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In this perspective we discuss how tumor heterogeneity and therapy resistance
necessitate a focus on more personalized approaches, prompting a shift toward
precision medicine. At the heart of the shift towards personalized medicine,
omics-driven systems biology becomes a driving force as it leverages high-
throughput technologies and novel bioinformatics tools. These enable the
creation of systems-based maps, providing a comprehensive view of individual
tumor’s functional plasticity. We highlight the innovative PHENOSTAMP program,
which leverages high-dimensional data to construct a visually intuitive and user-
friendly map. This map was created to encapsulate complex transitional states in
cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-
Epithelial Transition (MET), offering a visually intuitive way to understand disease
progression and therapeutic responses at single-cell resolution in relation to EMT-
related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a
reference map, which allows researchers and clinicians to assess one clinical
specimen at a time in relation to their phenotypic heterogeneity, setting the
foundation on constructing phenotypic maps for personalized medicine. This
perspective argues that such dynamic predictive maps could also catalyze the
development of personalized cancer treatment. They hold the potential to
transform our understanding of cancer biology, providing a foundation for a
future where therapy is tailored to each patient’s unique molecular and cellular
tumor profile. As our knowledge of cancer expands, thesemaps can be continually
refined, ensuring they remain a valuable tool in precision oncology.
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Introduction

Therapy resistance remains the major culprit of cancer related mortality (Vasan et al., 2019).
Overcoming resistance poses a significant challenge given the intra- and inter-heterogeneity of
tumors and the plastic nature of therapy resistant phenotypes that develop over time during
treatment (Zhu et al., 2021). The scenario getsmore complicated when tumormicroenvironment
(TME) elements are considered (Mintz and Illmensee, 1975; Park et al., 2000). Interactions
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between tumor cells with the surrounding extracellular matrix and
associated cells, resident microbiota and immune cell populations drive
phenotypic alterations that often augment metastatic and therapy
resistance potential of malignant cells (Neophytou et al., 2021). The
extraordinary heterogeneity tumors exhibit both within the same
patient spatially, but also between patients, highlights the necessity
of implementing personalized medicine (Proietto et al., 2023).
Achieving precision oncology and personalized medicine necessitates
the implementation of cancer systems approaches that often combine
single-cell multi-omic technologies and advanced computational tools.

Although the concept of personalized medicine has already been
implemented in some types of cancers including breast (e.g., ER, PR
and Her2 expression status), lung (e.g., EGFR) and colorectal (e.g.,
KRAS) (Hoeben et al., 2021), screening/targeting for only a handful
of markers remains insufficient for personalized medicine
throughout the course of treatment, given that it fails to address
the overall heterogeneous and dynamic nature of tumors (Asleh
et al., 2022). Since therapy response for an individual varies greatly
based on an array of genomic, epigenomic and proteomic pathways,
marker-based classification for precision medicine requires in-depth
knowledge and understanding of the functional plasticity of cancer
cells and the TME as a whole. Therapeutic failure correlates with a
variety of events; pre-existing mutations that are “favorably selected”
by therapy, therapy-induced phenotypic changes (Sharma et al.,
2010; Shaffer et al., 2017; Salgia and Kulkarni, 2018), and alterations
of the TME, triggered by genomic mutations (Zhang et al., 2022).
Traditionally, validation of novel targetable markers has been
achieved by using knock out murine models, however these
models fail to address marker bias, heterogeneity, and dynamic
changes at the single-cell level (Wellner et al., 2009; Zheng et al.,
2015). The dynamic nature of therapy resistance is often overlooked,
hence, it is paramount to increase our efforts in analyzing therapy
resistant phenotypes directly in clinical specimens at the single-cell
level longitudinally (Qin et al., 2020). Therefore, multi-omic
approaches and leveraging better suited patient-derived models
that take into account time-related changes within the TME are
critical for achieving precision therapy (Xu et al., 2021).

The more we study tumor heterogeneity and phenotypic
plasticity with state-of-the-art technologies, the more it becomes
evident that they hold the clues to strengthen precision medicine
efforts. Ability to understand the disease’s single-cell nature, at
various time points per patient, will assist efforts in assessing and
predicting therapy response at personalized level (Mundi et al.,
2023). It is our belief that despite all the technological and
computational advances researchers have in their arsenal today,
the field is still lacking when it comes to developing applicable tools
for personalized medicine. Specifically, we believe that constructing
well-informed reference maps of therapy resistant states observed
both in in vitro systems and in clinical specimens will become one of
the main avenues through which we can achieve therapy response
assessment and prediction one patient at a time.

In this perspective, we discuss how instrumental systems biology
approaches and omics are to achieving precision oncology with a
focus on constructing reference phenotypic maps for assessing and
predicting therapy response at a personalized level. We highlight the
PHENOtypic STAte MaP (PHENOSTAMP) (Karacosta et al., 2019)
as a proof of concept example of how single-cell omics and machine
learning tools can be utilized to build translational tools for assessing

metastatic and therapy resistant phenotypes in clinical specimens
and discuss future directions towards achieving individualized
medicine.

The era of omics and systems biology: tools
and paths towards achieving personalized
medicine

The shift towards the era of omics and systems biology signifies a
new dawn in cancer research. The groundbreaking fusion of genomics,
transcriptomics, proteomics, epigenomics, and metabolomics, and the
holistic methodology of systems biology ushers in an innovative
approach to understanding oncogenesis and therapy resistance
(Williams et al., 2022). This transformative shift is grounded in
advanced computational methodologies and bioinformatics toolkits,
enabling the examination of cancer in a broader, more holistic context
that transcends the constraints of the traditional reductionist approach
(Heo et al., 2021), where complex biological systems are typically
broken down into their components and analyzed individually
(Friboulet and Thomas, 2005). Although reductionist approaches
have led to great advances in biomedical sciences, studying
individual components of a system are insufficient for
understanding how a system operates in its entirety. By making
sense of complex systems in their entirety, we are now at the
forefront of “personalized medicine using panomics” - an emerging
field that tailors treatment based on individial variability beyond just
genetic variabilities (Langreth and Waldholz, 1999; Pfohl et al., 2021;
Veenstra, 2021).

Single-cell sequencing, a remarkable breakthrough in the realm of
genomics and transcriptomics, allows for comprehensive examination
of the genome and transcriptome at an unparalleled level of detail (Li
and Wang, 2021). Spatial genomic and transcriptomic technologies,
exemplified by slide-DNA-seq (Zhao et al., 2022) and studies that
interrogate spatial clonal copy number variations (CNVs) in the
microenvironment of benign and malignant tissues (Erickson et al.,
2022), as well as VISIUM, CosMX and GeoMX, further enhance this
detailed examination by incorporating spatial information, effectively
bridging the gap between bulk and single-cell sequencing (Ståhl et al.,
2016; Merritt et al., 2020; He et al., 2022; Williams et al., 2022).
Advancements in single-cell proteomics, specifically Cytometry by
Time-Of-Flight (CyTOF), have further augmented our ability to
dissect the TME at a cellular and phenotypic level (Bendall et al.,
2012). These high-resolution techniques, when coupled with cutting-
edge bioinformatics clustering and trajectory algorithms, provide
unprecedented insights into the complex and dynamic nature of
intratumoral heterogeneity (Friboulet and Thomas, 2005).
Simultaneously, the evolution of multiplex imaging technologies,
including among others imaging mass cytometry (IMC), multiplexed
ion beam imaging (MIBI), cyclic immunofluorescence (cycIF), and
Opal, have amplified our ability to dissect the TME at the spatial
proteomic level (Tóth and Mezey, 2007; Lin et al., 2016; Gorris et al.,
2018; Keren et al., 2018; Ptacek et al., 2020; Karacosta, 2021). These
approaches facilitate the simultaneous detection of multiple biomarkers
within a single tissue section, preserving the spatial context of cells and
their interactions within the TME (Gorris et al., 2018). Finally, as we
increasingly appreciate the role of the epigenome on phenotypic
plasticity and drug resistance, methods for DNA methylation
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analysis (e.g., MeDIP-seq and WGBS) and histone modifications or
nuclear organization (e.g., ChIP-seq, ChIA-PET, scATAC-seq) become
critical tools in multi-omic systems biology approaches (Staunstrup
et al., 2016; Flebbe et al., 2019; Zhang et al., 2019; Zhao et al., 2020;
Mehrmohamadi et al., 2021; Kim et al., 2022). The high-dimensional
data generated by these techniques, when subjected tomachine learning
algorithms, can unravel the complex spatio-temporal interactions and
patterns within the TME that may be predictive of tumor progression
and therapy response (Stack et al., 2014; Ahmed et al., 2022).

Computational biology has ushered in an array of novel
bioinformatics tools that work in synergy with systems-based
methodologies (e.g., network-based analyses, pathway simulations
and machine learning models, tailored to untangle gene regulatory
networks and signaling cascades (Sharma et al., 2010)). EcoTyper, a
cutting-edge computational tool, is one such innovative development
that facilitates high-throughput ecological analyses of the TME (Luca
et al., 2021; Steen et al., 2021). Large-scalemulti-omics databases such as
The Cancer Genome Atlas (TCGA), Kyoto Encyclopedia of Genes and
Genomes (KEGG) and the Genomic Data Commons (GDC) have
emerged as indispensable resources (Kanehisa and Goto, 2000;
Weinstein et al., 2013). These repositories, packed with rich
genomic, transcriptomic, and proteomic data, provide robust
platforms for integrative and systems-level analyses. These databases
serve as the bedrock for developing robust prognostic and predictive
models, thereby accelerating the shift towards a more personalized,
data-driven approach to cancer treatment. Table 1 highlights a selection
of multi-omics databases and bioinformatics pipelines suitable for
generating high-resolution reference maps, from the plethora available.

The concept of systems-based mapping of
tumor heterogeneity

The idea of “mapping” is not new. Since the beginning of
medical sciences, researchers have tried to generate the
“grammar” of human’s microscopic anatomy and cellular
makeup as well as their changes in various disease backgrounds.
However, a map’s accuracy relies on the amount of detailed
information each map is based on. With the recent

advancements in systems-based biology and big data repositories,
personalized medicine can now become a reality and the concept of
mapping plays a pivotal role in it. In recent years, comprehensive
maps or “atlases” of single-cell resolution of normal tissue/organs
and diseases (including cancers) have been assembled by using
multi-omic data integration (Azizi et al., 2018; Friebel et al.,
2020; Kuett et al., 2021; Hansen et al., 2022). Some of these
studies and proposed approaches focus on tumor spatial and
phenotypic heterogeneity specifically (Liu et al., 2010; Heindl
et al., 2015; Patkulkar et al., 2023). These maps do an excellent
job of portraying in great detail the underlying molecular, cellular
make up and heterogeneity of the tissue and help better classify
diseases and cancer types. However, they have not been developed to
be used as translational tools per se where one could utilize them for
directly analyzing and assessing newly acquired clinical specimens,
both visually and functionally as in the PHENOSTAMP example
that will be discussed in the following section.

A key component of constructing detailed reference maps, is the
acquisition and analysis of clinical specimens, which is also a main
limiting factor given the difficulties in obtaining them in large
enough numbers and amount for data acquisition and
downstream analyses. However, recent advances in single-cell
technologies have surpassed this obstacle with their multimodal
approaches. Today a small histo-section from a tumor can generate
spatial genomics map for clones of ductal carcinoma of the breast
(Lomakin et al., 2022), whereas three-dimensional multiplex
imaging can shed light on the tissue microenvironment using the
principle of mass cytometry (Kuett et al., 2021).

The variety of clinical specimens should extend beyond just the
abundance of solid tumors. Other sources such as circulating tumor
cells (CTCs), malignant cells isolated from pleural effusions, and
pre-cancerous cells obtained from cytobrush swabs, also hold
significant potential. They can generate extensive, high-
dimensional data for each patient, whether it is through single-
cell profiling or by creating and studying intricate patient-derived
tumor organoids at later time-points (Tsao et al., 2018; De Luca
et al., 2021; Sorolla et al., 2021; Gaw and Gribben, 2022; Hsu et al.,
2023). Furthermore, integrating two ormore different modes of high
throughput analyses of the same model has been proven to provide

TABLE 1 Highlights a selection of state-of-the-art techniques,multi-omics databases and bioinformatics pipelines that can be used for constructing referencemaps
for personalized medicine. See text for additional details.

MuIti-omics
databases

Bioinformatics
pipelines

Relevance to
phenotypic mapping

References

Spatial
Transcriptomics

TCGA, GEO Seurat, spatiaLDE High-throughput spatial
resolution

Weinstein et al. (2013), Satija et al. (2015), Clough and
Barrett (2016), Svensson et al. (2018)

scRNA-seq SRA, ENA STAR, Cell Ranger, Bowtie2,
Kallisto

Single-cell gene expression
profiling

Leinonen et al. (2011), Langmead and Salzberg (2012),
Dobin et al. (2013), Bray et al. (2016), Zheng et al. (2017)

CNV Analysis COSMIC, dbVar,
DGVa

GATK, CNVnator Detecting large scale genomic
alterations

Abyzov et al. (2011), Van der Auwera et al. (2013),
MacDonald et al. (2014), Tate et al. (2019)

scATAC-seq GEO, SRA Cicero, ArchR Single-cell chromatin
accessibility

Clough and Barrett (2016), Leinonen et al. (2011), Tian et al.
(2020), Granja et al. (2021)

ChIP-seq ENCODE, SRA MACS, Bowtie2 Identification of transcription
factor binding sites

Leinonen et al. (2011), Langmead and Salzberg (2012),
ENCODE Project Consortium (2012), Zhang et al. (2008)

Metabolomics MetaboLights, GNPS XCMS, MetaboAnalyst Small molecule profiling Smith et al. (2006), Xia et al. (2009), Haug et al. (2013),
Wang et al. (2016)
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the necessary information for improved patient outcome prediction
(Zhang et al., 2021; Ebisudani et al., 2023).

Acquiring high-dimensional data carries the potential to
discover specific patterns in each tumor that can be used for
creating personalized maps. These maps can be used to predict
treatment outcome and decipher the individual tumor’s functional
heterogeneity at the route to therapy induced phenotypic plasticity
and resistance. The single-cell-based approach on collecting big data
from a heterogenous mass of quandary and the subsequent
generation of metrices from them is undoubtedly challenging yet
promises to be rewarding at the same time (Kashyap et al., 2022).
Depending on the type of data and models used for map
constructing, one can envision different types of mapping that
convey information on specific biological phenomena that drive
tumor progression and therapy resistance. Imaging-based marker
analysis in 3D from a chemoresistant patient-derived tumor
organoid will have the ability to map the spatial correlation
between tumor with its microenvironment and their cumulative
contribution on resistance (Lukonin et al., 2021; Van Hemelryk
et al., 2023). Integrating single-cell RNAseq data with genome
mapping and CyTOF analyses from longitudinal clinical
specimens has the power to holistically map out the development
of a patient’s therapy resistance from multiple aspects (mutational,
transcriptional, proteomic level). Time-lapse-based single-cell
analysis across different cancer stages will be able to generate the
branching routes of clonal evolution and the dynamics of
phenotypic plasticity (Coffey et al., 2013; Randriamanantsoa
et al., 2022; Desjardins-Lecavalier et al., 2023). The idea of
mapping can be diverse based on an observer’s perspective, and
it can be molded in various ways once the cancer’s structural and
functional heterogeneity has been explored in a detailed manner.
Ultimately, the more data we can acquire/generate from in vitro/ex
vivo models and clinical specimens, the better we can construct
clinically applicable maps.

Phenotypic maps: a computational vision for
the future of precision oncology and the
PHENOSTAMP example

In the evolving landscape of precision oncology, predictive maps
have begun to emerge as a potential game-changing tool, signifying a
transformative era in cancer research. It is paramount to construct
maps that not only encompass high-dimensional, underlying
biological complexity, but are also intuitively easy to use and
understand for cancer researchers and clinicians alike. Only then
can a map be truly translational and clinically applicable. For a
phenotypic map to function as a translational tool, generation and
acquisition of high-quality data from carefully designed experiments
and clinical specimens that best reflect tumor heterogeneity and
dynamic states that are visited during drug perturbations
(i.e., observed phenotypic states) is critical. Subsequently,
incorporating and “compacting” the high-dimensional data on,
for example, a low dimensional 2D plane, creates a landscape of
“observed states”, where each x y coordinate represents a phenotypic
state that may reflect a metastatic or drug-specific resistant trait.
Therefore, when using this map as a reference to analyze a new
sample, the positioning of each cell of a tumor on the 2D plane can

be used to assess the metastatic or drug-resistant properties of the
overall cell population under study.

The PHENOtypic STAte MaP (PHENOSTAMP) program,
exemplifies such innovative mapping approaches (Karacosta
et al., 2019). It integrates high-dimensional data derived from
advanced techniques like CyTOF to construct a comprehensive,
visually intuitive map with single-cell proteomic resolution, that
encapsulates the Epithelial-Mesenchymal Transition (EMT) and
Mesenchymal-Epithelial Transition (MET) states in lung cancer
cells. It is important to note, that there have been a number of
studies that have focused on identifying and describing cancer EMT
states, with not necessarily focusing on constructing a translational
tool like the PHENOSTAMP program (Pastushenko et al., 2018;
Brown et al., 2022; Burkhardt et al., 2022). For constructing
PHENOSTAMP, authors used in vitro time course
experimentation to induce EMT and MET in lung cancer cells,
thus capturing intermediate transition states that when pieced
together, represent the spectrum of EMT states, that are often
associated with cancer aggressiveness and drug resistance (Kalluri
and Weinberg, 2009; Schliekelman et al., 2015; Bakir et al., 2020).
Additionally, the authors performed advanced computational
analysis where they were able to estimate transition probabilities
among the identified EMT and MET states. Therefore, by projecting
a new specimen on PHENOSTAMP one can not only assess the
heterogeneity of a given specimen at the given timepoint but can also
theoretically predict what new states will be populated in the future
during cancer progression and/or treatment. Importantly,
PHENOSTAMP supports the projection of clinical samples onto
this elaborate, reference EMT-MET map, enabling the
characterization of their phenotypic profile with single-cell
resolution in terms of in vitro EMT-MET analysis. This approach
provides a nuanced characterization of clinical samples and may
pave the way for evaluating the clinical relevance of EMT in future
cancer studies. Such methods set the stage for a new era of
personalized medicine, where treatment decisions could be based
on the unique molecular profile of each patient’s tumor not only at
time zero, but also during the course of therapy, by, for example,
analyzing longitudinal liquid biopsies (Siravegna et al., 2017;
Blackhall et al., 2018).

PHENOSTAMP effectively highlights how utilizing systems biology
approaches that include single-cell omic technologies and computational
analysis can help navigate efforts towards personalized medicine, while
also interrogating complex biological processes like EMT. Specifically, in
the case of PHENOSTAMP, CyTOF was first used to obtain single-cell
proteomic readouts of EMT-transitioning cells. Dimensionality
reduction and clustering analysis were performed to identify EMT
and MET states which were subsequently arranged on a 2D t-SNE
(Maaten and Hinton, 2008) plane. The 2D plane was segmented using
Convex Hull and Voronoi analysis (Boissonnat and Delage, 2005) to
visually represent distinct EMT and MET areas (i.e., states) of the
map. Finally, the authors used a feedforward neural-network driven
approach, trained on the CyTOF cell line data used to construct
PHENOSTAMP, to predict dynamic phenotypic EMT states of lung
cancer cells in clinical specimens. Thus, PHENOSTAMP serves as a
reference map, through which by projecting patient specimens onto it,
one can visually and quantitatively assess EMT status of any given
sample that is analyzed with CyTOF. The PHENOSTAMP example
underscores how neural networks and machine learning approaches in
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FIGURE 1
(A) Schematic diagram on the PHENOSTAMP (Karacosta et al., 2019) concept. The first step requires acquiring high-dimensional data that provide in
depth views of the biological process under study. In the case of PHENOSTAMP, single-cell proteomic data (CyTOF) from lung cancer cell lines
undergoing EMT and MET were generated from optimally designed time-series in vitro experiments. We propose that clinically applicable maps should
incorporate multi-omic integrated data not only from in vitro experiments but also directly from clinical specimens and patient-derived organoids
and models. Following data acquisition, dimensionality reduction and clustering analysis is utilized to define phenotypic states that malignant cells visit
across cancer stages and/or perturbations (e.g., therapy). Unbiased analysis but also biological prior knowledge is required for optimal state definition. The
next step is to decide best 2D representation of the acquired data for constructing a visually intuitive map. For PHENOSTAMP, t-SNE was used for 2D
representation of the data, and Voronoi and Convex Hull analysis were utilized for breaking down the 2D map to the areas representing the various
defined phenotypic states. Finally, a feedforward neural network is utilized for projecting new clinical specimens onto the reference map (in the case of

(Continued )
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general can be applied tomulti-omic data, becomingmore andmore the
main tools for predicting drug resistance and other clinical features (Liu
et al., 2019). A schematic example of the PHENOSTAMP concept, and
the computational tools and machine learning models that were utilized
for its construction and function are shown in Figure 1.

Discussion

As proof of concept, PHENOSTAMP is a great example on
how one can build a translational tool for personalized medicine.
However, as with any model, there are certain limitations. First,
PHENOSTAMP was constructed using cell line data, that were
then used to predict EMT states in clinical specimens. It is
expected, that not all clinically applicable EMT states were
“observed” and therefore not represented in PHENOSTAMP.
Second, only proteomic data were used towards constructing
PHENOSTAMP, which included bias in choosing markers that
best characterize the EMT process. Incorporating multi-omic data
towards building a map, promises to reflect holistically a tumor’s
makeup that will undoubtedly be more translational in nature.
Leveraging computational frameworks that harmonize multimodal
omic data (Liu et al., 2020; Ma et al., 2022) will be pivotal towards
building optimal phenotypic maps. Although PHENOSTAMP was
developed for studying EMT, one can envisage building maps that
interrogate other biological processes such as therapy resistance,
metastatic ability, dormancy, or many of these combined. As
multiplexed imaging platforms also rapidly advance, maps may
also represent histoarchitectural patterns of cell types and
phenotypes that hold predictive power towards cancer prognosis
and therapy response.

For translational approaches like PHENOSTAMP, benchmarking
is a necessity for establishing robustness and clinical applicability.
Several layers of validation are imperative and may include: 1)
Evaluation Metrics: metrics like high-precision and high-recall
become especially critical in single-cell studies (Hicks et al., 2022);
2) Cross-Validation: robust k-fold or stratified cross-validation is
essential due to the complexities inherent in single-cell data and
multi-omic approaches (James et al., 2017; Vabalas et al., 2019); 3)
Baseline Comparisons: comparing advanced algorithms like TRACER
and density-driven segmentation against baseline or existing models
provides a comprehensive understanding of their incremental
advantages (Street et al., 2018; Karacosta et al., 2019); 4)
Hyperparameter Tuning: fine-tuning the hyperparameters can
significantly impact a map’s clinical utility (Bergstra and Bengio,
2012); 5) Real-world Validation: validation with patient-derived
samples is crucial for confirming an algorithm’s translational value;
6) Computational Efficiency: given the time-sensitive nature of
clinical decision-making, evaluating the computational efficiency of
an algorithm used is paramount.

Ultimately, we believe that constructing clinically applicable
reference maps for personalized medicine will require analyzing
patient-derived samples and clinical specimens with a
combination and integration of a variety of omic technologies
and advanced computational tools. This underscores once again
the notion of studying cancer at multiple levels of the system to
better recapitulate what takes place in each patient individually.
It is therefore paramount for the research community to focus
not only on promoting multidisciplinary collaborations, but
more importantly on also training the next-generation of
scientists to be equally adept in both experimental, systems
and computational biology.

Reference maps can be intrinsically dynamic and adaptable to
new data. As our understanding of cancer biology expands and novel
omics data emerge, these maps can be continually refined and
updated, ensuring they remain cutting-edge tools in the fast-
paced field of precision oncology. By consolidating various omic
data, reference maps provide an integrated, multi-dimensional
perspective of the tumor landscape. This comprehensive
approach, bolstered by technologies like multiplexed imaging
platforms and machine learning approaches, has the potential to
revolutionize our understanding of tumor biology, specifically the
mechanisms underpinning metastasis and therapy resistance. Most
importantly, it can serve as a catalyst for the development of novel
therapeutic interventions, thereby reshaping the future of
individualized cancer treatment. It is up to researchers to now
harness the power of systems biology to achieve precision
medicine one patient at a time.
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FIGURE 1 (Continued)
PHENOSTAMP lung cancer clinical specimens were analyzed with CyTOF and the single-cell proteomic data were projected on the map and
represented as density plots). Given that high-content data are used to construct a referencemap, each statemay indicatemetastatic traits, drug resistant
features and targetability and thus enables the user to assess/predict phenotypic heterogeneity, therapy response and resistance at a personalized level.
Created with Biorender.com. (B)Descriptive summary of computational andmachine learningmodels that were used in PHENOSTAMP. See text for
more details.
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