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Electroencephalography (EEG) is a widely employed tool for exploring brain dynamics and
is used extensively in various domains, ranging from clinical diagnosis via neuroscience,
cognitive science, cognitive psychology, psychophysiology, neuromarketing,
neurolinguistics, and pharmacology to research on brain computer interfaces. EEG is
the only technique that enables the continuous recording of brain dynamics over periods of
time that range from a few seconds to hours and days and beyond. When taking long-term
recordings, various endogenous and exogenous biological rhythms may impinge on
characteristics of EEG signals. While the impact of the circadian rhythm and of
ultradian rhythms on spectral characteristics of EEG signals has been investigated for
more than half a century, only little is known on how biological rhythms influence
characteristics of brain dynamics assessed with modern EEG analysis techniques. At
the example of multiday, multichannel non-invasive and invasive EEG recordings, we here
discuss the impact of biological rhythms on temporal changes of various characteristics of
human brain dynamics: higher-order statistical moments and interaction properties of
multichannel EEG signals as well as local and global characteristics of EEG-derived
evolving functional brain networks. Our findings emphasize the need to take into
account the impact of biological rhythms in order to avoid erroneous statements about
brain dynamics and about evolving functional brain networks.
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1 INTRODUCTION

The human brain is an open, dissipative, and adaptive dynamical system that can be described as a
complex network of networks of interacting subsystems. It is an inherently nonstationary system,
whose complicated spatial-temporal dynamics is still poorly understood. In order to gain deeper
insights, various measurement techniques are employed to record—on different spatial scales and
with different levels of invasiveness—time series of observables related to e.g. electric and/or
magnetic fields or thermodynamic and chemical properties. Among these measurement
techniques, electroencephalography (EEG) is the only technique that allows for the continuous
multichannel recording of time series of macro-scale brain dynamics over extended periods of time
(days to weeks and beyond (Niedermeyer and Lopes da Silva, 2005;Weisdorf et al., 2019; Viana et al.,
2021)). In case of brain pathologies (such as epilepsy), invasive electroencephalography provides
additional access to the meso- (≈105 neurons) and the micro-scale (single neurons) (Engel et al.,
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2005; Chang, 2015). Electroencephalography allows to capture a
wide spectrum of physiological and pathophysiological activities
on various time scales.

Access to brain dynamics using EEG can be gained through
active perturbations or passive observations. In the first case,
evoked or event-related potentials (EP/ERP) are assumed to
reflect the synchronized neuronal relaxation dynamics of
specific brain regions elicited by motor, sensory, or cognitive
tasks. On a more global level, cortical excitability can be probed
with e.g. electrical or magnetic stimulation (Hallett, 2007; Yang
et al., 2021). With these approaches, the recorded relaxation

dynamics is typically confined to time scales ranging from a
few milliseconds to a few seconds. In the second case, ongoing
(i.e., non-triggered) EEG signals are recorded e.g. during sleep,
states of wakefulness (daily life activities), or during specific
neuropsychological tasks that control sensory inputs and/or
higher cognitive functions. Such recordings capture brain
dynamics on time scales that range from a few seconds to
hours and days and beyond. Both these cases require special
time series analysis techniques. Modern EEG analysis techniques
allow investigation of various linear and nonlinear aspects of
ongoing brain dynamics of single brain regions as well as of

FIGURE 1 | Spectrum of main biological rhythms in humans. (A): Logarithmic presentation of period durations of rhythms (modified after Hildebrandt (1991)). (B):
Zoom into human circadian rhythm with some behavioral and physiological functions within the 24 h cycle that impact on the dynamics of the brain and other organ
systems.
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properties of interactions (strength, direction, coupling
functions) between the dynamics of two or more brain
regions. Together with graph-theoretical concepts these
analysis techniques provide a means to characterize the
dynamical evolution of brain networks (for an overview, see
e.g. Niedermeyer and Lopes da Silva (2005), Pereda et al.
(2005), Stam (2005), Lehnertz et al. (2009), Lehnertz (2011),
Sakkalis (2011), Greenblatt et al. (2012), Lehnertz et al. (2014),
Lehnertz et al. (2017).

Like many other physiologic observables, EEG signals are
influenced by various endogenous and exogenous biological
rhythms (Aschoff, 1981; Rensing et al., 1987). Among these
rhythms, the circadian rhythm—a roughly 24-h cycle (range:
20—28 h; see Figure 1)—is probably the best investigated rhythm
(Mills, 1966; Halberg, 1969; Folkard et al., 1983; Spengler et al.,
2000; Cermakian and Boivin, 2003; Bell-Pedersen et al., 2005;
Iskra-Golec, 2006; Czeisler and Gooley, 2007; Franken and Dijk,
2009; Mohawk et al., 2012; Gillette, 2013; Ly et al., 2016; Duboc
et al., 2020; Foster, 2020; Garbarino et al., 2020; Hablitz et al.,
2020; Lananna and Musiek, 2020; Matenchuk et al., 2020).
Ultradian rhythms have shorter periods than the circadian
rhythm’s period, and periods are often defined to be shorter
than 20 h but longer than 1 h. These rhythms are often not
directly related to environment cycles which renders their
interpretation difficult. Prominent examples include the
90—120 min cycling of the sleep stages (Dement and
Kleitman, 1957) and the basic rest-activity cycle (Klein and
Armitage, 1979; Lavie and Kripke, 1981; Kleitman, 1982).
Infradian rhythms have longer periods than the circadian
rhythm’s period, i.e., longer than 28 h. Prominent examples
include the circaseptan rhythm (weekly rhythm, 7 ± 3 days), the
circatrigintan rhythm (monthly rhythm, 30 ± 5 days, e.g.
menstruation), and the circannual rhythm (yearly rhythm,
1 year ±2 months). Interactions between the various rhythms
are not fully understood (Laje et al., 2018).

The impact of particularly the circadian rhythm and of
ultradian rhythms on EEG signals is known for more than
50 years (for circadian rhythms, see, e.g. Frank et al. (1966);
Gundel and Witthöft (1983); Machleidt (1980); Borbély et al.
(1981); Torsvall and Åkerstedt (1987); Cacot et al. (1995); Borbély
and Achermann (1999); Aeschbach et al. (1999); Dijk and Duffy
(1999); for ultradian rhythms, see, e.g. Manseau and Broughton
(1984); Oken and Chiappa (1988); Tsuji and Kobayashi (1988);
Hayashi et al. (1994); Kaiser (2008); Piarulli et al. (2016)). Many
seminal studies, however, were based on EEG recordings that
covered time periods ranging from a few seconds to a few hours
and/or captured the dynamics of only a few brain regions.
Moreover, most studies concentrated on the rhythms’ impact
on spectral characteristics of EEG signals, i.e., on changes of
spectral power in the well-known alpha-, beta-, theta-, and delta-
frequency band. Given recent technological developments that
enable ultra-long (days to weeks and beyond) scalp (Casson,
2019), sub-scalp (Weisdorf et al., 2019; Duun-Henriksen et al.,
2020), and intracortical (Zaer et al., 2021) EEG recordings in
diverse applications (Aricò et al., 2018; Abiri et al., 2019; Cinel
et al., 2019; Lohani et al., 2019; Alsuradi et al., 2020; Dehais et al.,
2020; Rashid et al., 2020) even beyond clinical ones, it is important

to understand the impact of endogenous and exogenous rhythms on
characteristics of brain dynamics assessed with the aforementioned
modern EEG analysis techniques.

2 FROM LOCAL TO GLOBAL: IMPACT OF
BIOLOGICAL RHYTHMS

In the following, we highlight some important aspects of this
impact by discussing findings that we obtained from analyses of
exemplary continuous multiday, multichannel EEG signals
recorded non-invasively and invasively from two subjects. We
here concentrate on exemplary characteristics of brain dynamics
and of so called functional brain networks (Bullmore and Sporns,
2009) that we estimated from EEG signals with various analysis
techniques using a moving-window approach (window length:
20 s; non-overlapping window; demeaned artifact-free data). The
chosen window length can be regarded as a compromise between
the required statistical accuracy for the calculation of the various
characteristics and approximate stationarity of EEG signals
within a window’s duration (Isaksson et al., 1981; Blanco
et al., 1995; Rieke et al., 2003).

For each window and each sampled brain region, we estimated
the respective dynamics’ statistical moments (Press et al., 2007):
standard deviation σ, skewness s, and (excess) kurtosis k. For each
window and each (non-redundant) pair of sampled brain regions,
we characterized their strength of interaction employing a phase-
based (mean phase coherence R (Mormann et al., 2000)) and an
amplitude-based estimator (absolute value of the linear
correlation coefficient ρ (Press et al., 2007)). Both these
estimators are often used to derive a functional brain network,
whose vertices are associated with the sampled brain regions and
whose edges represent the strength of interaction between pairs of
vertices (often referred to as functional connectivity; see Bastos
and Schoffelen (2016) for an overview). We here proceeded in
that way and estimated the network’s clustering coefficient CX as
well as eigenvector centrality for vertices CXv and for edges CXe
(Lehnertz et al., 2014; Bröhl and Lehnertz, 2019), where the
superscript X is a placeholder for the employed estimator for the
strength of interaction (R or ρ). This resulted in a temporal
sequence of various EEG characteristics and of characteristics of
EEG-derived, fully connected, weighted and undirected,
functional brain networks. We then adopted a pragmatic
approach to investigate the contribution of timescales of
endogenous and exogenous rhythms on the characteristics’
temporal variability and estimated the power spectral densities
(Lomb-Scargle periodogram (Press and Rybicki, 1989)) of the
respective time series (other analysis tools (Huang et al., 1998;
Kantelhardt et al., 2001) might be better suited for nonstationary
data).

2.1 Impact on Temporal Changes of
Dynamics’ Characteristics of Single Brain
Regions
We begin with discussing the impact of various rhythms on the
temporal changes of statistical moments estimated for the
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dynamics of 19 brain regions recorded non-invasively with scalp
EEG (nEEG) (Niedermeyer and Lopes da Silva, 2005)
(Figure 2A). A large fraction of the temporal variability of the
nEEG signals’ standard deviation, skewness, and kurtosis can be
attributed to the circadian rhythm with a period length at about
24 h. Interestingly, both the rhythm’s intensity and its period
length vary for the different recording sites, which would indicate
that the dynamics of the different brain regions are differently
affected by this rhythm. Similar observations can be made for
ultradian rhythms with period lengths at about 12, 8, 6, 4 h, 90,
and 60 min but with comparably smaller intensities.

Topographically, these rhythms are most pronounced in
fronto-central areas, and these areas are known to reflect, for
instance, the dynamics of the wake-dependent, or homeostatic
component of sleep regulation (Cajochen et al., 2002; Croce et al.,
2018). Another important aspect of the rhythms’ impact can be
identified from the circadian distribution of nEEG signals’
statistical moments. Within the circadian cycle, the standard
deviation attains highest values during the nighttime, as
expected (Hjorth, 1970, 1973). Notably, the nEEG signals’
third and fourth statistical moment indicate a clear deviation
from Gaussianity for data recorded during the daytime.

FIGURE 2 | Impact of circadian rhythm and of ultradian rhythms on temporal changes of statistical moments of brain dynamics. Exemplary findings for (A) non-
invasive EEG (nEEG) recording lasting 7 days (recording sites shown on y-axis; data from a male subject (81 y) with cognitive impairment under CNS drugs admitted for
evaluation of epilepsy risk) and (B) intracranial EEG (iEEG) recording lasting 14 days (sampled brain regions (left/right mesial temporal lobe (MTL) and left/right frontal
areas) shown on y-axis; data from a male subject (55 y) with epilepsy under CNS drugs admitted for presurgical evaluation). Top: relative power spectral densities
(P; color coded) of time series of standard deviation σ, skewness s, and kurtosis k from each recording site. Middle: averaged relative power spectral densities (mean over
all sampled brain regions). Insets show log-log plots of data (grey) together with linear least squares lines (blue, log P � c log π, where π denotes period (range: 30 min to
32 h) and c denotes the scaling exponent). Bottom: circadian distribution of statistical moments (24 h bins; mean over all sampled brain regions). Note that for Gaussian
distributed data, skewness and (excess) kurtosis would be zero with their respective standard deviation indicated by the red circle. For σ, the outermost circle indicates
the maximum value and inner circles the relative percentage. For s and k, the grey/black circles indicate the factor by which data deviates from the standard deviation of
Gaussian distributed data (red circle). EEG data sampled at 256 Hz (A) 250 Hz (B); 16 bit ADC; bandwidth 1—45 Hz; notch filter at line frequency (50 Hz).
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We observe a similarly pronounced impact of the circadian
rhythm on statistical moments of intracranially recorded brain
dynamics (Figure 2B). Remarkably, for the iEEG signals’
standard deviation σ, the 24 h peak in the corresponding
periodogram is rather narrow, and one might speculate that
this can be related to the narrow spatial sampling of
circumscribed brain regions. Apart from rhythms with period
lengths at about 12, 8 and 4 h, other ultradian rhythms contribute
only to a small extent to the temporal variability of the iEEG
signals’ statistical moments. Within the circadian cycle, the

standard deviation again attains highest values during the
nighttime, while skewness and kurtosis here indicate a clear
deviation from Gaussianity mostly independent of the time
of day.

It is important to note that the observed deviations from
Gaussianity—seen for both nEEG and iEEG signals and that
differentially depend on the time of day—may strongly impact on
both the design of EEG-based investigations of various
physiological and pathophysiological phenomena and the
suitability and reliability of various EEG analysis techniques

FIGURE 3 | Impact of circadian rhythm and of ultradian rhythms on temporal changes of interaction properties of brain dynamics. Same EEG data as in Figure 2:
(A) scalp recording; (B) intracranial recording. Top: relative power spectral densities (color coded) of time series of estimates of the strength of interaction between each
(non-redundant) pair of sampled brain regions (estimates based on mean phase coherence R and on linear correlation coefficient ρ). Intrahemispheric interactions are
labeled l–l/r–r and interhemispheric interactions l–r. Middle: averaged relative power spectral densities (mean over all non-redundant pairs of sampled brain
regions). Insets show log-log plots of data (grey) together with linear least squares lines (blue, see Figure 2 for details). Bottom: circadian distribution of estimated
interaction properties (24 h bins; mean over all non-redundant pairs of sampled brain regions).
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that assume the data to be Gaussian distributed. In the same
manner, the observed 1/f-like temporal fluctuations of the EEG
signals’ statistical moments (as indicated by the scaling exponents
in the range c ∈ [0.6, 1.1]) not only contributes critically to the
ongoing debate on the functional significance of scale-free brain
dynamics (Bédard et al., 2006; Chialvo, 2010; Beggs and Timme,
2012; Papo, 2013; He, 2014; Papo, 2014; Lehnertz et al., 2017;
Uddin, 2020) but also can be regarded a cautionary tale for EEG-
based studies of e.g. cycles in epilepsy (Karoly et al., 2018; Baud
et al., 2021; Leguia et al., 2021) or of seizure-precursor
identification using e.g. the concept of critical slowing down
(see Wilkat et al. (2019) and Hagemann et al. (2021) and
references therein for a critique). Not taking into account
dependencies of statistical characteristics of EEG signals on
biological rhythms can lead to erroneous statements about
brain dynamics.

2.2 Impact on Temporal Changes of
Interactions Between Brain Regions
We proceed with discussing the impact of the various biological
rhythms on the temporal changes of interactions between the
dynamics of the sampled brain regions (Figure 3). For both, the
phase-based and the amplitude-based estimator for the strength
of interaction and independent of the type of recording, we
observe—on average—a pronounced impact of the circadian
rhythm. Note, however, that interactions are not equally
affected by this rhythm; its impact may vary for short-ranged
(nearest neighbor brain regions), intermediate-ranged (regions
within same hemisphere), and long-ranged (across hemispheres)
interactions (cf. Kreuz et al. (2004) and Lehnertz et al. (2017)).
Moreover, for some of these interactions we observe additional
contributions with period lengths around 17–19 h and around
27–30 h, which lead to either a triplett-like structure together with
the circadian peak or to a broadening of that peak in the averaged
periodogram.

Different ultradian rhythms appear to impact on temporal
changes of the strength of interactions estimated from nEEG
signals (Figure 3A) and from iEEG signals (Figure 3B) but with
comparably smaller intensities. For the former, we observe
contributions at period lengths around 3.5 and 12 h, while for
the latter period lengths around 5 and 8 h or around 4 and 7 h can
be identified depending on the employed estimator for the
strength of interactions (R or ρ) together with an additional
contribution at 12 h (cf. Porz et al. (2014)). A differential impact
of these biological rhythms on the strength of interactions,
estimated with either R or with ρ, can also be observed within
the circadian cycle. Independent of the type of recording, the
strengths of interactions are comparably higher during the
daytime, which would point to a decreased level of
synchronization between brain regions during the nighttime
(Steriade and Hobson, 1976; Horovitz et al., 2009; Lazar et al.,
2015; Mizrahi-Kliger et al., 2018; Nguyen et al., 2018).
Interestingly, the daytime amplitude-based contributions
(estimated with ρ) appear to be delayed by 3–6 h to the phase-
based contributions (estimated with R). We can not yet provide
an explanation for such a time delay, but it would need to be taken

into account in comparative studies of e.g. functional connectivity
or (patho-)physiologic synchronization phenomena.

In line with a number of previous studies (see, e.g., Gong et al.
(2003); Stam and De Bruin (2004); Botcharova et al. (2014); Racz
et al. (2018); Daffertshofer et al. (2018); Stylianou et al. (2020); La
Rocca et al. (2021)), we observe 1/f-like temporal fluctuations of
characteristics of brain interactions (as indicated by the scaling
exponents c ∈ [0.77, 0.94]). We conjecture that such scale-free-
like brain interaction properties can be traced back to specific
aspects of the dynamics of brain regions involved in these
interactions. We also conjecture that the various biological
rhythms impact in a similar manner on the other properties
of interactions, namely direction and coupling functions. Not
taking into account dependencies of interaction properties on
biological rhythms can lead to erroneous statements about brain
interactions. At the same token, such dependencies may rank
among the main determinants of the repeatedly reported low
reproducibility of functional brain imaging studies (e.g. (Calhoun
et al., 2014; Hodkinson et al., 2014; Zalesky et al., 2014; Nakamura
et al., 2015; Open Science Collaboration, 2015; Preti et al., 2017;
Thomas et al., 2018; Facer-Childs et al., 2019; Lurie et al., 2020;
Orban et al., 2020; Specht, 2020)).

2.3 Impact on Temporal Changes of
Characteristics of Evolving Functional Brain
Networks
Eventually, we discuss the impact of the various biological
rhythms on temporal changes of exemplary global (clustering
coefficient (CR and Cρ)) and local characteristics (centralities of
vertices (CRv and Cρv) and edges (CRe and Cρe)) of evolving brain
networks (Figure 4). In general, we observe for both EEG
recordings a vastly different impact of biological rhythms on
network characteristics. Importantly, the impact strongly
depends on which estimator (R or ρ) was employed to derive
network edges.

Clustering Coefficient
The temporal changes of C ρ of nEEG-based evolving networks
(Figure 4A) are strongly dominated by the circadian rhythm with
only minor contributions from ultradian rhythms with period
lengths ranging from 1 h to about 14 h. In contrast, for the same
networks but with edges derived via R, the circadian rhythm’s
impact on CR compares to the ones seen for the aforementioned
ultradian rhythms. Within the circadian cycle, fluctuations of
both CR and C ρ amount to a few percent.

For the clustering coefficient of iEEG-based evolving networks
(Figure 4B), the dependence of the rhythms’ impact on the
estimator used to derive edges is less pronounced. The
circadian rhythm appears to be decomposed into quartett-like
structures with contributions at period lengths 22, 24, 19, and
27 h (descending order of intensities) for CR and at 25, 28, 21, and
19 h for Cρ. For CR, we observe contributions of ultradian
rhythms with period lengths at about 15, 12, 8, and 3 h but
with comparably small intensities. For Cρ, there are contributions
with higher intensities and with period lengths at about 17.5, 15,
and 16 h (triplett-like structure) as well as at 13, 8.5, 6.5, and 3.8 h.
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As with the nEEG-based evolving networks, fluctuations within
the circadian cycle of clustering coefficients amount to a few
percent. Comparable findings were reported for the clustering
coefficient as well as for other global characteristics of binary
evolving brain networks derived from continuous, long-term,
multichannel iEEG (Kuhnert et al., 2010; Geier et al., 2015;
Lehnertz et al., 2017) and nEEG data (Mitsis et al., 2020)
recorded from a larger group of epilepsy patients. Note that
the temporal fluctuations of the clustering coefficients of the
nEEG-based and iEEG-based evolving brain networks comply
with a power-law with a scaling exponent c in the range
c ∈ [0.71, 0.96]). We are not aware of previous reports on
such an observation.

Vertex and Edge Centralities
For the nEEG-based evolving networks (Figure 4A), we
concentrate on centrality (CRv and Cρv) of vertices associated
with a central brain area (cf. Section 2.1) and with occipital
brain areas (Kuhnert et al., 2012) as well as on centrality (CRe and
Cρe) of edges connecting these brain areas (central—occipital and
left occipital—right occipital). Using a centrality-based ranking
(Liao et al., 2017) and independent of the estimator employed to
derive network edges, we find the occipital vertices to rank higher,
on average, than the central vertex. The same holds true for the
edge connecting the occipital vertices when compared to the edge
connecting the occiptal and the central vertex. Note, that these
high-ranking vertices and edges are not the most important

FIGURE 4 | Impact of circadian rhythm and of ultradian rhythms on temporal changes of global and local characteristics of evolving brain networks. Same EEG data
as in Figure 2. (A) Scalp recording; upper row, from left to right: relative power spectral densities of time series of the networks’ clustering coefficient C (derivation of
network edges based on mean phase coherence R (green) or on linear correlation coefficient ρ (purple)), of eigenvector centralities CXv of selected vertices (central
(orange); occipital (blue)), and of eigenvector centralities CXe of selected edges (central—occipital (orange), occipital—occipital (blue); X refers to employed estimator
(R or ρ) for derivation of network edges). Insets show log-log plots of data (grey) together with linear least squares lines (see Figure 2 for details; data shifted to enhance
readability). Lower row: circadian distribution of estimated network characteristics (24 h bins; colors as is upper row). The outermost circle indicates the maximum value
and inner circles the relative percentage. (B) Intracranial recording; upper row, same as in (A), but for selected vertices from right mesial temporal lobe (RMTL; orange)
and from left frontal area (LF, blue) and for selected edges (RMTL—LF (orange); LF—LF (blue). Lower row as in (A).
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(highest rank) network constituents. We observe a strongly
pronounced impact of the circadian rhythm on temporal
changes of centrality (CRv and Cρv) of the central vertex (which
was to be expected, at least to some extent, from our findings in
Section 2.1). Apart from a comparably small contribution with a
period length at around 12 h, the impact of other ultradian rhythms
appears negligible. For temporal changes of centrality of the occipital
vertex, however, the rhythms’ impact is strongly reduced (Cρv) or barely
detectable (CRv ) (note the reduced range of the scaling exponent
c ∈ [0.59, 0.63]). The differential impact of the biological rhythms
on vertex centralities is also reflected within the circadian cycle. We
only observe during the daytime substantial alterations (∼ 10%) of the
otherwise almost constant centrality of the central vertex. Constancy is
also seen for the centrality of the occipital vertex.

Now, for temporal changes of edge centrality (CRe and Cρe), it is
surprisingly the edge connecting the occipital vertices for which
we observe a strong impact of the circadian rhythm. For the other
edge (that connects central and occipital vertices), the
dependence of the rhythms’ impact on the estimator used to
derive network edges is strongly pronounced. For Cρe , the
rhythms’ impact is barely detectable, and for CRe , we observe
contributions with period lengths at 18, 22, and 25 h as triplett-
like structures. In addition to comparably strong contributions
with a period length at around 12 h, we observe contributions from
other ultradian rhythms down to period lengths around 60min,
particularly for temporal changes of CRe for both investigated edges.
Within the circadian cycle, the fluctuations of edge centralities
associated with these rhythms amount to a few percent.

For the iEEG-based evolving networks (Figure 4B), we
concentrate on centrality (CRv and Cρv) of vertices associated
with the right mesial temporal lobe (RMTL) and with the left
frontal (LF) area (see Section 2.1) as well as on centrality (CRe and
Cρe) of edges connecting these brain areas (RMTL—LF and
LF—LF). As with the nEEG-based evolving networks, we use a
centrality-based ranking to estimate the importance of the chosen
vertices and edges. Independent of the estimator employed to
derive network edges, we find the RMTL vertex to rank higher, on
average, than the LF vertices, and the same holds true for the edge
connecting the LF vertices. We also note here, that these high-
ranking vertices and edges are not the most important (highest
rank) network constituents. Independent of the estimator
employed to derive network edges, we observe a strongly
pronounced impact of the circadian rhythm on temporal
changes of centrality (CRv and Cρv) of the RMTL vertex. For CRv ,
we find a triplett-like structure with a period length of a main
peak at around 24 h as well as less pronounced contributions at 21
and 29 h. For Cρv, we find a quartett-like structure peaking at
around 24 h and with less pronounced contributions at 21, 26,
and 29 h. For both centrality estimates, we observe additional
contributions with a period length centered around 12 h (again as
triplett-/quartett-like structure), and the impact of other
ultradian rhythms appears negligible. The impact of the
circadian rhythm on temporal changes of centrality of the LF
vertex is stronger pronounced for CRv than for Cρv. We observe
again triplett-/quartett-like structures with period lengths that
compare to the ones seen for the RMTL vertex. The impact of
other ultradian rhythms, including contributions at around 12 h,

appears negligible. Within the circadian cycle, particularly CRv from
both vertices exhibits stronger fluctuations (reaching up to 20%)
from noon until evening, while the fluctuations of Cρv amount to
only a few percent. Geier and Lehnertz (2017) reported comparable
observations for other vertex centralities of weighted evolving brain
networks derived from continuous, long-term, multichannel iEEG
data recorded from a larger group of epilepsy patients.

For temporal changes of edge centrality (CRe and Cρe), we
observe a strong impact of the circadian rhythm for the edge
connecting the right mesial temporal lobe and with the left frontal
area. For the edge connecting vertices within the frontal area, the
rhythm’s impact is strongly pronounced for Cρe and barely
detectable for CRe . If detectable, we find triplett-like structures
with a period length of themain peak at around 24 h as well as less
pronounced contributions around 21 h and around 28 h. For the
RMTL—LF edge, there is an additional contribution with a period
length at around 12 h (mostly triplett-like structure), and the
impact of other ultradian rhythms appears negligible. A 12 h
contribution is barely detectable for CRe of the LF—LF edge, and
for Cρe of that edge, we find comparable though less pronounced
contributions at period lengths around 8 and 12 h. The impact of
other ultradian rhythms appears negligible also for this edge.
Within the circadian cycle, fluctuations of CRe of the RMTL—LF
edge resemble the ones seen for CRv of the RMTL vertex, albeit
with higher amplitudes (reaching up to 40%). Fluctuations of CRe
of the LF—LF edge amount to only a few percent. Interestingly,
for Cρe we observe more pronounced fluctuations for the LF—LF
edge (reaching up to 20%), while the ones of the RMTL—LF edge
amount to only a few percent. As with the clustering coefficient,
we note that the temporal fluctuations of the centrality of vertices
and edges of the nEEG-based and iEEG-based evolving brain
networks comply with a power-law with a scaling exponent c in
the range c ∈ [0.59, 1.21]). We are not aware of previous reports
on such an observation.

Not taking into account dependencies of network
characteristics on biological rhythms can lead to erroneous
statements about evolving functional brain networks.

3 CONCLUSION

We illustrated the impact of various biological rhythms on
temporal changes of characteristics of human brain dynamics
at the example of multiday, multichannel non-invasive and
invasive EEG recordings from two subjects. We here considered
statistical moments and interaction properties of multichannel
brain dynamics as well as local and global characteristics of
EEG-derived evolving functional brain networks.

We observed the circadian rhythm (with a period length
around 24 h) to exert the strongest influence on almost all
investigated characteristics. Its impact varied locally, and for
characteristics of functional brain networks its influence strongly
depended on the approach used to derive networks. For some
characteristics, we observed triplett- and/or quartett-like structures
accompanying the circadian peak in the respective periodograms. This
points to a time-dependent period length of this biological rhythm that
is captured by some though not all characteristics. We also observed
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various ultradian rhythms to impact on temporal changes of the
investigated characteristics. Period lengths of these rhythms ranged
from1 to 12 h, and their impact varied locally and strongly differed for
the investigated characteristics.

So far, only a few studies related time-dependent fluctuations
of EEG signal characteristics (other than those related to power
spectral density estimates) to biological rhythms. Ngamga et al.
(2016) observed various recurrence-quantification-analysis-
based complexity measures for continuous multiday,
multichannel invasive EEG recordings from five subjects with
epilepsy to fluctuate differently within the circadian cycle, and
fluctuations differed for the investigated brain regions. Croce
et al. (2018) reported various fractal characteristics of non-invasive
EEG recordings from 21 healthy volunteers to be modulated by the
circadian rhythm. Modulations varied locally and paralleled changes
in alertness and performance. Wilkat et al. (2019) reported the
circadian rhythm and ultradian rhythms with period length larger
than 4 h to strongly impact on lag-1 autocorrelation and the (unbiased
sample) variance of continuous multiday, multichannel invasive EEG
recordings from 28 subjects with epilepsy. Since these characteristics
are often used in studies that aim at identifying generic early warning
signals for critical transitions (e.g., precursors of epileptic seizures),
omitting their dependence on biological rhythm renders the
reliability of these characteristics problematic. Kurth et al.
(2021) reported stochastic qualifiers of brain dynamics to be
strongly affected by rhythms acting on time scales that range
from hours to days. These findings indicate that biological
rhythms even impact on the choice of the stochastic model that
may better describe brain dynamics depending on time of day.
Kreuz et al. (2004), Porz et al. (2014), and Lehnertz et al. (2017)
reported various phase-based estimators for the strength of
interactions to be differentially influenced by ultradian and
circadian rhythms. Likewise, only a few studies made use of
continuous multiday, multichannel EEG recordings from larger
groups of subjects with epilepsy to demonstrate fluctuations of
local and global characteristics of EEG-derived evolving functional
brain networks that can be related to various biological rhythms
(Kuhnert et al., 2010; Geier et al., 2015; Geier and Lehnertz, 2017;
Lehnertz et al., 2017; Rings et al., 2019).

We are not aware of studies that investigated the impact of
infradian rhythms (circaseptan, circatrigintan, or circannual
rhythms) on temporal changes of characteristics of human
brain dynamics. Nevertheless, when considering time scales
of years, a number of studies reported on—at times
nontrivial—age-dependencies of characteristics of brain

dynamics (see, e.g. (Lindsley, 1939; Duffy et al., 1984;
Dustman et al., 1985, 1993; Klass and Brenner, 1995;
Anokhin et al., 1996; Polich, 1997; Stam, 2005; Fernández
et al., 2012; McIntosh et al., 2014; Sleimen-Malkoun et al.,
2015; Zappasodi et al., 2015; Ishii et al., 2017; Knyazeva et al.,
2018) and more recently of characteristics of EEG-derived
functional brain networks (see, e.g. (Vecchio et al., 2017;
Nobukawa et al., 2019; Helmstaedter et al., 2021). In addition
to the impact of the various biological rhythms, such age-
dependencies would need to be taken into account in order to
avoid erroneous statements about brain dynamics and about
evolving functional brain networks.
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