences. New York: Springer.

Traxl, D., Boers, N., and Kurths, J. (2014). General scaling of maximum degree of
synchronization in noisy complex networks. New J. Phys. 16, 115009. doi:10.1088/1367-
2630/16/11/115009

Tsai, T. Y.-C., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., and Ferrell, J. E. (2008).
Robust, tunable biological oscillations from interlinked positive and negative feedback
loops. Science 321 (5885), 126–129. doi:10.1126/science.1156951

Tyson, J. J., Chen, K. C., and Novak, B. (2003). Sniffers, buzzers, toggles and blinkers:
dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15 (2),
221–231. doi:10.1016/s0955-0674(03)00017-6

Wazewska-Czyzewska, M., and Lasota, A. (1976). Matematyczne
problemy dynamiki ukladu krwinek czerwonych (Mathematical
problems of the dynamics of red blood cell population). Available at:
https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/
view/1173.

Yi, T. M., Huang, Y., Simon, M. I., and Doyle, J. (2000). Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97 (9),
4649–4653. doi:10.1073/pnas.97.9.4649

Yuan, Y., and Campbell, S. A. (2004). Stability and synchronization of a ring of
identical cells with delayed coupling. J. Dyn. Diff. Equat. 16, 709–744. doi:10.1007/
s10884-004-6114-y

Frontiers in Network Physiology frontiersin.org09

Erneux 10.3389/fnetp.2024.1399272

https://doi.org/10.1016/j.cell.2011.03.006
https://doi.org/10.5194/npg-15-417-2008
https://doi.org/10.1111/j.1749-6632.1979.tb29471.x
https://doi.org/10.1103/PhysRevLett.88.148101
https://doi.org/10.1126/science.1071914
https://doi.org/10.1038/s41598-021-82886-x
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.1088/1367-2630/18/10/100201
https://doi.org/10.1088/1367-2630/18/10/100201
https://doi.org/10.1063/1.5006923
https://doi.org/10.1046/j.1432-1327.2000.01197.x
https://doi.org/10.1038/nbt1114
https://doi.org/10.1038/nature04228
https://doi.org/10.1063/1.4953663
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1016/j.cell.2009.06.013
https://doi.org/10.1007/BF00277747
https://doi.org/10.1126/science.267326
https://doi.org/10.1088/1367-2630/17/1/015003
https://doi.org/10.1088/1367-2630/17/1/015003
https://doi.org/10.1016/j.bpj.2009.06.030
https://doi.org/10.1016/j.ceb.2010.07.001
https://doi.org/10.1038/ncb0707-724
https://doi.org/10.1038/ncb0707-724
https://doi.org/10.1038/msb.2012.53
https://doi.org/10.3389/fnetp.2022.996784
https://doi.org/10.3389/fnetp.2022.996784
https://doi.org/10.1088/1367-2630/16/11/115009
https://doi.org/10.1088/1367-2630/16/11/115009
https://doi.org/10.1126/science.1156951
https://doi.org/10.1016/s0955-0674(03)00017-6
https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/1173
https://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/view/1173
https://doi.org/10.1073/pnas.97.9.4649
https://doi.org/10.1007/s10884-004-6114-y
https://doi.org/10.1007/s10884-004-6114-y
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1399272


Appendix

The large p limit of the Hopf bifurcation
points of Eqs. (3) and (5)

In this appendix, we determine the large p limit of the upper and
lower parts of the Hopf bifurcation line b = b(τ) shown in Figure 3.
The conditions for the Hopf bifurcation are provided by the steady
state equation (30) and Eqs. (32), (33).

The lower Hopf bifurcation b = bH2 ≪ 1

Numerical simulations suggest that xp =O(p) and x ~ 1 for the lower
Hopf bifurcation branch. It motivates to seek a solution for x of the form

x � 1 + p−1 ln p( ) + p−1x1 +/ (56)
where the p−1 ln(p) correction term is needed when we determine xp

and x1 = O(1). We find4

xp � p exp x1( ) (57)
as the leading approximation. From Eqs. (30) and (32), we then
determine b and z ≡ ωτ as

b � 1
p
exp −x1( ), (58)

z � π

2
+ p−1 + p−2 exp −x1( ). (59)

Last, we evaluate τ from (33) and obtain

τ � π

2pb
, (60)

or equivalently,

b � baH2 ≡
π

2pτ
. (61)

5.2 The upper Hopf bifurcation b = bH1 ~ 1

Numerical simulations now suggest that xp =O(p−1) and x ~ 1 for
the upper Hopf bifurcation branch. We seek a solution for x of
the form

x � 1 − p−1 ln p( ) + p−1x1 +/ (62)
where the −p−1 ln(p) correction term is needed when we determine
xp and x1 = O(1). We obtain5

xp � p−1 exp x1( ). (63)
From Eq. (30), we then determine b as

b � baH1 ≡ 1 + p−1 ln p( ) − p−1 x1 + exp x1( )( ). (64)
Inserting

z � z0 + p−1z1 +/ (65)
into Eq. (32), we find that the leading equation is cos(z0) =
− exp(−x1). It then provides an expression for x1 = x1(z0) given by

x1 � −ln −cos z0( )( ) π/2< z0 < π( ). (66)
Last, we evaluate τ from Eq. (33) and find

τ � − z0
tan z0( ). (67)

In summary, the large p limit of the upper Hopf bifurcation branch
shown in Figure 3 is provided in parametric form by Eq. (64) with x1
= x1(z0) determined from (66), and by Eq. (67) (z0 is the parameter).

4 ln(xp) = p ln(x)� p ln[1 + p−1 ln(p) + p−1x1 +/ ]= ln(p) + x1 + / as

p → ∞. Thus: xp � exp[ln(p) + x1 +/ ] � pexp(x1) +/

5 ln(xp) = p ln(x)� p ln[1 − p−1 ln(p) + p−1x1 +/ ]= − ln(p) + x1 + / as

p → ∞. Thus: xp � exp[ln(p−1) + x1 +/ ] � p−1 exp(x1) +/
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