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Background: Fatigue is associated with increased injury risk along with changes in
balance control and task performance. Musculoskeletal injury rates in runners are
high and often result from an inability to adapt to the demands of exercise and a
breakdown in the interaction among different biological systems. This study aimed
to investigate whether changes in balance dynamics during a single-leg squat task
following a high-intensity run could distinguish groups of recreational runners
who did and did not sustain a running-related injury within 6 months.

Methods: Thirty-one healthy recreational runners completed 60 s of single-leg
squat before and after a high-intensity run. Six months after the assessment, this
cohort was separated into two groups of 13 matched individuals with one group
reporting injury within this period and the other not. Task performance was
assessed by the number of repetitions, cycle time, amplitude, and speed. To
evaluate balance dynamics, the regularity and temporal correlation structure of
the center of mass (CoM) displacements in the transverse plane was analyzed. The
interaction between groups (injury, non-injured) and time (pre, post) was assessed
through a two-way ANOVA. Additionally, a one-way ANOVA investigated the
percent change difference of each group across time.

Results: The injured group presented more regular (reduced entropy; 15.6%) and
diffusive (increased short-term persistence correlation; 5.6%) CoM displacements
after a high-intensity run. No changes were observed in the non-injured
group. The within-subject percent change was more sensitive in
demonstrating the effects of fatigue and distinguishing the groups, compared
to group absolute values. No differences were observed in task performance.

Discussion: Runners who were injured in the future demonstrate changes in
balance dynamics compared to runners who remain injury-free after fatigue. The
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single-leg squat test adopted appears to be a potential screening protocol that
provides valuable information about balance dynamics for identifying a diminished
ability to respond to training and exercise.
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1 Introduction

Musculoskeletal injury is a multifactorial process (Bittencourt
et al., 2016) commonly observed in recreational sports-
participants (National Safety Council, 2022). Recreational
runners exhibit high rates of injuries (19%–92%) (Lun et al.,
2004; Hreljac, 2005; Van Gent et al., 2007; Buist et al., 2010;
Videbæk et al., 2015; Messier et al., 2018; Mulvad et al., 2018) and
common risk factors for running-related injuries are not reliable
predictors of future injury (Ceyssens et al., 2019). Exercise-
induced fatigue can elicit changes in balance and task
performance, which are associated with injury risk (Corbeil
et al., 2003; Gribble et al., 2004; Lin et al., 2009; Clansey et al.,
2012; Zech et al., 2012; Schütte et al., 2018; Huygaerts et al., 2020;
Verschueren et al., 2020; Heil and Büsch, 2022). There have been
proposals that sports injuries result from changes to interactions
among musculoskeletal structures and neurophysiological
systems that indicate the inability to withstand the demands of
exercise (Fonseca et al., 2020). Therefore, rather than identifying
individual risk factors, it may be more valuable to examine
macroscopic variables that reflect interactions between many
self-organizing elements to gain insights into future injury
status (Balagué et al., 2020; Fonseca et al., 2020). Fatigue-
inducing exercise, such as a high-intensity run, may elicit
changes in the dynamics of these macroscopic variables which
precede reductions in task performance or injury (Pol et al., 2018).
Therefore, there is a need to identify and examine changes in
variables that indicate the ability to resist exercise-induced fatigue
and the potential incidence of future running injury (Balagué
et al., 2020).

Balance control, which refers to the maintenance of upright
posture in relation to external forces and the corresponding changes
in posture that facilitate task performance, is negatively impacted by
fatigue-inducing exercise (Corbeil et al., 2003; Vuillerme andHintzy,
2007; Springer and Pincivero, 2009; Zech et al., 2012; Monjo et al.,
2015; Verschueren et al., 2020; Heil and Büsch, 2022). Generally,
measures of balance control examine center of pressure (CoP) or
center of mass (CoM)movements, including time-independent (e.g.,
sway area) and time-dependent measures (e.g., entropy), the latter of
which provide information about balance dynamics. Balance
dynamics consist of transitions between postures necessary to
complete the task and patterns of variability that emerge from
perception-action coupling (e.g., Riccio and Stoffregen, 1988;
Riccio, 1993; Van Wegen et al., 2002; Carpenter et al., 2010;
Murnaghan et al., 2014). Because these emergent movement
dynamics may provide insights into the adaptative capacity of
sports participants (Van Emmerik et al., 2016; Fonseca et al.,
2020), this study investigated balance dynamics in recreational
runners.

Single-leg tests, including the single-leg squat and single-leg
step-down, are used to assess neuromuscular control in sports-
participants (Bittencourt et al., 2012; Paterno et al., 2015; Ugalde
et al., 2015; Cardoso et al., 2021). The single-leg squat task requires
coordination across multiple joints to maintain balance with a
reduced base of support while raising and lowering the body
(Bittencourt et al., 2012; Ksoll et al., 2022), and has been used to
screen for injury risk and readiness to return to play, and distinguish
currently injured from non-injured individuals (Ugalde et al., 2015;
Cardoso et al., 2021; Petushek et al., 2021). However, single-leg squat
performance is often evaluated from a limited number of repetitions
(Bittencourt et al., 2012; Rees et al., 2019; Cardoso et al., 2021; Ksoll
et al., 2022), which do not provide enough information to
distinguish sports participants who eventually become injured
from those who do not.

The CoM is a useful variable for understanding the performance
and balance components of the single-leg squat task. Performance
can be assessed by the number of repetitions and spatiotemporal
movement parameters (e.g., cycle time and amplitude), which are
commonly used to examine the effects of fatigue, injury risk, and
return to play (Burnham et al., 2016; Cardoso et al., 2021; Heil and
Büsch, 2022). Because the task requires repeated raising and
lowering of the body, the vertical displacement of the CoM can
provide insights into task performance. By contrast, balance
dynamics can be assessed by examining the time-varying patterns
of movements in the transverse plane, which have implications for
ensuring mechanical stability and simultaneously facilitating task
performance. Therefore, this study investigated the CoM
displacements in the vertical direction (performance) and
transverse plane (balance) during a prolonged single-leg squat task.

Current approaches for predicting injuries in sports participants
are limited for several reasons. One problem is that assessing
performance at a single point in time may mask insights into
adaptive capacity (Fonseca et al., 2020). For instance,
retrospective cross-sectional studies may produce equivocal
findings by limiting their focus to group differences without
understanding the directionality of changes over time. To prevent
and mitigate future injuries, tools and concepts from dynamical
systems theory, information theory, and complexity science may
provide a better understanding of the dynamics of macroscopic
behaviors that emerge from a complex network of subsystems in
response to perturbations, such as fatigue (Balagué et al., 2020;
Fonseca et al., 2020). These system-level behaviors can be tracked
and quantified to provide insights into the individual adaptative
capacities in response to exercise and fatigue (Pol et al., 2018;
Balagué et al., 2020). Another problem is that traditional
physiological (e.g., VO2max) and performance measures (e.g.,
number of cycles) may be conserved even though interactions
and synergies between many elements and physiological systems
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may change in advance of injury or disease (Balagué et al., 2020;
Garcia-Retortillo and Ivanov, 2022). People exploit the many
available solutions to complete tasks (Latash, 2012) and the
organization of network interactions does not depend on the
specific movement, but rather is associated with distinct
physiological states (i.e., rest, exercise, fatigue) (Garcia-Retortillo
and Ivanov, 2022). Therefore, people can accomplish the same task
performance (e.g., number of cycles, cycle amplitude and time) with
different movements (e.g., balance dynamics). Evaluating changes in
task performance and balance dynamics may provide a more
complete and potentially more sensitive means of understanding
how runners cope with fatigue and may help identify individuals at
risk of developing future injury.

Postural displacements of the CoM are characterized by
stochastic fluctuations spanning a wide range of spatiotemporal
scales (Collins andDe Luca, 1993; Collins andDe Luca, 1994; Duarte
and Zatsiorsky, 2000; Delignières et al., 2011). Past studies have
investigated fatigue-induced changes to balance (Lin et al., 2009;
McGregor et al., 2011; Schütte et al., 2015; Vázquez et al., 2016) and
differentiated injured and non-injured sports participants (Kiefer
et al., 2013; Terada et al., 2015; Quirino et al., 2021) by examining
regularity statistics and temporal correlation properties. Notably, the
combined use of these measures can provide complementary
insights into physiological signals with distinct time-varying
properties (Liddy and Busa, 2023). For example, different
temporal correlations (e.g., 0 < α < 1) can return similar entropy
values, which can lead to misinterpretations of the signal dynamics
(Liddy and Busa, 2023).

Entropy methods, such as Sample Entropy (SampEn), provide a
continuum measure of the amount of randomness or uncertainty
contained in a sequence of data (Richman and Moorman, 2000).
Lower entropy, which indicates greater regularity, has generally been
observed in populations with reduced adaptive capacity (Busa and
Van Emmerik, 2016). For example, more regular balance dynamics
have been associated with older adults, people with neurological
disorders and injury history, when compared to young or healthy
matched controls (Roerdink et al., 2006; Donker et al., 2008; Kiefer
et al., 2013; Quatman-Yates et al., 2015; Busa and Van Emmerik,
2016). Furthermore, runners with a history of injury show more
regular movement patterns when exposed to fatigue compared to
runners without past injuries (Quirino et al., 2021). However, fatigue
can also lead to less regular balance dynamics in healthy populations
(McGregor et al., 2011; Schütte et al., 2015). Sports participants with
greater future injury risk may show early signs of reduced capacity
when exposed to fatigue, which elicits many of the same physiological
and behavioral changes that emerge prior to injury (Pol et al., 2018).
Thus, balance dynamics may not differ at baseline between runners
who do and do not become injured. However, otherwise healthy
runners who eventually become injured may demonstrate more
regular balance dynamics following fatigue-inducing exercise.

Measures of temporal correlations, such as Detrended Fluctuation
Analysis (DFA), provide insights into the (in)dependence of postural
fluctuations by measuring variance over increasing windows of time.
Postural displacements during quiet standing are usually characterized
by short-term persistent (positive) correlations and long-term anti-
persistent (negative) correlations (Collins and De Luca, 1993; Collins
and De Luca, 1995a; Collins and De Luca, 1995b; Riley et al., 1997a;
Riley et al., 1997b; Delignières et al., 2011), indicating local and global

stationarity with distinct time-varying structures. The transition from
persistent to anti-persistent correlations observed during quiet
standing is referred to as a crossover, which more broadly refers to
a qualitative change in the temporal correlation structure.

Short- and long-term correlation structures, as well as the
crossover point, can change when different postural strategies are
adopted to maintain balance or support suprapostural performance
(Riley et al., 1997a; Riley et al., 1997b). For clarity, short-term and
long-term temporal correlations can be understood relative to the
crossover point rather than with respect to the neurophysiological
processes involved in balance control. In the single-leg squat task,
the long-term bounding of the CoM displacements will produce
reversals that are more reflective of the task dynamics across cycles,
whereas the short-term drifts reflect periods dominated by
movement within cycles. Because task performance is not
expected to differ between groups of runners who did and did
not become injured, the expectation is that fatigue-related changes
to balance dynamics will be restricted to the short-term correlation
structure as opposed to the crossover point or long-term correlation
structure.

The purpose of this study was to investigate whether changes to
balance dynamics during a single-leg squat task following a high-
intensity run differentiate recreational runners who did and did not
sustain a running-related injury in the next 6 months. We also
assessed task performance before and after the fatigue protocol. We
made the following predictions: 1) task performance would not
differ between injured and non-injured runners before or after the
high-intensity run; 2) balance dynamics would also not differ
between these groups before the high-intensity run; 3) fatigue-
induced changes to balance dynamics in both groups, with
injured runners expected to be more affected than non-injured
runners; 4) specifically, entropy and short-term correlations,
which are more representative of within-cycle dynamics related
to balance control, would become more regular and persistent
following fatigue 5) long-term correlations and the crossover
point, which are more representative of between-cycle dynamics
related to task performance, would not differ between groups.

2 Materials and methods

2.1 Participants

Thirty-two recreational runners were recruited for a
longitudinal study, which included performing a modified single-
leg squat task before and after a high-intensity running protocol with
a six-month follow-up. Eligible participants were adult runners
between 18 and 60 years old who reported completing a
minimum of 20 km/week at least twice a week regularly for the
past 6 months and were currently without injuries (Hreljac, 2005;
Encarnación-Martínez et al., 2020). An injury was defined as
musculoskeletal pain or discomfort resulting in training volume
reduction or restriction for 7 days or three consecutive training
sessions, or the need for healthcare professional assistance (Yamato
et al., 2015). Participants were excluded if they could not complete
the single-leg squat task or the running protocol or reported pain
during evaluation. Only one participant was excluded after
presenting pain during testing. The remaining participants
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completed a retrospective online survey 6 months after the
experiment and reported whether they experienced an injury in
the preceding 6 months. This study was approved by the
Universidade Federal de Minas Gerais Ethics Committee, and all
participants provided informed consent.

2.2 Experimental procedures

Participants were tested over separate weeks within 1 month
(Figure 1). During the first week (Week A), participants completed
two visits to practice the single-leg squat task and estimate their
maximum volume of oxygen consumed (VO2 max), which was used

to characterize aerobic fitness and normalize the intensity of the
running protocol. Pilot data indicated that 2 days of practice were
needed to minimize learning effects. Participants also reported their
training routine, including average pace (min/km), average volume
(km/week), running experience (years), additional sports or physical
activities (e.g., strength training), and previous injuries. During the
second week (Week B), participants performed the single-leg squat
task before and after a high-intensity running protocol.

Six months later, participants completed a follow-up injury
survey, where they reported whether they sustained an injury or
not, as well as their average pace and weekly training volume over
the past 6 months. Participants were stratified into two cohorts
based on injury status. If they reported an injury, additional

FIGURE 1
Experimental timeline. Two visits were completed during the first week of testing (Week A). During the first visit, intake information was collected,
and participants practiced the single-leg squat task. During the second visit, participants completed VO2max testing and additional practice of the single-
leg squat task. The second week of testing (Week B) consisted of a single visit where participants completed pre- and post-tests of the single-leg squat
task separated by a high-intensity running protocol. Six months later, participants completed a follow-up survey to retrospectively report injuries
incurred since completing testing.

FIGURE 2
Single-leg squat task. (A) Rear view of a person performing the single-leg squat task. Participants stood barefoot on their dominant leg in front of a
white, vertical screenwith yellow horizontal targets. A laser was attached above the knee and projected onto the screen. Participants continuouslymoved
the laser point back and forth between the bottom and top targets by completing squats. (B) Front view of the same participant. Markers were placed on
the first metatarsal head (1), fifthmetatarsal head (2), lateral andmedial malleoli (3–4), calcaneus (5), shank (6), lateral andmedial tibial condyles (7–8),
lateral and medial femoral epicondyles (9–10), thigh (11), right and left anterior superior iliac spines (12–13), right and left posterior superior iliac spines
(14–15), sacrum (16), trunk (17), posterior projection of jugular notch (18), right and left acromia (19–20), and jugular notch (21). Each cluster had four
markers leading to 33 total markers.
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questions were used to probe when it occurred, the affected segment,
structure, or muscle group. They also reported if they had to reduce
or stop training and if they required healthcare professional
assistance.

2.2.1 Single-leg squat task
The single-leg squat task was adapted fromCardoso et al. (2021).

Participants stood barefoot on their dominant leg—defined as the
self-reported leg preferred for kicking a ball—with their foot aligned
perpendicular to a vertical screen located in front of them with their
hands crossed behind their head (Figure 2; Supplementary Video
S1). The screen contained two horizontally oriented targets
separated vertically by 30 cm. A laser pointer was attached above
the knee and oriented orthogonally to the longitudinal axis of the
thigh. The vertical position of the bottom target was adjusted so that
the laser was centered when the knee was in extension. The
horizontal distance between the participant and the screen was
adjusted to ensure that at least 40 degrees of knee flexion were
required to complete each repetition. This knee flexion range was
selected based on previous studies (Bittencourt et al., 2012; Ugalde
et al., 2015; Rees et al., 2019; Petushek et al., 2021) and our pilot
study, so that it was challenging but feasible to perform an
uninterrupted bout of single-leg squats for 60 s.

To complete the task, participants continuously performed
single-leg squats for 60 s by flexing and extending at the ankle,
knee, and hip while keeping the trunk upright and the contralateral
foot off the ground. Participants were instructed to repeatedly move
the laser between the bottom and top targets at their preferred speed.
They were further instructed not to reverse direction until the laser
had contacted or exceeded the target. Rate of perceived exertion
(RPE) was recorded before and after each test using a modified Borg
RPE scale with values of 0–10 (Borg, 1998; Impellizzeri et al., 2004;
Bellenger et al., 2019). The task was stopped and repeated if the
participant moved their hands or dominant foot out of position, or if
they touched the ground or support leg with their non-dominant leg.
If the pre-test needed to be repeated, participants rested for
5 minutes or until they returned to their initial RPE. This
ensured that participants did not partially complete the test and
then immediately start again, which would introduce a secondary
confounding source of fatigue. If the post-test needed to be repeated,
no rest was provided because participants were expected to be
fatigued from the running protocol. One person repeated the
pre-test (a non-injured runner), while six people repeated the
post-test—three each from the injured and non-injured groups.
As a warm-up, a 30-s practice trial was completed before the pre-
test.

Single-leg squat task performance was assessed using 3Dmotion
capture. Kinematic data were recorded at 120 Hz from 10 Oqus
7 cameras (Qualisys, Gothenburg, Sweden). Thirty-three
retroreflective markers were placed on the foot, shank, thigh,
pelvis, and trunk (Figure 2). Only the dominant leg was
instrumented. Three static trials were collected before the pre-
and post-tests while participants stood upright.

2.2.2 VO2 max testing
VO2 max was assessed to characterize aerobic fitness and to

normalize the intensity of the high-intensity running protocol
(Billat, 2001; Kaufman et al., 2006; Encarnación-Martínez et al.,

2020). VO2 max testing was performed with a metabolic cart
(HandyMET Clinic, MDI, Brazil) during an incremental
treadmill protocol at a 1% fixed grade (Lourenço et al., 2011).
Participants were familiarized with the treadmill and equipment
and warmed up for 3 minutes at 8 km/h. The test started at an initial
speed of 9 km/h and increased by 0.5 km/h every 30 s until
exhaustion (Lourenço et al., 2011). Heart rate (HR) and RPE
were measured every minute. The volume of oxygen consumed
(VO2) and carbon dioxide expired (VCO2) were averaged within
each 30 s interval and used to compute the respiratory exchange
ratio (RER). When exhaustion was reached, participants completed
a 5-min recovery protocol where the treadmill speed was initially
decreased to 60% of the maximum running speed and further
reduced by 5% each additional minute (Lourenço et al., 2011).
The test was considered a valid VO2 max test if, at the end, two
or more of the following criteria were met: RPE >9, HR > 90% of
220-age, RER >1.1, plateau of VO2, or the person could not continue
(Quammen et al., 2012; Cortes et al., 2014). All tests were valid, that
is, VO2 max was successfully measured in all participants. VO2 max
was computed as the maximum value of VO2 observed during
testing. The running speed corresponding to the VO2 max was used
to normalize the intensity of the running protocol (Billat, 2001;
Kaufman et al., 2006; Encarnación-Martínez et al., 2020). The HR
corresponding to the VO2 max measurement was also recorded and
used to verify the maintenance of high-intensity exercise during the
running protocol (Pollock et al., 1998; Kaufman et al., 2006; Garber
et al., 2011).

2.2.3 High-intensity running protocol
After completing the single-leg squat pre-test, participants

completed a high-intensity running protocol at 85% of VO2 max
running speed on a treadmill with no inclination. The protocol was
chosen according to past studies (Pollock et al., 1998; Billat, 2001;
Kaufman et al., 2006; García-Pérez et al., 2014; Bellenger et al., 2019;
Encarnación-Martínez et al., 2020) and was meant to simulate a
high-intensity training session. The protocol duration was 60 min,
which is consistent with training sessions commonly reported in
recreational runners (Hespanhol Junior et al., 2013). Pilot data and
past findings (Kaufman et al., 2006) suggested that high-intensity
running for durations exceeding 15 min lead to the onset of extreme
fatigue. Thus, the protocol consisted of four 15 min bouts of running
at 85% VO2 max speed. Participants walked or ran at a self-selected
speed for 5 min to recover between bouts. HR and RPE were
assessed every 5 min to verify the intensity of the protocol during
the entire test (Pollock et al., 1998; Impellizzeri et al., 2004; Kaufman
et al., 2006; Garber et al., 2011; Bellenger et al., 2019). Specifically, we
verified that HR was ≥ 85% HR max during the VO2 max test and
RPE was ≥ 8 (Pollock et al., 1998; Kaufman et al., 2006; Garber et al.,
2011). Participants warmed up for 5 min at a self-selected speed
before the protocol started. To reduce the impact of recent training,
participants refrained from exercising 2 days before the experiment.

2.3 Data analysis

Kinematic data were processed in Visual 3D (C-Motion, Inc.,
Rockville, MD, ). The three static calibration trials were averaged to
compute the rotation zeroes and define the local coordinate system
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of each body segment. CoM position was estimated from a
biomechanical model that included the dominant lower limb,
pelvis, and trunk. Marker positions were not filtered prior to
estimating the CoM position.

2.3.1 Task performance
Performance measures for the single-leg squat task were the

number of cycles, cycle time, cycle amplitude, and cycle speed.
Because the hands were behind the head, the trunk had to be
maintained upright, and the plantar surface of the foot had to
remain in contact with the ground; knee joint flexion-extension to
control the laser point produced corresponding CoM displacements.
The vertical CoM position decreased when the laser position
increased and vice versa (Supplementary Figure S1). Therefore,
the vertical CoM displacements served as a surrogate for the
laser point displacements. Squat cycle events were identified from
the maxima and minima of the vertical CoM position. Consecutive
maxima were used to define the start and end of each cycle. The
minima were used to compute within-cycle displacements. The
number of cycles was defined as one less than the number of
maxima. The cycle time was computed as the time elapsed
between consecutive maxima in seconds. The cycle amplitude
was computed as the vertical CoM displacement from the first
maximum defining each cycle to the minimum of the same cycle in
meters. Cycle speed was defined as the ratio of cycle amplitude to
time. Cycle time, amplitude, and speed were then averaged over all
cycles.

2.3.2 Balance dynamics
To characterize the balance dynamics before and after the running

protocol, we examined transverse plane CoM displacements
computed as the Euclidean distance between adjacent points. The
CoMdisplacements were analyzed using SampEn andDFA to provide
insights into the regularity and temporal correlation properties of the
balance dynamics, respectively. CoM displacements were computed
and analyzed in MATLAB (R2022b, update 3; MathWorks, Natick,
MA, United States).

2.3.2.1 Sample Entropy
SampEn, which is a model-free approach for measuring the

degree of randomness in a sequence of observations (Richman and
Moorman, 2000), was used to quantify the regularity of the CoM
displacements. Higher SampEn values indicate more random
dynamics—i.e., more information production or uncertainty
about future behavior. Conversely, lower SampEn values indicate
more regular dynamics—i.e., less information production or
reduced uncertainty about future behavior.

SampEn is defined as the negative natural logarithm of the
conditional probability that two sequences of m data points that are
close within a tolerance r remain close when the sequences are
increased to m + 1 data points. The m and r hyperparameters are
respectively referred to as the template length and radius of
similarity. SampEn values obtained under different conditions are
most easily compared with fixed hyperparameter selections and
dataset lengths, although SampEn is robust to variations in dataset
length (Richman and Moorman, 2000). To select the
hyperparameter values, we computed the median value of
SampEn and the standard error of the SampEn estimates across

all datasets, with r ranging from .05 to 1 in steps of .05 and m = 1, 2,
3, 4. We adapted the criteria suggested by Ramdani et al. (2009) to
maximize the precision of the SampEn estimates and selected m =
1 and r = .25 (Supplementary Figure S1).

A modified definition includes a third hyperparameter, τ, that
represents the lag between elements of the template vectors to
improve estimates obtained from data that were oversampled or
contain temporal correlations (Govindan et al., 2007). Here, we
selected τ = 1 because this hyperparameter has minimal impact on
the estimates obtained from stochastic processes containing
temporal correlations (Liddy and Busa, 2023).

2.3.2.2 Detrended Fluctuation Analysis
DFA is an analytical method to estimate the self-affine

properties of an experimental dataset by characterizing the power
law describing its diffusion over different time windows (Peng et al.,
1994). The technique is based on a property of fractional Brownian
motion (fBm), which is a family of nonstationary stochastic
processes characterized by a single parameter, the Hurst
exponent (H), that determines its diffusion:

σ2 Xi( )∝ n2H, (1)
where Xi is the processes of interest, σ2 is the variance, and n is the
time window. H is bounded on ]0, 1[ and characterizes the diffusion
of Xi: H = .5 corresponds to ordinary diffusion (i.e., Brownian
motion), H < .5 is observed for subdiffusive processes, and H > .5 is
observed for superdiffusive processes. A related family of stationary
stochastic processes called fractional Gaussian noise (fGn) defines
the increments of a fBm. Differencing a fBm produces a fGn and
cumulatively summing a fGn gives its corresponding fBm, both
characterized by the sameH. For fGn,H determines the correlations
between successive values:H = .5 is uncorrelated,H < .5 is negatively
correlated (anti-persistent), and H > .5 is positively correlated
(persistent).

DFA estimates the power law exponent of a modified diffusion
equation:

σ Xi( )∝ nα, (2)
whereXi and n are the same as Eq. 1, σ is the standard deviation, and
α is the DFA exponent. α is bounded on ]0, 2[, where α = H for fGn
processes and α = H + 1 for fBm processes. α can easily be
transformed from the discrete fGn/fBm model to continuum
models, such as the frequency domain model relating spectral
power and frequency (Delignières and Marmelat, 2012). For
more details on the DFA algorithm, see Almurad and Delignières
(2016).

Evenly spaced average DFA, which provides more accurate and
precise estimates than the original algorithm (Almurad and
Delignières, 2016), was used to estimate the standard deviation,
σ, over a wide range of time windows, n. The window sizes ranged
from 100 ms (12 data points) to 6,000 ms (720 data points). This
approach produced 709 estimates of σ, which was reduced to
51 estimates evenly spaced on a logarithmic scale (Liddy and
Haddad, 2018). Linear detrending was used because higher-order
detrending did not affect the results.

To characterize processes described by a single power law, the DFA
exponent (α) is estimated as the slope of the least-squares linear
regression of log σ on log n. The presence of single power law is
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often confirmed by visual inspection of the diffusion plots, with post hoc
justification provided in the form of the goodness of fit statistics (e.g.,R2).
The main limitation of this approach is the subjective nature of that
assessment. When a crossover is observed in the diffusion plot, there
remains the challenge of determining the number of slope changes.

This problem has been addressed using a combination of visual
inspection and selectively fitting specific regions of the diffusion plot
(e.g., Collins and De Luca, 1993; Delignières et al., 2011). While
visual inspection of the diffusion plots is always recommended, this
qualitative check is not an objective evaluation of plausible models.
Therefore, we adopted an objective, model-based approach for
identifying an appropriate description of the diffusion properties
of the balance dynamics, not unlike the approach adopted by
Kuznetsov et al. (2013).

2.3.2.2.1Model specification. Candidate models were identified
based on observations that the diffusion plots of human balance
dynamics often contain one to three scaling regions (Kuznetsov
et al., 2013). Thus, we consider a family of nested piecewise linear
models with one to three segments. This decision was supported by
visual inspection of the diffusion plots and the inclusion of a four-
segment model, which was ruled out after none of the data were best
described by this number of segments. For all models, y � logσ and
x � log n, and the residuals were assumed to be N(0, σ2). The null
model was a simple linear model,

yi � α0 + α1xi + εi, (3)
where α0 is the intercept, α1 is the slope describing the power law
scaling, and εi are the residuals. Increasing the number of scaling
regions from one to two involves the addition of two parameters to
create a two-segment model,

yi � α0 + α1xi + α2 xi − c1( ) xi > c1( ) + εi, (4)
where α0, α1, and εi have the same meaning, α2 is the change in slope
from α1, and c1 is the crossover point where the slope changes. The
term (xi > c1) is a dummy variable, where the change in slope is only
applied to the xi above the crossover point. The expansion to n
segments is straightforward, requiring two additional parameters
per segment, such that an n-segment model contains 2n parameters.
The final model was a three-segment model,

yi � α0 + α1xi + α2 xi − c1( ) xi > c1( ) + α3 xi − c2( ) xi > c2( ) + εi,

(5)
where α3 and c2 respectively represent an additional change in slope
and crossover point.

2.3.2.2.2 Model fitting. Model estimation was completed using
constrained optimization, fmincon, in MATLAB, where the
objective function minimized the residual sum of squares.
Parameter constraints were: α0 ∈ [−25, 0], α1, α2, α3 ∈ [−3, 3], and
c1, c2 ∈ [2.83, 6.22]. The α parameter constraints were chosen to
accommodate a sufficient range of initial slopes and slope changes.
The c parameter constraints prevented the crossover points from
approaching either end of the log n range and ensured that scaling
regions contained at least four data points. The three-segment model
also included an inequality constraint to enforce the minimum
scaling region width: .4 < c2 − c1.

Because the multi-segment models are not guaranteed to
converge to the global minimum, we used a scattershot approach
to identify local minima from different initial conditions and recover
the global minimum with a high degree of probability (e.g., Rohrer
and Hogan, 2003; Rohrer and Hogan, 2006). Model fits were
obtained from 100 initializations where parameter values were
drawn from a uniform distribution spanning the intervals
indicated above. Parameter estimates were partitioned using
k-means clustering with a squared Euclidean distance metric.
This procedure was done because multi-modal distributions were
sometimes obtained and averaging over the 100 solutions often led
to poor fit quality. Parameter estimates were averaged within each
cluster and model fits compared across clusters using the residual
sum of squares. The cluster with the lowest error was used to select
the parameter estimates—i.e., the mean of all initializations in the
cluster.

2.3.2.2.3 Model selection. Models with more free parameters
are more accurate but can overfit data. Model selection was
completed by comparing the corrected Bayesian information
criterion (BICc; McQuarrie, 1999) weights among the three
candidate models to balance tradeoffs between model accuracy
and complexity. BICc was computed as:

BICc � ln
1
N

∑N

i�1 yi − ŷi( )2( ) + p ln N( )
N − p − 2

, (6)

where the first term contains the mean squared error and the second
term contains the number of model parameters, p, and the number
of points in the diffusion plot, N. BICc weights (wBICc) were
obtained following the procedures described by Wagenmakers
and Farrell (2004). An easy-to-interpret measure of the relative
likelihood of candidate models was obtained by taking the ratio of
wBICc. For instance, if the ratio of the wBICc of model A to model B
is 2.5, then model A is 2.5 times more likely to be the best model. If
the ratio of the wBICc was greater than or equal to 2, then a model
was considered better than another. If not, the simpler of the two
models was chosen.

The models were ranked in descending order by wBICc to
select the best model. The relative likelihood of the best model
(i.e., highest wBICc) to the next best model was determined. If the
relative likelihood was less than 2, the simpler model was selected
as the best model. The relative likelihood of the best model was
then compared to the next best remaining model. This process
continued until all models had been evaluated. Figure 3 shows an
example diffusion plot with the three model fits and wBICc
values.

2.4 Statistical analysis

Statistical analyses were performed in SPSS 21 (SPSS Inc.,
Chicago, IL, United States). To compare the characteristics of the
runners assigned to injured and non-injured groups, we used
two-tailed independent samples t-tests, and standardized effect
sizes were estimated using Cohen’s d, which were interpreted as
small (.2), medium (.5), and large (≥.8) (Cohen, 1988). Statistical
significance was assessed at the α = 0.05 level. Task performance
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and balance dynamics outcomes were analyzed using a two-way
mixed model analysis of variance (ANOVA) with Group
(injured, non-injured) as a between-subjects factor, Time (pre,
post) as a within-subjects factor, and participant as a random
factor. Post-hoc comparisons were made using Bonferroni
corrections. To examine the utility of tracking within-person
changes on a relative scale, we computed the difference in the
pre- and post-test values divided by the pre-test value and
multiplied by 100 (i.e., 100 × (Post - Pre)/Pre). This produced
a percent change score from the pre-test value, where negative
values indicated that the post-test was lower and positive values
indicated that the post-test was higher. This procedure was
conducted for all task performance and balance dynamics
outcomes. The percent change scores were analyzed using
one-way ANOVAs with Group (injured, non-injured) as a
between-subjects factor. In addition to comparing group
means, we verified whether the group means were different
from 0%. Partial eta squared (η2p) was computed to estimate
effect sizes for all ANOVAs and was interpreted as small (.01),
medium (.06), and large (≥.14) (Cohen, 1988).

3 Results

3.1 Injury survey

Thirteen participants (41.9%) reported sustaining an injurywithin
6 months of completing the experiment. All reported injuries were
consistent with lower extremity overuse injuries, such as patellar and
hamstring tendinopathies, piriformis and iliotibial band syndromes,
and shin splints, commonly documented in runners (Hreljac, 2005;
Van Gent et al., 2007; Lopes et al., 2012; Verschueren et al., 2020) and
required a reduction or interruption of training or assistance from a

healthcare professional. Injuries occurred between one and 5 months
after completing the experimental testing, with an average of
3.2 months.

Injured runners were matched with 13 non-injured runners
(Table 1). The groups were paired based on age, sex, body mass
index, VO2 max, running experience, average pace, and average
volume. The injured and non-injured groups did not differ from
each other in these characteristics. Five runners reported experiencing
an injury in the 6 months prior to enrolling in the study. Two of these
participants were in the injured group, indicating that they were
reinjured in the 6 months following testing. The other three
participants were in the non-injured group, indicating that they
did not pick up another injury over that same period. Five runners
that did not sustain an injury were excluded from further analyses,
leaving 13 in each group. Compared to the rest of the study sample,
the five excluded runners were younger males (mean: 25.8 years) with
greater aerobic fitness (mean VO2 max: 55.1 mL·min−1·kg−1) and
faster average pace (mean: 4:33 min/km).

The injury survey also collected information about the
runner’s training routine at 6 months. The injured group
reported running an average of 33.0 km/week (SD 15.08) at
an average pace of 05:18 min/km (SD 00:33), while the non-
injured group reported running 51.31 km/week (SD 38.0) at a
pace of 05:31 min/km (SD 00:42). We analyzed the training
routine data with a two-way mixed-model ANOVA to
compare the initial and six-month training volume and pace
(Supplementary Table S1). For training volume, there was a
Time × Group interaction (F1,25 = 4.87; p = .037; η2 = .17).
Bonferroni adjusted contrasts were examined within groups over
time and between groups at each time. There were no statistical
differences for training pace or volume (all p > .05), but there was
a trend for decreased volume (−21.4%) in the injured group and
increased volume (24.9%) in the non-injured group at 6 months.

FIGURE 3
Example diffusion plot models. Each panel contains diffusion plot data from the pre-test of a single participant (black circles). Predicted values
from each model are shown as red lines. (A) The null model was a simple linear model, which is the standard model adopted for DFA. (B) The two-
segment model contains two scaling regions separated by a single crossover point (white circle with red outline). (C) The three-segment model
contains three scaling regions separated by two crossover points. The weighted corrected Bayesian information criterion weights (wBICc) for
each model are shown in the top left of each panel. This value indicates the likelihood, expressed as a percentage of the cumulative model weight,
that a particular model is the best model. The ratios of the wBICc values provide a metric for comparing the relative likelihood of different models. For
example, the two-segment model is 7.2 times more likely to be the best model than the null model. The three-segment model has the highest wBICc
value, which reflects themodel’s accuracy despite havingmore parameters. Compared to the two-segment model, it is 1.2 timesmore likely to the be
the best model, which is below the threshold of 2. This is because the two- and three-segment models both account for large percentages of the
cumulative model weight. Thus, in this instance, because there is uncertainty about which model is the best, the more parsimonious two-segment
model would be selected.
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Thus, there were no changes in the recorded training variables
over the six-month period.

3.2 Performance

Single-leg squat performance was assessed by the number of
repetitions completed within 60 s, as well as spatiotemporal
characteristics of the vertical CoM movements, which served as a
proxy for the laser point movements. The mixed model ANOVAs
did not reveal effects of Time, Group, or Time × Group for any
balance performance variables (Table 2). On average, participants
completed about 35 cycles during the 60-s test period, with an
average cycle time of 1.78 s. On average, cycle amplitude was about
8.2 cm, and the average cycle speed was about 5 cm·s−1. In summary,
there were no group differences in single-leg squat task performance
when variables were expressed in absolute values.

To examine relative (within-person) changes following the
high-intensity run, the within-person percent change from the
pre-to post-test was computed for the task performance outcomes
(Figure 4). No differences were observed in the percent change
scores between the injured and non-injured groups (Table 3). The
percent change for the number of cycles, cycle time, and cycle
amplitude were not different from 0% in either group, indicating
that the relative performance metrics were, on average, unaffected
by the high-intensity run. However, the post-test cycle speed
increased in the injured group (18.2%; t(24) = 2.72; p = .012).
Notably, the post-test cycle speed was not different from 0% in the
non-injured group, and there was no difference between the
groups. Thus, the only task performance outcome sensitive to
the high-intensity run was the percent change in the cycle speed,
which increased in the injured group. Otherwise, the injured and
non-injured runners could not be discriminated based on task
performance.

TABLE 1 Characteristics of the runners assigned to the injured and non-injured groups (n = 13 each).

Injured Non-injured p-value Mean difference (95% CI) Effect size

Mean (SD) Mean (SD)

Age (years) 40.5 (9.9) 39.5 (8.9) 0.81 −0.9 (−8.5, 6.7) 0.11

Sex (F/M) 6 F/7 M 5 F/8 M 0.71 −0.1 (−0.5, 0.3) 0.15

Body mass index (kg/m2) 23.6 (2.6) 24.5 (3.0) 0.38 1.0 (−1.3, 3.3) 0.32

VO2 max (ml·min−1·kg−1) 47.6 (5.0) 46.2 (5.1) 0.49 −1.4 (−5.5, 2.7) 0.28

Running experience (years) 6.1 (10.9) 6.0 (6.3) 0.97 −0.1 (−7.3, 7.1) 0.01

Average pace (min/km) 5:19 (0:36) 5:29 (0:49) 0.52 −0:11 (−0:46, 0:24) 0.24

Average volume (km/week) 42.0 (22.3) 41.4 (26.4) 0.96 0.5 (−19.3, 20.3) 0.02

SD, standard deviation; CI, confidence interval; F – female; M – male. Group means were compared using two-tailed independent samples t-tests with a significance level of α = .05. Mean

differences and 95% confidence intervals are reported. Effect sizes were estimated using Cohen’s d.

TABLE 2 Task performance outcomes.

Time Injured Non-injured Statistical effect

Time Group Time x group

Mean (SD) Mean (SD) F1,25 p η2p F1,25 p η2p F1,25 p η2p
Cycles (reps) Pre 34.5 (7.7) 34.8 (11.2) 3.21 .09 .12 0.00 .96 .00 0.36 .56 .02

Post 36.6 (7.4) 35.9 (13.4)

Cycle time (s) Pre 1.79 (0.41) 1.81 (0.42) 0.80 .38 .03 0.24 .63 .01 2.37 .14 .09

Post 1.69 (0.42) 1.84 (0.52)

Cycle amplitude (m) Pre 0.077 (0.02) 0.084 (0.03) 1.57 .22 .06 0.28 .60 .01 1.18 .29 .05

Post 0.083 (0.02) 0.084 (0.02)

Cycle speed (ms−1) Pre 0.045 (0.01) 0.052 (0.03) 3.38 .08 .12 0.16 .69 .01 2.21 .15 .08

Post 0.052 (0.02) 0.052 (0.03)

SD, standard deviation; reps – repetitions. Means and standard deviations are reported for pre- and post-tests for the injured and non-injured groups. The results of the two-way mixed-model

ANOVAs, are reported, including F-values, p-values, and partial eta squared. ANOVA statistics are rounded to two decimal places.
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3.3 Balance dynamics

Balance dynamics during the single-leg squat test were assessed
by SampEn and a two-segment model DFA of CoM displacements
in the transverse plane. SampEn of the transverse plane CoM
displacements was used to quantify regularity, while DFA
quantified temporal correlations. Example CoM displacement
time series and the associated diffusion plots from an injured
and non-injured runner are displayed in Figure 5.

SampEn estimates were generally low, with a range of .13–.59,
indicating a high degree of regularity (Table 4). The two-way mixed-
model ANOVA showed a significant Time × Group interaction,
which indicated increased regularity (i.e., decreased SampEn) in the
injured group from pre-to post-test, while no other comparisons
were statistically significant. This indicated that 1) the regularity of
the CoM displacements was not different between the injured and
non-injured groups in the pre-test, 2) regularity did not differ
following the high-intensity run in the non-injured group, and 3)
decreased regularity in the injured group following the high-

intensity run. The percent change scores followed the same
pattern, indicating that only the injured group changed after the
high-intensity run with an average reduction in SampEn of 15.6%
(Figure 6A; Table 5, SampEn). In summary, the balance dynamics of
runners who reported experiencing an injury in the 6 months
following assessment became more regular after completing the
high-intensity run while those who did not, on average, showed no
change.

DFA was calculated with an objective approach to investigate
the appropriate diffusion properties of the balance dynamics.
Because the diffusion plots of postural displacements often
contain one or more crossovers, we compared a family of
nested, piecewise linear models with one to three segments. In
total, we examined 52 CoM displacement time series (2 groups ×
13 participants × 2 time points). A substantial majority of the
data (51, ~98%) were best described by the two-segment model,
with the three-segment model only selected once. Thus, we
adopted the two-segment model to characterize the scaling
behavior of the CoM displacements.

FIGURE 4
Percent change in the task performance outcomes. (A–D): The within-person pre-post percent change was analyzed using a one-way ANOVAwith
Group (injured, non-injured) as a between-subjects factor. There was insufficient evidence of differences between the groups for all outcomes. (A–C)
The percent changewas not different from0% in either group for the number of cycles, the cycle time, and the cycle amplitude. (D)However, cycle speed
increased in the injured group but did not change in the non-injured group; ϯ - significantly different from 0% with p = .012.C (solid dot) – within-
person pre-post change; ▬○▬ – median and interquartile range; ▬ (horizontal line) – group mean.

TABLE 3 Percent change for the task performance outcomes.

Injured Non-injured F1,24 Mean difference (95% CI) p η2p

Mean (SD) Mean (SD)

Cycles (%) 6.4 (10.8) 2.2 (14.1) 0.73 4.2 (−6.0, 14.4) 0.40 .03

Cycle Time (%) −5.3 (10.7) 0.64 (12.5) 1.70 −6.0 (−15.4, 3.5) 0.21 .07

Amplitude (%) 10.8 (19.1) 2.7 (18.9) 1.20 8.15 (−7.2, 23.5) 0.29 .05

Speed (%) 18.3 (23.9)a 3.8 (24.4) 2.32 14.4 (−5.1, 34.0) 0.14 .09

SD, standard deviation; CI, confidence interval.
a– significantly different from 0% (t(24) = 2.72, p = .01).

Percent change was measured as the difference between the pre- and post-test values divided by the pre-test values for each participant. The results of the one-way ANOVAs, including F-values,

p-values, and partial eta squared comparing the percent change between the injured and non-injured groups are reported. ANOVA statistics are rounded to two decimal places.
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The two-segment model contains four parameters (Eq. 2), three
of which are relevant to describing the balance dynamics: α1, α2, and
c1. The scaling exponent α1 represents the initial slope of the
diffusion plot from the shortest timescales to the crossover point
(c1), while α2 represents the change in slope after c1. For simplicity,
we will refer to the short-term scaling exponent as αS � α1, the long-
term scaling exponent as αL � α1 + α2, and the crossover point as
c � c1, which was converted to units of seconds rather than log n.
Crucially, short- and long-term denote the relation to the crossover
point, not necessarily to the physiological processes involved in
balance control.

The two-way mixed-model ANOVAs results from DFA
parameters—αS, αL, and c—are shown in Table 4. For αS, there
were no significant effects of Time or Group, while the Time ×
Group interaction indicated a large effect but did not reach
statistical significance (p = .056). For both αL and c, there were
no effects of Time or Group, and no interaction. On average, the
short-term CoM displacements were nonstationary (αS > 1) with
nearly uncorrelated increments. The crossover, c, occurred around
0.64 s and was unchanged following the high-intensity run,
indicating that the bounding of the CoM displacements
remained the same. The long-term CoM displacements were, on

average, stationary (αL < 1) and characterized by persistent
correlations (αL > .5).

By contrast, one-way ANOVAs examining the percent change
scores for the DFA parameters revealed several group differences.
Specifically, αS increased in the injured group following the high-
intensity run (t(24) = 2.21, p = 0.04), indicating more diffusive short-
term CoM dynamics, whereas it was unchanged in the non-injured
group (t(24) = −0.76, p = 0.46). Moreover, there was also evidence of
group differences related to pre-post percent change (Figure 6B;
Table 5). Neither αL or c changed in either group following the high-
intensity run and there was insufficient evidence of group
differences (Figures 6C, D; Table 5). In summary, the injured
group was more affected by fatigue and showed more diffusive
short-term CoM displacements following the high-intensity run,
compared to the non-injured group.

4 Discussion

This prospective study investigated changes in balance
dynamics during a single-leg squat task following a high-
intensity run in recreational runners who did or did not

FIGURE 5
Example CoM displacement time series and diffusion plots from a representative injured and non-injured runner. Data from the injured runner is
displayed in panels (A–D), while data from the non-injured runner is shown in (E–H). CoM displacements from the 60 s single-leg squat task for the pre-
test [(A) injured, (E) non-injured] and post-test [(B) injured, (F) non-injured] show short-term drifts and long-term stationarity, consistent with past work.
From visual inspection, the non-injured runner displays more regular dynamics characterized by intermittent periods of limit-cycle behavior
compared to the more stochastic, less regular injured runner. This was confirmed by examining SampEn, which is displayed in the upper right corner of
(A,B,E,F). The corresponding diffusion plots for the pre-test [(C) injured, (G) non-injured] and post-test [(D) injured, (H) non-injured] confirm the presence
of crossovers. The two-segment model contains a short-term scaling region and a long-term scaling region before and after the crossover point,
respectively. The short-term exponents (αS) were greater than 1 and close to 1.5, indicating nonstationary diffusion characterized by nearly uncorrelated
increments in the CoM displacements up to the crossover point (c) at about 500–750 ms. This is not unexpected because the CoM displacements per
unit time (i.e., speed) was bounded from repeatedly squatting up and down. The long-term exponents (αL) following the crossover point were below 1,
indicating stationarity, but were characterized by persistent fluctuations, such that the bounding of speed is not strict, but exhibits local drifts.
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become injured in the 6 months following assessment. As
predicted, task performance outcomes, which included the
number of squats completed and the average cycle time,
amplitude, and speed, were not different in the injured and
non-injured runners and were not affected by fatigue
(Prediction 1). The predictions related to balance dynamics,
which included measures of regularity (SampEn) and temporal
correlations (DFA), were partially supported. Injured and non-
injured runners did not exhibit differences in balance dynamics
before the high-intensity run (Prediction 2). Counter to
Predictions 3 and 4, fatigue-induced changes in regularity

(lower SampEn) and temporal correlations (greater αS) were only
observed in the injured group, contrary to expectations. The pre-post
percent change in measures of balance dynamics indicated increased
regularity and more persistent short-term correlation structure in
injured runners in response to fatigue, but no changes in non-injured
runners. Thus, the non-injured runners demonstrated some degree of
fatigue-resistance in balance dynamics, which was not predicted. Also,
as predicted, there were no group differences or fatigue-related
changes in the long-term correlation structure or crossover point,
which is consistent with the lack of task-level changes (Prediction 5).
Finally, we developed an objective, model-based approach for

TABLE 4 Balance dynamics.

Time Injured Non-injured Statistical effect

Time Group Time × group

Mean (SD) Mean (SD) F1,25 p η2p F1,25 p η2p F1,25 p η2p
SampEn Pre 0.29 (0.07) 0.28 (0.08) 1.28 .27 .05 0.33 .57 .01 7.04 .014*a .23

Post 0.23 (0.04) 0.29 (0.12)

αS Pre 1.46 (0.14) 1.50 (0.11) 0.76 .39 .03 0.02 .89 .00 4.02 .056 .14

Post 1.53 (0.09) 1.47 (0.18)

αL Pre 0.69 (0.11) 0.66 (0.07) 0.01 .92 .00 1.07 .31 .04 0.33 .57 .00

Post 0.70 (0.12) 0.65 (0.12)

C Pre 0.62 (0.09) 0.64 (0.14) 0.25 .62 .01 0.36 .56 .02 0.034 .85 .01

Post 0.63 (0.14) 0.66 (0.14)

SD, standard deviation; * - statistical significance (p < 0.05).
a– Post-hoc with Bonferroni adjustment revealed a difference in the injured group (post < pre; F1,25 = 7.17; p = .01; η2 = .23). αS – Short-term DFA exponent; αL – Long-term DFA exponent;

c – crossover point.

Sample Entropy (SampEn) andDetrended Fluctuation Analysis (DFA) outcomes were analyzed with two-waymixed-model ANOVAs, with Time andGroup as fixed factors and participant as a

random factor. Means and standard deviations are reported for pre- and post-tests and the injured and non-injured groups. The results of the two-waymixed-model ANOVAs, are also reported,

including F-values, p-values, and partial eta squared. ANOVA statistics are rounded to two decimal places.

FIGURE 6
Percent change from post to pre-test in balance dynamics: Sample Entropy (SampEn) and Detrended Fluctuation Analysis (DFA). The injured group
decreased SampEn and increased Short-term α after high-intensity run, while the non-injured group did not change. αS– Short-term scaling exponent;
αL– Long-term scaling exponent; c – Crossover point; * - siginificant difference between groups (p < 0.05); ϯ - significantly different from 0% (p < 0.05);
C (solid dots) – individual results; ▬○▬ – median and interquartile range; ▬ (horizontal lines) – group mean.
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characterizing crossovers in balance dynamics, with implications for
identifying and quantifying crossover phenomena in human behavior.

Changes to balance dynamics following high-intensity running
were observed in recreational runners that became injured in the
next 6 months. Specifically, the injured group demonstrated a 15.6%
reduction in SampEn and a 5.6% increase in the short-term scaling
exponent. Increased regularity and DFA scaling exponent in
movement dynamics have been previously observed in response
to fatigue (Pethick et al., 2015; 2016; Vázquez et al., 2016) and in
individuals with injury or injury history (Georgoulis et al., 2006;
Tochigi et al., 2012; Quatman-Yates et al., 2015; Terada et al., 2015;
Quirino et al., 2021). For example, injured individuals showed
greater regularity (lower SampEn) of balance dynamics during
relaxing standing, compared to healthy controls (Quatman-Yates
et al., 2015). These results are commonly interpreted as a reduced
capacity to meet task demands, which may be associated with a
reduction in adaptability following fatigue-inducing exercise
(Vázquez et al., 2016; Balagué et al., 2020). For instance, Montull
et al. (2020) reported that more persistent ankle acceleration
dynamics was associated to worse self-reported performance in
slackline walking, which they interpreted as an indication of less
adaptable behavior. Only the injured runners were affected by the
fatigue protocol. The non-injured runners did not demonstrate
significant changes to their balance dynamics after the high-
intensity run, which may indicate a fatigue resistance or the
ability to mitigate the deleterious consequences of exercise-
induced fatigue (Monjo et al., 2015). Therefore, these findings
provide support for the proposal of Fonseca et al. (2020) that the
capacity to withstand perturbations from training and fatigue is
fundamental to reducing injury occurrence.

Notably, the short-term scaling exponents indicated that the
CoM displacements were nonstationary (α > 1) and characterized by
ordinary diffusion (α ≈ 1.5), such that variance increased
proportionally with time. Past studies have commonly reported
stationary and positively correlated (.5 < α < 1) postural
displacements (e.g., Collins and De Luca, 1993; Delignières et al.,
2011). But, nonstationary subdiffusive (1 < α < 1.5) dynamics
(Kodama et al., 2022) and superdiffusive (α > 1.5) dynamics (van
den Hoorn et al., 2018) have also been reported during single-leg
and relaxed standing, respectively. Short-term persistence reflects
drifts in postural displacements, with suggestions indicating that
these are related to open-loop control (Collins and De Luca, 1993),

exploratory behavior (Riley et al., 1997a), threshold-based control
(Delignières et al., 2011), or inertial movements (Liebovitch and
Yang, 1997). Our data cannot distinguish between these
possibilities—for instance, it would be challenging to disentangle
exploratory and inertial contributions. Increased αS in the injured
group reflects greater diffusion of the CoM displacements per unit
time, which is consistent with the increase in average cycle speed,
which was also observed. This corresponded to the more regular
CoM displacements captured by SampEn, which aligns with
expectations for how these variables should co-vary for
nonstationary stochastic processes (Liddy and Busa, 2023). More
importantly, the injured group was, on average, distinguished by the
changes in SampEn and short-term correlation structure, which
seem to provide meaningful indicator of reduced capacity to recover
from fatigue-inducing exercise and may be associated with a greater
risk of future injury.

Examining within-person percent changes to balance dynamics in
response to the fatigue protocol better distinguished the injured and
non-injured groups compared to the mixed-model approach, which
examined the absolute values. Lower SampEn was seen in the injured
group following the high-intensity run, whereas the increase in the
short-term exponent did not reach statistical significance, despite the
large effect size for the Group × Time interaction (η2p = .14). But,
overall, there was no evidence of group differences. This suggests that
comparing within-person percent changes in balance dynamics over
time may provide more sensitive metrics for tracking clinically
relevant outcomes, such as injury occurrence in recreational
runners, than examining absolute values alone. Evaluating within-
person percent change may also be beneficial for comparing results
across different studies and populations or establishing clinically
meaningful change. The reason is that comparing just the absolute
values of entropy and DFA is challenging due to differences in task,
dataset length, data cleaning, and hyperparameter selection, which
can impact results (Ducharme and Van Emmerik, 2018; Liddy and
Busa, 2023). However, it is still imperative to report the absolute values
because they contain descriptive information about underlying
processes.

As predicted, task performance did not differ between the
injured and non-injured groups before or after the high-intensity
run. Our results are congruent with previous observations that
fatigue did not impair performance on single-leg tests (Zech
et al., 2012; Heil and Büsch, 2022). Although performance (i.e.,

TABLE 5 Percent change in balance dynamics outcomes.

Injured Non-injured F1,24 Mean difference (95% CI) p η2p

Mean (SD) Mean (SD)

SampEn (%) −15.6 (19.9)a 8.3 (28.1) 6.29 −24.0 (−43.7, −4.3) .02* .21

αS (%) 5.5 (8.7)b −1.9 (9.4) 4.44 7.5 (0.2, 14.8) .04* .16

αL (%) 1.8 (16.5) 0.3 (19.2) 0.05 1.5 (−13.0, 16.0) .83 .00

c (%) 1.1 (15.0) 4.6 (23.3) 0.22 −3.6 (−19.4, 12.3) .65 .01

SD, standard deviation; * - statistical significance (p < .05).
a– significantly different from 0% (t(24) = −2.31, p = 0.03).
b– significantly different from 0% (t(24) = 2.21, p = 0.04); αS – Short-term DFA exponent; αL – Long-term DFA exponent; c – crossover point.

The within-person percent change in the Sample Entropy (SampEn) and Detrended Fluctuation Analysis (DFA) outcomes was computed as the difference between the pre- and post-test values

divided by the pre-test values. The results of the one-way ANOVAs, including F-values, p-values, and partial eta squared comparing the percent change between the injured and non-injured

groups are reported. ANOVA statistics are rounded to two decimal places.
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number of repetitions, cycle time, and amplitude)and physiological
(e.g., VO2 max) variables are commonly considered markers of
fatigue or fitness (Balagué et al., 2020; Garcia-Retortillo and Ivanov,
2022), they did not discriminate injured from non-injured runners
following high-intensity exercise. However, the injured group
increased cycle speed following the high-intensity run, while the
non-injured group did not. Fatigue-related increases in postural
sway velocity are commonly assumed to be maladaptive (Corbeil
et al., 2003; Lin et al., 2009; Zech et al., 2012). But, task performance
can be maintained even when movement patterns change following
fatigue (Gates and Dingwell, 2008). Thus, we interpret the increased
cycle speed, regularity, and short-term correlation structure in the
injured group as compensatory adaptations to maintain task
performance in response to fatigue. Moreover, these findings
suggest that examining task performance in isolation can be
insufficient to detect changes in movement that reflect future
injury occurrence.

Similarly, as predicted, the long-term correlation structure was
not impacted by the high-intensity run and did not differ between
the injured and non-injured groups. In this study, the long-term
region encompassed multiple cycles (from .33 to 3.33 cycles), and as
a result was more reflective of task-level dynamics. The long-term
region was, on average, characterized by stationary persistent
correlations (.5 < α < 1). Stationary, persistent correlations have
been observed in the long-term region during relaxed standing (van
den Hoorn et al., 2018). But, long-term scaling has consistently been
described by stationary, anti-persistent correlations (α < .5) during
quiet standing (Collins and De Luca, 1993; Collins and De Luca,
1995a; Collins and De Luca, 1995b; Delignières et al., 2011). Such
dynamics are consistent with an intermittent control strategy that
seeks to reverse postural displacements in an event-driven manner
(Gawthrop et al., 2011), such as when a velocity threshold is crossed
(Delignières et al., 2011). By contrast, in the single-leg squat task, the
CoM displacements were less tightly regulated—i.e., the statistical
tendency to reverse direction was not observed—suggesting a
modified control strategy compared to quiet standing. Therefore,
the long-term correlation structure seems to reflect the degree of
corrective control required to meet concurrent demands related to
postural stability and suprapostural task performance.

Another expectation was that the crossover point, which
indicates the timescale marking the change in correlation
structure, would not be affected by fatigue or differ between the
groups. This expectation was related to the prediction of no changes
in task performance, as well as the observation that the crossover
point can reflect periodic trends (Hu et al., 2001). Squatting induces
quasiperiodic transverse plane movements because the CoM tends
to shift forward and ipsilateral during the eccentric phase and
backward and contralateral during the concentric phase.
Crossovers can reflect statistical artifacts, which can be filtered
out to recover a single-scaling region (e.g., Anastas et al., 2011).
However, the single-leg squat task results in quasiperiodic CoM
movements that are an inextricable part of the movement dynamics.
Thus, changes in crossover points would only be expected when
accompanied by differences in the movement frequency.

Past studies examining crossovers in balance dynamics have
relied mainly on visual inspection to identify the number and
location of the short- and long-term regions (e.g., Collins and De
Luca, 1993; Delignières et al., 2011). Moreover, the intersection of

the lines fitted to the two regions has been used to identify the
crossover point (e.g., Collins and De Luca, 1993) rather than
including it as an additional model parameter. To mitigate these
concerns, we adopted an objective, model-based approach that
expands on the work of Kuznetsov et al. (2013). The guiding
principle of our approach is to identify a parsimonious solution
that balances model accuracy with simplicity while avoiding a priori
assumptions about how many scaling regions are present. The
default model was a simple linear model, which represents a
single scaling region, consistent with the discrete fGn/fBm model
or the continuum 1/f−β model. Multi-segment piecewise linear
models were then evaluated against this null hypothesis using
model weights to minimize selection biases and penalize overly
complex models. Crucially, this approach can easily be translated to
aid in the identification and quantification of crossover phenomena
in many types of neurophysiological, biomechanical, behavioral, and
even psychological measures.

5 Limitations

This study has multiple limitations. First, retrospective surveys
rely on the ability to recall past events and may not always provide
reliable information (Schwarz, 1999). Despite this drawback,
retrospective surveys are useful tools for documenting injuries
(e.g., Jenkins et al., 2002; Gabbe et al., 2003). Because athletes
can have trouble recalling the specific nature or extent of their
injuries (Gabbe et al., 2003), future work may benefit from more
frequent check-ins to mitigate time-dependent memory effects
(Jenkins et al., 2002) and identify whether changes balance
dynamics are associated with injury onset.

Second, considering the multifactorial nature of sports injuries,
many factors may have contributed to the reported injuries. However,
both groups were free of injury at the initial assessment and had
similar characteristics commonly associated with injury risk, such as
previous injury history and training variables. Moreover, there was no
association between training variables or aerobic fitness and task
performance or balance dynamics, reaffirming that these factors did
not influence the reported findings. In the six-months after
assessment, the injured group decreased their weekly training
volume by 21.4%, while the non-injured group increased their
weekly training volume by 23.9% relative to the initial assessment.
The decline in training volume in the injured group was not
unexpected given the definition of running injury adopted in this
study. But, more importantly, these data rule out the possibility that
the reported injuries were due to an increase in training volume.
While the injury survey inquired about all-cause injuries, all reported
injuries were overuse injuries commonly observed in runners
(Hreljac, 2005; Van Gent et al., 2007; Lopes et al., 2012;
Verschueren et al., 2020; Willwacher et al., 2022). Because overuse
injuries refer to musculoskeletal insults resulting from repeated stress
over time (Hreljac, 2005), they are mainly related to a lower capacity
to adapt to the stresses imposed by training and other physical
activities (Fonseca et al., 2020). Therefore, this promising approach
may provide insights into how the ability to respond to fatiguing
exercise may reveal impending overuse injury. Still, the inclusion of
physiological variables (e.g., intra- and inter-muscular coordination)
that are affected by fatigue and related to injury were not assessed here
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and should be considered in future studies using tools and concepts
from the field of network physiology (Bashan et al., 2012; Balagué
et al., 2020).

Third, the study sample was small (N = 31), which reduces
statistical power and the precision of effect size estimates, and
limits the generalizability (Hackshaw, 2008). However, based on the
strong evidence of changes to balance dynamics in the injured group,
as indicated by large effect sizes, the experimental approach adopted
here should be investigated in larger samples. Moreover, this study
provides preliminary evidence of group-level differences in the balance
dynamics of recreational runners that did and did not experience an
injury over half a year. While the sensitivity and specificity of this
specific protocol for predicting running-related injuries remain to be
seen, we believe our general approach will contribute to a better
understanding of future injury occurrence and the development of
preventive strategies for overuse running-related injuries.

6 Conclusion

Recreational runners that reported an injury in the 6 months
following assessment demonstrated changes in balance dynamics
during a prolonged single-leg squat task when fatigued compared
to a matched group of runners who did not become injured.
Specifically, runners who sustained an injury demonstrated more
regular and diffusive short-term CoM displacements following a
high-intensity running protocol. Additionally, single-leg squat
task performance measured by common spatial and temporal
outcomes was not affected by fatigue and did not differ by future
injury status in either group. Thus, examining balance dynamics
during a single-leg squat task following a high-intensity training
distinguished the injured and non-injured groups of runners,
whereas performance variables in isolation were insufficient to
identify fatigue-related changes that may be indicative of future
injury occurrence. We also demonstrate the promise of tracking
within individual relative changes (i.e., percent change) in
balance dynamics over time for evaluating the effect of fatigue
and its association with future injury occurrence. Finally,
conducting functional balance assessments, such as the 60 s
single-leg squat test, before and after training or exercises may
provide valuable early information for identifying reduced
adaptative capacity of recreational runners that may ultimately
lead to injury.
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