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Gait speed is a measure of general fitness. Changing from usual (UGS) to maximum (MGS)
gait speed requires coordinated action of many body systems. Gait speed reserve (GSR) is
defined as MGS–UGS. From a shortlist of 88 features across five categories including
sociodemographic, cognitive, and physiological, we aimed to find and compare the sets of
predictors that best describe UGS,MGS, andGSR. For this, we leveraged data from 3,925
adults aged 50+ from Wave 3 of The Irish Longitudinal Study on Ageing (TILDA). Features
were selected by a histogram gradient boosting regression-based stepwise feature
selection pipeline. Each model’s feature importance and input–output relationships
were explored using TreeExplainer from the Shapely Additive Explanations explainable
machine learning package. The mean R2

adj (SD) from fivefold cross-validation on training
data and the R2

adj score on test data were 0.38 (0.04) and 0.41 for UGS, 0.45 (0.04) and
0.46 for MGS, and 0.19 (0.02) and 0.21 for GSR. Each model selected features across all
categories. Features common to all models were age, grip strength, chair stands time,
mean motor reaction time, and height. Exclusive to UGS and MGS were educational
attainment, fear of falling, Montreal cognitive assessment errors, and orthostatic
intolerance. Exclusive to MGS and GSR were body mass index (BMI), and number of
medications. No features were selected exclusively for UGS and GSR. Features unique to
UGS were resting-state pulse interval, Center for Epidemiologic Studies Depression Scale
(CESD) depression, sit-to-stand difference in diastolic blood pressure, and left visual
acuity. Unique to MGS were standard deviation in sustained attention to response task
times, resting-state heart rate, smoking status, total heartbeat power during paced
breathing, and visual acuity. Unique to GSR were accuracy proportion in a sound-
induced flash illusion test, Mini-mental State Examination errors, and number of
cardiovascular conditions. No interactions were present in the GSR model. The four
features that overall gave the most impactful interactions in the UGS and MGS models
were age, chair stands time, grip strength, and BMI. These findings may help provide new
insights into the multisystem predictors of gait speed and gait speed reserve in older adults
and support a network physiology approach to their study.
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INTRODUCTION

Gait speed is a measure of general fitness (Wu and Zhao, 2021);
faster gait speed is associated with the ability to meet occupational
demands in younger adults (Aldridge et al., 2020), whilst slower
gait speed is associated with functional decline and morbidity in
older adults (Bohannon, 1992; Kawajiri et al., 2019). Even though
usual (or comfortable) gait speed (UGS) andmaximum gait speed
(MGS) are significantly intercorrelated (Kollen et al., 2006),
changing from comfortable to maximum speed requires a
general effort across many body systems. The difference
between these two gait speeds has been referred to as walking
speed reserve or gait speed reserve (GSR) (Noguerón García et al.,
2020).

UGS is a commonly measured gait characteristic in clinical
practice and has well-established associations with age (Samson
et al., 2001), physical function (James et al., 2020), and frailty
(O’Donoghue et al., 2021). On the other hand, MGS has been
associated with physical and cognitive function (Umegaki et al.,
2018; Aldridge et al., 2020). Gait speed reserve (GSR) may be a
useful proxy measure of physiological reserve in humans. For
example, some studies have suggested that in community-
dwelling older adults, the simultaneous consideration of both
usual and maximum gait speed could increase the specificity of
the identification of frailty (Noguerón García et al., 2020; do
Carmo Correia de Lima et al., 2019). The health associations of
these three modalities of gait speed (UGS, MGS, and GSR) are
somewhat different, but to our knowledge, there have been no
systematic attempts to model predictors of GSR in a large
representative sample of community-dwelling older adults
where many demographic, anthropometric, and clinical
features are measured across multiple physiological systems.

In this study, we aimed to use machine learning to, first, identify
the set of features that, from a shortlist of features, best describe
UGS, MGS, and GSR. The shortlist of features was theory-driven
and not purely exploratory; that is, we selected features that might
have physiological plausibility. Then, using explainable machine
learning methods, we investigated the selected models for UGS,
MGS, and GSR to observe how each feature in the model was
associated with the output in a non-parametric manner. With the
selected features and visualizations of the input–output
relationships, we then discussed the clinical interpretations with
respect to the cohort used and the hypothesis that UGS, MGS, and
GSR are multisystem phenomena. To touch on the relevance of the
gait speed variables with respect to clinical associations, a brief
exploration of differences in gait speeds between fallers/non-fallers
and fainters/non-fainters was included.

The paper is structured as follows: first, we describe the
TILDA study and the methods used to collect data on the
shortlisted features; next, the methods used to compare
fallers/non-fallers and fainter/non-fainters are described;
then, we describe the feature selection pipeline and provide
an overview of the histogram gradient boosting regression
machine learning model employed. The Materials and
Methods section ends with a brief description of the Shapley
additive explanations (SHAP) package used to explain the
models. The results from feature selection, and SHAP

interpretation are then presented separately for each of the
three models: UGS, MGS, and GSR. Finally, the discussion and
conclusions compare the results of each model, and comment
on the potential clinical relevance.

MATERIALS AND METHODS

Design and Setting
We analysed data from adults aged 50+ fromWave 3 of TILDA, a
population-based longitudinal study of ageing (https://tilda.tcd.
ie/). TILDA study design, and the full cohort profile, have been
previously described in detail (Kearney et al., 2011a; Donoghue
et al., 2018). Wave 3 data collection took place in 2014 and 2015
and included a computer-assisted personal interview conducted
by social interviewers in the participants’ home, a self-completion
questionnaire completed in the participants’ own time, and a
detailed suite of technology-aided health assessments conducted
by trained research nurses at a dedicated health assessment
centre. Ethical approval was obtained from the Faculty of
Health Sciences Research Ethics Committee at Trinity College
Dublin, Ireland (Reference: Main Wave 3 Tilda Study; approval
date: June 9, 2014). All participants provided written informed
consent, and all data collection procedures adhered to the World
Medical Association Declaration of Helsinki on ethical principles
for medical research involving human subjects.

Analytical Sample
The primary analytical sample consisted of participants from
TILDAWave 3 aged 50 years or more who had data for both UGS
and MGS.

Gait Speed Measures
At Wave 3 of TILDA, gait speed was measured as part of a health
centre assessment. Measurements in units of cm/s were made
using a 4.88-m computerized walkway (GAITRite, CIR Systems,
NY, United States). A 2-m space before and after the walkway was
used for acceleration and deceleration. Participants were first
asked to walk at their normal (usual) pace, UGS, and then as fast
as they safely could, MGS. Two walking trials were obtained in
each condition, and the mean value for each was used in this
analysis. GSR was defined as MGS–UGS.

Falls and Faints
To put UGS, MGS, and GSR into clinical context, we assessed
their correlation with both historical and future falls and syncope.

Historical fallers/fainters were defined as participants who
reported at least one fall/faint in the year prior to Wave 3.

Future fallers/fainters were defined as those who reported at
least one fall/faint between Wave 3 and Wave 5 (approximately
4 years later).

Each of those four variables were binary categorical with
occurrence of falls/faints coded as “1” and absence coded as “0.”

Shortlisted Features
A shortlist of features from the TILDA Wave 3 dataset was
manually curated by the lead author (JD, trained in a STEM
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discipline), in consultation with co-authors representing both
STEM (BH) and health/medical (SK, OD, and RRO) fields. The
features were chosen based on known or plausible associations
with the three gait speed modalities under investigation. The
feature curation considered features from the following five
categories: socio-demographics/anthropometrics/medical
history, cardiovascular system, physical strength, senses, and
cognitive/psychological.

Socio-Demographics/Anthropometrics/Medical History
Demographic information included Age in years, Sex (male � 0;
female � 1), and level of educational attainment (Edu3): either
primary/none (Edu3 � 1), secondary (Edu3 � 2), or tertiary/
higher (Edu3 � 3).

Anthropometrics comprised Weight (kg), Height (cm), body
mass index (BMI, kg/m2), and waist-to-hip ratio
(WaistHipRatio, waist circumference/hip circumference)
(Nolan et al., 2016).

Medical history: number of cardiovascular diseases (nCVD,
from the following list: hypertension, angina, heart attack,
congestive heart failure, diabetes, stroke, transient ischaemic
attack, high cholesterol, heart murmur, abnormal heart
rhythm, atrial fibrillation), if taking any Antidepressant
medications (binary), if taking any Antihypertensive
medications (binary), and the total number of medications
being taken excluding supplements (nMeds) (TILDA, 2016).

Smoking status (Smoker) was categorized as: never (smoker �
0), past (smoker � 1), and current (smoker � 2). Alcohol intake
was scored with the CAGE scale (Bush et al., 1987).

The number of reported difficulties with activities of daily
living were also assessed. The six basic activities (ADLs) were
dressing, including putting on shoes and socks; walking across a
room; bathing or showering; eating, such as cutting up food;
getting in or out of bed; and using the toilet, including getting up
or down. The six independent activities (IADLs) were preparing a
hot meal, doing household chores (laundry, cleaning), shopping
for groceries, making telephone calls, taking medications, and
managing money such as paying bills and keeping track of
expenses (Romero-Ortuno et al., 2019).

Cardiovascular System
During the TILDA Wave 3 health assessment, resting-state (RS)
cardiovascular measurements were made during an
approximately 10-min window in which the participant was
lying supine in a comfortably lit room at an ambient
temperature of between 21°C and 23°C. The full TILDA active
stand protocol in which the resting-state window takes place has
been detailed elsewhere (Finucane et al., 2014; Knight et al., 2020;
Donoghue et al., 2021). Throughout the RS, participants
underwent non-invasive continuous haemodynamic
monitoring using a Finometer MIDI device (Finapres Medical
Systems BV, Amsterdam, Netherlands). All RS parameters
selected for the shortlist are mean values from the last minute
of supine rest (Knight et al., 2020). Haemodynamic parameters
were systolic blood pressure (sBP_RS), diastolic blood pressure
(dBP_RS), mean arterial pressure (MAP_RS) all in units of
mmHg, heart rate (HR_RS) in bpm, stroke volume

(StrokeVolume_RS) in ml, left ventricular ejection time
(LVET_RS) in ms, pulse interval (PulseInterval_RS) in ms,
maximum slope (Maxslope_RS) in mmHg/s, cardiac output
(CardiacOutput_RS) in L/min, and total peripheral resistance
(TPR_RS) in dyn · s · cm−5. A near-infrared spectroscopy (NIRS)
device, attached over the participants’ left frontal lobe area, was
also employed during the RS, and the following cerebral
oxygenation features were extracted, again as the mean values
from the final minute of rest: oxygenated haemoglobin
concentration (O2Hb_RS) and deoxygenated haemoglobin
concentration (HHb_RS) both in units of μmol/L, and tissue
saturation index (TSI_RS) as a percentage (Knight et al., 2020).
Previously derived sample entropy values for resting sBP
(sBP_RS_SampEn), dBP (dBP_RS_SampEn), MAP
(MAP_RS_SampEn), heart rate (HR_RS_SampEn), O2Hb
(O2Hb_RS_SampEn), HHb (HHb_RS_SampEn), and tissue
saturation index (TSI_RS_SampEn) were also shortlisted
(Knight et al., 2020). In addition, participants were asked if
they experienced dizziness upon standing (PhasicDizziness, yes
or no), and this feature was also included in the shortlist.

Resting heart rate variability measures were also shortlisted;
these were obtained in two 5-min blocks as detailed elsewhere
(Frewen et al., 2013). In short, for each block, participants were
lying supine. In the first block, participants were asked to breath
spontaneously (free breathing), and in the second block, they
were asked to breath according to a pre-recorded set of auditory
instructions (paced breathing at a frequency of 0.2 Hz).
Measurements were obtained using three-lead
electrocardiograms (Medilog Darwin, Oxford Instruments
Medical Ltd., United Kingdom). The data were subject to a
0.01–1,000 Hz band-pass filtering before R peak detection was
performed with a proprietary software (Pardey and Jouravleva,
2004). The data collection and processing are described in detail
elsewhere (Frewen et al., 2013). Time domain features were mean
heart rate in bpm, root mean square of successive differences
between RR intervals in ms, standard deviation of NN intervals in
ms, and difference between maximum and minimum heart rate
in bpm, derived for both free (HR_Mean_Free, HR_rMSSD_Free,
HR_SDNN_Free, HR_Span_Free) and paced breathing
(HR_Mean_Paced, HR_rMSSD_Paced, HR_SDNN_Paced,
HR_Span_Paced). The difference between free and paced
breathing values was calculated for rMSSD
(HR_rMSSD_PacedFreeDiff). In the frequency domain, total
spectral power in the 0–0.4 Hz frequency band was measured
for both free (HR_TotalPower_Free) and paced breathing
(HR_TotalPower_Paced) in units of milliseconds squared (ms2).

sBP, dBP, and HRwere also determined in a more conventional
manner using a sphygmomanometer in seated (sBP_Seated,
dBP_Seated, and HR_Seated) and standing (sBP_Standing,
dBP_Standing, and HR_Standing) positions, all with units of
mmHg. The difference between seated and standing values were
calculated for each of the measures (sBP_SeatStandDiff,
dBP_SeatStandDiff, and HR_SeatStandDiff).

Pulse wave velocity (PulseWaveVelocity), a non-invasive
measure of arterial stiffness with units of m/s, was also
included as a cardiovascular feature. In TILDA, the average of
two measurements between the carotid and femoral arteries (in
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m/s) was obtained using a Vicorder® (SMTmedical GmbH&Co.,
Wuerzburg, Germany). Full details have been described
elsewhere (Nolan et al., 2016; Donoghue et al., 2018).

Physical Strength
Upper and lower body strengths were assessed via grip strength
and chair stands time. Grip strength was measured in kg using a
hydraulic hand dynamometer (Baseline®, Fabrication
Enterprises, Inc., White Plains, NY, United States). The value
for grip strength referred to henceforth (GripStrength) is the
maximum value from a total of eight measurements with four
made on each hand. Lower body strength was assessed using the
chair stands test in which the time (in seconds) was recorded for
the participants to complete five chair stands as quickly as
possible, keeping the arms folded across their chest
(ChairStandsTime). Chair height was 46 cm.

Cognitive and Psychological
Global cognition was assessed using two paper-based assessments:
the Montreal Cognitive Assessment (MOCA) (Nasreddine et al.,
2005) and the Mini-Mental State Examination (MMSE) (Arevalo-
Rodriguez et al., 2015); from these, the number of errors
(MOCA_errors and MMSE_errors) were extracted for the
feature shortlist. Concentration, cognitive processing, and motor
response were assessed using two computer-assisted tasks: the
choice reaction task (Chintapalli and Romero-Ortuno, 2021)
and the sustained attention to response task (SART)
(O’Halloran et al., 2014). The choice reaction task required
participants to hold down a central button until an on-screen
stimulus (either the word “YES” or “NO”) appeared, at which time
they had to press the corresponding button on a keyboard. After
pressing either button, participants were then required to return to
the central button to continue. This was repeated approximately
100 times. In the SART test, participants watched a screen that
displayed the numbers 1–9 sequentially a total of 23 times. A
number appeared for 300 ms with an interval of 800 ms between
numbers: the entire trial lasts approximately 4 min. Participants
were instructed to press a button at the appearance of every
number except for a specific number (i.e., 3). We extracted the
following features from the choice reaction task: mean and
standard deviation of cognitive reaction time (CRT_mean and
CRT_SD) and motor response time (MRT_mean and MRT_SD)
and the number of correct CRT presses (CRT_correct). CRT is the
time taken to release the central button in response to the stimulus;
MRT is the time between releasing the central button and pressing
the required button. From the SART, we extracted the following:
mean and standard deviation of reaction time (SART_mean and
SART_SD) and the number of trials in which the participant
pressed the button when the number 3 appeared (SART_errors).
CRT, MRT, and SART times are all measured in milliseconds.

The psychological domains of depression, anxiety, and
loneliness were assessed using the Center for Epidemiologic
Studies Depression Scale (CESD), the Hospital Anxiety and
Depression Scale—Anxiety subscale (HADSA), and the UCLA
Loneliness Scale (UCLA), respectively. Fear of falling (FOF) was
determined with a yes or no question (Donoghue et al., 2018).

Sensory
Visual acuity (VA) was measured using a LogMar chart. VA in
the left eye (VisualAcuityLeft), right eye (VisualAcuityRight), and
best VA (VisualAcuityBest) were included in this work. VA left
and right were in logarithmic units. Best VA was defined as
100 − (min([VAleft, VAright ) × 50] . Contrast sensitivity (CS)
was measured at five spatial frequencies; in cycles per degree
(cpd), they were 1.5 cpd (cs_score_a), 3 cpd (cs_score_b), 6 cpd
(cs_score_c), 12 cpd (cs_score_d), and 18 cpd (cs_score_e). The
procedures for visual acuity and contrast sensitivity
measurements are described in detail elsewhere (Duggan et al.,
2017). Self-reported hearing (Hearing_SR) was ascertained by the
question: “Is your hearing (with or without a hearing aid): 1.
Excellent, 2. Very good, 3. Good, 4. Fair, or, 5. Poor?”

Multisensory integration was measured using the Shams
sound-induced flash illusion (SIFI) test (Shams et al., 2002).
The procedure used in TILDA is described in more detail
elsewhere (Hirst et al., 2021), but in short, participants were
subjected to a set of beeps and flashes and asked to report how
many flashes they perceived. Five general flash–beep
combinations were presented to the participants: two beeps +
two flashes; one beep + one flash; zero beeps + one flash; zero
beeps + two flashes; and two beeps + one flash. The flash–beep
configurations used in this analysis are the so-called “illusory”
two-beep one-flash (2B1F) trials. In 2B1F trials, the flash is
synchronous with one of the beeps; the other beep occurred
either 70, 150, or 230 ms before (SIFI_2B1F_70, SIFI_2B1F_150,
SIFI_2B1F_230) or after (SIFI_2B1F_m70, SIFI_2B1F_m150,
and SIFI_2B1F_m230) the flash–beep pair. SIFI susceptibility
represented accuracy for judging how many flashes were
presented when one flash was presented with two beeps
(2B1F). Lower accuracy, judging one flash as two, thus
indicates higher SIFI susceptibility and stronger integration.
SIFI susceptibility was expressed as proportion correct. As
there were two trials per condition, these variables were
considered discrete (i.e., participants scored 0, 0.5, or 1
proportion correct) (Hirst et al., 2020).

Statistical Association Between Gait Speed
Modalities and Faller/Fainter Status
The normality of the distribution of the three gait speed variables
was determined using the one-sample Kolmogorov–Smirnoff
test. All three gait speed variables resulted to be non-normally
distributed. Hence, to examine the bivariate associations between
UGS, MGS, and GSR and historical and future occurrence of falls
and faints, we utilized the non-parametric two-sided independent
samples Mann–Whitney U-test.

Overview of Machine Learning Steps
A general overview of the machine earning steps are as follows.
The machine learning regression model employed is called
histogram gradient boosting regression. In a stepwise fashion,
features are tried out one by one in this model, and the best one is
selected; this step is repeated over and over until the model does
not get any better. The final model is trained on the set of features
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that give the best performance. This final model is then passed
through an explainable machine learning step whereby a method
from the SHAP package called TreeExplainer is used to observe
the relationships between each of the features in the model and
the output of the model.

Histogram Gradient Boosting Regression
The regression model employed for this analysis was the
histogram gradient boosting regressor (HGBR) from Scikit-
learn (Pedregosa et al., 2012) version 0.24. The Scikit-learn
implementation is based on Microsoft’s light gradient boosting
machines (Ke et al., 2017).

Gradient boosting (Friedman, 2001) is a machine learning
technique that builds decision trees sequentially where each one is
constructed such that it predicts the residuals from the previous
tree. Gradient boosting is a powerful tool that has become the
model of choice in many fields and applications (Chen and
Guestrin, 2016) and have been shown to outperform deep-
learning models where the data are tabular and the features
themselves have individual meanings as opposed to data
structured in a temporal and/or spatial manner as is the case
for problems in image and audio domains (Lundberg et al., 2020).
Light gradient boosting machines and histogram gradient
boosting is an adaptation of gradient-boosted trees that places
feature values into histogram-like bins, which allow for tree split
points to be located more efficiently.

The HGBR model inherently supports missing values and
categorical data. The support for missing data helps to avoid the
need for data imputation or removal of features. The categorical
data support avoids the need for dummy variables and one-hot
encoding, which can drastically increase the dimensionality of the
input feature space.

Feature Selection Algorithm
All operations were performed using Python 3. The feature
selection was executed on the Tinney High Performance
Computing Cluster at Trinity College Dublin (https://www.
tchpc.tcd.ie/node/1353).

Prior to any feature selection or training of any kind, the data
were divided according to an 80/20 train/test split. From the
shortlisted set of 88 features across 5 domains, features were
chosen for the final models using an automated stepwise feature
selection algorithm. In this algorithm, each feature is individually
added to a temporary model that contains all features previously
selected for the final model: for the initial round, each temporary
model contains a single feature. For each individual temporary
model, a hyperparameter tuning is performed in which a fivefold
cross-validation (CV) is used on the training data for each set of
hyperparameters. The hyperparameter tuning is in the form of a
100-iteration randomized search of a set of predefined
hyperparameter distributions:

{‘max_iter’: [2000],
‘loss’: [‘least_squares’],
‘random_state’: [42],
‘early_stopping’: [True],
‘learning_rate’: loguniform(0.005, 0.1),

‘max_leaf_nodes’: randint(2, 10),
‘min_samples_leaf’: randint(100,200)}

The evaluation metric employed was adjusted R2 (R2
adj). This

metric is used to avoid the continual increase in R2 that occurs
with the addition of new features regardless of whether they
significantly increase the variance explained by the model. For
each temporary model, the best parameters are chosen based on
the mean R2

adj from CV ( R2
adj). From these temporary models,

the one that provides the biggest increase in R2
adj is chosen to

continue with, i.e., the new feature upon which that temporary
model is based is added to the final model. Before moving to the
selection of the next feature, each feature in the model is
removed one by one to check if any of them have become
redundant in light of the addition of the newest feature; if the
score improves on removing a feature, then that feature is
removed from the model.

For the purpose of performance monitoring, on each iteration
of the loop, the current best model is fit to the entire training
dataset and evaluated on both the training and test sets to give
training and test R2

adj scores. These scores do not influence the
feature selection.

SHapley Additive exPlanations Values
In this work, SHapley Additive exPlanations (SHAP) values
(Lundberg and Lee, 2017) were employed to assess feature
importance and investigate the impact of features on the
model output. Specifically, the TreeExplainer method from the
SHAP package is used. TreeExplainer is designed for use with
tree-based machine learning models and builds interpretations
that are theoretically guaranteed to be faithful at the local and
global levels (i.e., the level of individual samples and the level of
features as a whole) (Lundberg et al., 2020).

Shapley values, from which the SHAP package derives, were
presented in the field of cooperative game theory (Shapley et al.,
1953). They guarantee a fair distribution of contributions from
each feature in a model. However, it is generally NP hard
(i.e., complexity and computation time scales exponentially
with number of features) to compute them, and as such, they
have not been widely utilized. The SHAP package first
developed a model agnostic heuristic that allowed for their
use. A more recent development allows for exact Shapley values
to be computed for tree-based models in a practical, low-order
polynomial time. TreeExplainer is designed such that it does
not need to compute Shapley values for the entire feature set
but instead uses the tree structure to perform the exact
computation on smaller feature sets made possible by the
tree. Detailed derivations of Shapley values and of the
TreeExplainer algorithm (Lundberg et al., 2020) can be
found elsewhere, but briefly, Shapley derived these values as
a method of attributing worth to each player in a game in a fair
way. In coalitional game theory, n players form a grand
coalition, S, that has a total worth, ΔS. Each player is
representative of an input feature. Each smaller coalition,
Q ; Q ⊂ S, has worth ΔQ. A Shapley value is a unique
solution that satisfies the following four axioms developed to
ensure a fair distribution of worth:
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1. The sum of contributions from each player equals the total
worth of the game.

2. If a coalition W not containing player i has a worth equal to
that of coalition W in union with player i, then the worth of
player i is zero; i.e., the player i did not increase the worth of
coalition W.

3. If the worth of coalitionW in union with player i is equal to the
worth of W in union with j, the worth of player j is equal to
the worth of player j.

4. For playersw and x, the contribution of a single feature for the
sum of values from players w and x is equal to the sum of the
contributions from that feature having values of w and x,
where the same is true for any subset Q of features and
instances w and x. Said in another way, for a feature, f, and
values for f of x and w, the contribution ΔQ(f � x + w) is
equal to the contribution of ΔQ((f � x) + (f � w)).

SHAP values are computed for each sample of each feature.
This allows for global feature explanations to be constructed
from the sample level either visually in the form of SHAP
summary plots or as a single value such as mean absolute
SHAP value or maximum absolute SHAP value. The nature
of SHAP values being true to local impacts of features means
that low-frequency, high-impact effects do not go unnoticed.
For example, a particular feature might, for most samples, have
a low impact; however, for some small subset of samples, the
feature might have a very large impact. SHAP interaction values
are also readily available that explain the impact of interactions
between two features. SHAP values are presented as having a
positive or negative impact on the output of the model with
respect to the expected model output, i.e., the mean output of
the model. Thus, for an individual sample, the SHAP value for a
particular feature might be, for example, −2.5; this should be
interpreted as the value of that feature for that sample is
associated with a model output that is −2.5 units less than
the model’s mean output.

All SHAP values shown in the results are for the test data.

RESULTS

Note on presentation of results: the method for feature selection
describes a situation whereby features can be removed from the
model if they are made redundant by the addition of new features;
this did not occur in any of the models, and as such, all features
named henceforth with regard to feature selection are to be
understood as features added to the model.

Analytical Cohort
In TILDAWave 3, 4,309 participants completed the health centre
assessment (Donoghue et al., 2018), where the gait speed tests
were conducted. After exclusion of participants aged <50 years or
with missing data for either UGS or MGS, there were N � 3,925
participants, with 2,156 (55%) being female. An analytical sample
inclusion flowchart can be seen in Figure 1. The educational
attainment breakdown was as follows: third/higher, 1,685 (43%);
secondary, 1,571 (40%); and primary/none, 669 (17%). The

analytical cohort had a mean (SD) age of 64.5 (7.8) years, UGS
of 136.7 (19.2) cm/s, MGS of 171.0 (26.9) cm/s, and GSR of 34.3
(16.6) cm/s.

Group Differences in Faller and Fainter
Status
Of the Wave 3 participants, 21.3% were historical fallers, 3.8%
historical fainters, 31.9% future fallers, and 5.4% future fainters.
Table 1 shows the results of the association between UGS, MGS,
and these clinical variables. Differences between historical fallers
were all statistically significant, with a largest median difference
for MGS. Statistical significance of p < 0.05 was demonstrated in
historical fainters for UGS and MGS only, with the largest
difference also for MGS. A similar pattern emerged for future
fallers and fainters.

Usual Gait Speed
The peakR2

adj(SD) achieved for theUGSmodel was 0.38 (0.04) with
training and test scores of 0.43 and 0.41, respectively. The expected
model output was 136.6 cm/s. The features chosen for the model, in
order of selection as per Figure 2, were age, chair stands time, BMI,
grip strength, number of medications, resting-state pulse interval,
mean motor reaction time, height, depression score, sit-to-stand
difference in diastolic blood pressure, and left visual acuity.

A SHAP summary plot is shown in Figure 3; each point on
the x-coordinate represents a samples SHAP value, and its

FIGURE 1 | Analytical sample inclusion flowchart.
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colour signifies the value of the feature for that sample, with
light brown being high, black being low, and nan (missing)
values appearing grey. On the y-axis, features are arranged
from top to bottom in order of decreasing mean absolute
SHAP value: chair stands time, age, body mass index, number
of medications, grip strength, resting-state pulse interval,
height, mean motor reaction time, CESD depression score,
difference in seated and standing diastolic blood pressure, and
visual acuity in the left eye. The figure suggests that upper
limits (light brown) of certain variables (e.g., chair stands
time, age, body mass index, and number of medications) are
more negatively impactful than their lower limits, which are
positively impactful. The opposite is the case for upper limits
of grip strength, for example.

Scatter plots of SHAP value vs. feature can be seen for all
features in Figure 4. SHAP values (left y-axis) vs. input feature
value (x- axis) with underlaid histogram (right y-axis shows
histogram counts) are shown for each feature in the UGS
model. Features are arranged top to bottom and left to right in
order of decreasing mean absolute SHAP value. At the zero point
on the left y-axis (SHAP value� 0), the corresponding x-coordinate
values for that feature are associated with having no impact on the
model (i.e., they are associated with the mean model output). The
vertical spread observed in the SHAP values vs. input feature plots
indicates the presence of interaction effects. Although not chosen
for the model, the data points are coloured by sex.

To further investigate the interaction effects suggested by
vertical spreading in Figure 4, a plot (Figure 5) of features

TABLE 1 | Group statistics and results of independent samples Mann–Whitney U-test for historical and future falls and faints occurrence.

Historical falls and faints

Non-fallers
[median (IQR)]

Fallers
[median (IQR)]

Difference in
group median

Mann–Whitney
p-value

Non-fainters
[median (IQR)]

Fainters
[median (IQR)]

Difference in
group median

Mann–Whitney
p-value

UGS
(cm/s)

139.3 (24) 133.1 (26) 6.2 <0.001 138.3 (25) 133.0 (19) 5.3 0.005

MGS
(cm/s)

174.5 (33) 166.2 (36) 8.3 <0.001 172.55 (34) 165.95 (34) 6.6 0.010

GSR
(cm/s)

33.0 (20) 30.4 (22) 2.6 <0.001 32.3 (20) 28.95 (23) 3.35 0.118

Future falls and faints

Non-fallers
[median (IQR)]

Fallers
[median (IQR)]

Difference in
group median

Mann–Whitney
p-value

Non-fainters
[median (IQR)]

Fainters
[median (IQR)]

Difference in
group median

Mann–Whitney
p-value

UGS
(cm/s)

139.7 (23) 134.8 (27) 4.95 <0.001 138.4 (24) 134.1 (30) 3.7 <0.001

MGS
(cm/s)

175.1 (33) 168.0 (36) 7.05 <0.001 173.2 (33) 165.7 (39) 6.0 <0.001

GSR
(cm/s)

33.20 (21) 31.4 (21) 1.85 <0.001 32.7 (21) 31.1 (21) 1.6 0.209

FIGURE 2 | Visualization of the feature selection process for the usual gait speed model. From left to right on the x-axis, the features are in order of addition to the
model. The y-axis shows the dimensionless R2

adj metric. Mean fivefold cross-validation scores with error bars showing ± SD are shown in black, train scores in dashed
blue, and test scores in dotted red.
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ordered by decreasing mean absolute SHAP interaction value was
produced; in it, features are ranked from left to right in order of
decreasing mean absolute SHAP interaction values (orange
dotted line). Also shown in dashed blue are the mean

maximum absolute SHAP interaction values, which can
highlight the effects of outliers.

The scatter plots of the top 4 interaction effects in the model
(i.e., age, chair stands time, body mass index, and grip strength)

FIGURE 3 | SHAP summary plot for the final usual gait speed model. Features are ordered from top to bottom by decreasing mean absolute SHAP value. For each
feature, each point represents a single sample in the test data. A sample’s x-coordinate displays the SHAP value for that sample with respect to a given feature. The
colour of a sample indicates the value of the feature, with light brown being high, black low, and grey missing.

FIGURE 4 | SHAP values (left y-axis) vs. input feature value (x- axis) with underlaid histogram (right y-axis showing histogram counts) for each feature in the usual
gait speed model. Features are arranged top to bottom and left to right in order of decreasing mean absolute SHAP value. Points are coloured per sex: male is black “+,”
and female is orange “x.”
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are shown in Supplementary Appendix A. In the scatter plots,
the points are coloured according to the value of the main
interaction feature. The interactions are computed for the
features in whatever numerical form they exist in, but for ease
of visualization, continuous features are coloured according to
what quartile a particular samples value falls in; black indicates
that the value is in the lowest quartile and light brown the highest
quartile. In each figure, the subplots are ordered from top–left to
bottom–right by decreasing mean absolute SHAP
interaction value.

Maximum Gait Speed
The peak R2

adj(SD) achieved for the MGS model was 0.45 (0.04),
with training and test scores of 0.54 and 0.46, respectively. The
expected model output was 170.9 cm/s. Features chosen for the
model, in order of selection were, age, grip strength, chair stands
time, body mass index, education, mean motor reaction time in
the choice reaction time test, number of medications, height, the
standard deviation of the mean reaction time in the sustained
attention to response task, resting-state heart rate, fear of falling,
MOCA errors, orthostatic intolerance during active stand,
smoking status, total power of the heart rate during paced
breathing, the root mean square of successive differences
between heartbeats during paced breathing, and best visual
acuity. Figure 6 shows the visualization of the feature
selection process for this model.

In the SHAP summary plot for the MGS model shown in
Figure 7, the feature importance ranked in order of decreasing
mean absolute SHAP values was age, chair stands time, grip
strength, body mass index, height, number of medications, mean
motor reaction time in the choice reaction time test, orthostatic
intolerance during active stand, education, the standard deviation
of the mean reaction time in the sustained attention to response
task, fear of falling, MOCA errors, smoking, mean heart rate pre-

active stand, the root mean square of successive differences
between heartbeats during paced breathing, visual acuity, and
total power of the heart rate during paced breathing.

Figure 8 shows the SHAP values versus input feature values with
underlaid histogram for each feature in the MGS model. Figure 9
shows a plot of features ordered by decreasing mean absolute SHAP
interaction value, and Supplementary Appendix B contains the
scatter plots of the top four interaction effects in the model.

Gait Speed Reserve
The peak R2

adj(SD) achieved for the GSR model was 0.19 (0.02),
with training and test scores of 0.22 and 0.21, respectively. The
model expected output was 34.2 cm/s. Figure 10 shows the
visualization of the feature selection process. In order of
selection, the features chosen were mean motor reaction time
in the choice reaction time test, grip strength, education, chair
stands time, MOCA errors, accuracy proportion in the sound
induced flash illusion (two beeps and one flash with stimulus-
onset asynchrony of +150 ms), fear of falling, height, age, sex (0 �
male; 1 � female), orthostatic intolerance in the active stand test,
MMSE errors, and number of cardiovascular conditions.

In the SHAP summary plot for the GSR model shown in
Figure 11, the feature importance ranked in order of decreasing
mean absolute SHAP values was level of educational attainment,
grip strength, mean MRT, MOCA errors, age, chair stands time,
height, sex, accuracy proportion in the sound induced flash
illusion, fear of falling, orthostatic intolerance, MMSE errors,
and number of cardiovascular conditions.

Figure 12 shows the SHAP values versus input feature values
with underlaid histogram for each feature in the GSR model.
The absence of vertical spread in the SHAP vs. feature scatter
plots is due to the maximum leaf nodes hyperparameter being
set equal to two for the histogram gradient boosting model.
This results in there being no interaction terms, since the

FIGURE 5 | Features ranked from left to right in order of decreasingmean absolute SHAP interaction values (orange dotted line) for the usual gait speedmodel. Also
shown by blue dashed line are the mean maximum absolute SHAP interaction values, which can highlight the effects of outliers.
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predictions made by each tree only considered features
independently (i.e., a maximum leaf node limit of two
means that for a given tree only a single split is made along
a single feature).

The group mean differences in SHAP values for each feature
along with 95% confidence intervals can be seen in Figure 13 for

(A) sex, (B) third level education vs. all others, and (C) first/no
education vs. all others. For sex, the grip strength feature produced
a larger difference inmeans than sex itself with grip strength having
a less positive impact for women. Height, mean MRT, fear of
falling, and SIFI accuracy were all significant, and all exhibited a
negative mean impact difference. On the other hand, for education,

FIGURE 6 | Visualization of the feature selection process for the maximum gait speed model. From left to right on the x-axis, the features are in order of addition to
the model. The y-axis shows the dimensionless R2

adj metric. Mean fivefold cross-validation scores with error bars showing ± SD are shown in black, train scores in
dashed blue, and test scores in dotted red.

FIGURE 7 | SHAP summary plot for the maximum gait speedmodel. Features are ordered from top to bottom by decreasing mean absolute SHAP value. For each
feature, each point represents a single sample in the test data. A sample’s x-coordinate displays the SHAP value for that sample with respect to the given feature. The
colour of a sample indicates the value of the feature, with light brown being high, black low, and grey missing.
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there was a positive group mean difference for women in
comparison to men. When comparing third/higher educational
attainment to the rest, education itself seemed to make the only
significant difference. However, when comparing primary/no
educational attainment to secondary and tertiary educational
attainment in Figure 13C, we observed several other significant
differences other than education: MOCA errors, age, mean MRT,
MMSE errors, illusion accuracy, orthostatic intolerance, fear of
falling, and number of cardiovascular diseases.

Summary of Results
Supplementary Appendix C, Table 1 summarizes the scores and
features selected for each model. The network between predictors
and the three gait variables is visually summarized in Figure 14.
The outcomes UGS, MGS, and GSR constitute the main nodes of
the network and are represented by white circles. Smaller nodes of
different colours represent distinct features and are spatially
organised according the following: at the centre, there are the
features that have been automatically selected in themodels for all

FIGURE 8 | SHAP values (left y-axis) vs. input feature value (x-axis) with underlaid histogram (right y-axis shows histogram counts) for each feature in the maximum
gait speed model. Features are arranged top to bottom and left to right in order of decreasing mean absolute SHAP value. Points are coloured per sex: male is black “+,”
and female is orange “x.”
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three outcomes and, therefore, are common to all the outcomes;
externally to the central network, disposed on a peripheral
imaginary circle, there are features that are common to just
two of the three outcomes; and closely around each outcome,
there are the unique feature for that particular outcome. Each link
between a feature node and an outcome node represents the
impact that feature has on the model output: the line thickness is
proportional to the mean absolute SHAP value for that feature in
the model scaled according to that model. The colour of the
features and correspondent link depends on the subset of features:
gradations of blue (from dark blue to turquoise) for socio-
demographics/anthropometrics/medical history features, light
green for cardiovascular features, yellow-green for physical

strength features, gradations of orange and light red for
cognitive and psychological domain, and dark red/brown for
sensory features.

DISCUSSION

Overall Summary of Findings
In the present study, using data from Wave 3 of TILDA, we
employed a gradient boosted trees-based stepwise feature
selection pipeline for the discovery of clinically relevant
predictors of GSR, UGS, and MGS using a shortlist of 88
features across 5 domains. The features selected for the

FIGURE 9 | Features ranked from left to right in order of decreasingmean absolute SHAP interaction values (orange dotted line) for the maximum gait speedmodel.
Also shown by blue dashed line are the mean maximum absolute SHAP interaction values, which can highlight the effects of outliers.

FIGURE 10 | Visualization of feature selection process for gait speed reserve. From left to right on the x-axis, the features are in order of addition to themodel. The y-axis shows
the dimensionless R2

adj metric. Mean fivefold cross-validation scores with error bars showing ± SD are shown in black, train scores in dashed blue, and test scores in dotted red.
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respective models explained MGS and UGS to a greater extent
than GSR. As shown in Figure 14, there were common features
but also some features unique to each of the three models.

Model Prediction
Based on model R2

adj values, GSR (19%) was less predictable than
MGS (45%) and UGS (38%). Whilst we are not aware of previous
published data for comparison with our GSR prediction, a
previous study by Bohannon reported linear regression R2

values of 13% for UGS and 41% for MGS (Bohannon, 1997).
Our results agree in that the MGS model yielded a larger
prediction score than that of UGS but are comparably
superior, especially given the fact that our R2 unit is adjusted.

Common Features
Across the three models, there were five common selected
features: age, grip strength, chair stands time, mean motor
reaction time in the choice reaction time test, and height.
The top 4 features with the most impactful interactions (by
mean absolute SHAP interaction value) were the same for the
UGS and MGS models: age, chair stands time, grip strength,
and BMI.

Our results agree with Bohannon’s previous findings that UGS
and MGS decline with increasing age (Bohannon, 1997). Other
authors have also shown similar findings for UGS (Samson et al.,
2001; Romero-Ortuno et al., 2010; Schimpl et al., 2011). As per
SHAP value vs. feature plots, increasing age was negatively
associated with UGS, MGS, and GSR at ≥68, ≥68, and
≥66 years, respectively. Height is also unsurprising as a
common predictor; indeed, taller people have longer legs and
can achieve longer strides and higher velocity in any gait
modality. Consequently, gait speed is often normalized by
height (Bohannon, 1997; Kenny et al., 2013; Kasović et al., 2021).

It is also clinically plausible that higher grip strength (as a
marker of upper limb strength) and shorter chair stands time
(more representative of lower limb strength) were common
determinants of all three performance metrics. Indeed,
sarcopenia (low muscle mass and/or strength), of which both
grip strength and the five chair stands test are indicative measures
(Cruz-Jentoft et al., 2019), has been associated with reduced gait
speed and poor functional outcomes in older people (Nishimura
et al., 2017; Moreira et al., 2019; Perez-Sousa et al., 2019). In our
models, slower chair stands time was associated with a decline in
UGS, MGS, and GSR once time increased beyond 14.2, 13, and
10.6 s, respectively; whilst increases in UGS, MGS, and GSR
began at values of 13.4, 13, and 10.6 s, respectively. Grip
strength of ≤26 kg was associated with slower UGS, MGS, and
GSR, whilst grip strengths of ≥35, 27, and 27 kg, respectively,
were associated with faster performance. These values for grip
strength, whilst interesting from an absolute point of view, have a
reduced clinical significance given the large differences in grip
strength between men and women. Except for height, the other
features relationships to the model output appear quite
homogeneous with respect to sex.

Higher mean motor reaction time in the choice reaction time
test was associated with lower speed in all three models. In
previous research, a shorter CRT has been associated with
faster gait speed after adjusting for potential confounders and
suggests that, in older adults, engaging more frequently in
cognitively stimulating activities may improve neuromotor
performance and mobility (Cai et al., 2020). In addition, our
results resonate with previous TILDA work utilizing traditional
linear statistics showing that participants in the slower MRT
group (<250 ms) atWave 1 seemed to have faster mobility decline
as assessed by the timed up and go at Wave 3, 4 years later
(Chintapalli and Romero-Ortuno, 2021). Interestingly, in the

FIGURE 11 | SHAP summary plot for the final gait speed reserve model. Features are ordered from top to bottom by decreasing mean absolute SHAP value. For
each feature, each point represents a single sample in the test data. A sample’s x-coordinate displays the SHAP value for that sample with respect to the given feature.
The colour of a sample indicates the value of the feature, with light brown being high, black low, and grey missing.
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latter study, the MRT cutoff was set arbitrarily, but in the present
study, the negative/positive impact thresholds for UGS,MGS, and
GSR were 299, 231, and 229 ms, respectively. Interestingly, the
less physically demanding UGS model was only negatively
influenced above a relatively slower MRT threshold.

The counter-intuitive results of higher grip strength, quicker
chair stands time, and quicker MRT being associated with an
increase in UGS when compared to MGS may be revealing
underlying determining mechanisms of both acts; MGS may
be a more physically determined act than UGS and easier to
improve on than UGS.

Common between UGS and MGS models were BMI and
number of medications, in the clinically expected directions,
i.e., obesity and number of medications had a negative impact
on gait speed. As regards obesity, research has suggested that
obese adults may select their walking speed to minimize pendular
energy transduction, energy cost, and perceived exertion during
walking (Fernández-Menéndez et al., 2019). In our UGS and
MGS models, a BMI ≥29 kg/m2 had negative impact association.
Hypothetically, it is possible that in TILDA, obese individuals
equally reduced their UGS and MGS, which could possibly

explain why BMI was not a feature in the GSR model. As
regards the number of medications, a similar mechanism
could apply. In any case, our findings are in keeping with
previous research showing that drug interactions may increase
the likelihood of gait speed decline amongst older adults (Naples
et al., 2016). In our UGS and MGS models, more than two
medications had a negative impact association. This is below the
usual polypharmacy definition of 5+medication, and the negative
impact association with medications could be related to the
underlying health condition rather than due to the
medications themselves. Of note, visual acuity featured in both
UGS (left) and MGS (best), but not in GSR, which could have a
similar underlying reason (i.e., both UGS and MGS equally
limited).

There were no features exclusively shared by UGS and GSR,
but there were four features in the intersection of MGS and GSR:
education, MOCA errors, fear of falling, and orthostatic
intolerance. As regards the former two, tertiary education
was associated with increased gait speed and primary and
secondary levels with a decrease. Greater than three MOCA
errors negatively impacted both models. Interestingly, better

FIGURE 12 | SHAP values (left y-axis) vs. input feature value (x- axis) with underlayed histogram (right y-axis shows histogram counts) for each feature in the gait
speed reserve model. Points are coloured per sex: male is black “+,” and female is orange “x.”
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MOCA performance is associated with higher education (Borda
et al., 2019) and places greater emphasis on frontal executive
function and attention tasks than the MMSE (Wong et al.,
2013). Planning for the MGS task may require greater attention

and executive function than performing the UGS task (Umegaki
et al., 2018), and this may explain MOCA being related to GSR
and MGS. Two or more MMSE errors were associated with GSR
decrease.

FIGURE 13 | Bar graphs showing the group mean differences in SHAP values between subgroups with 95% confidence intervals for each feature in the gait speed
reserve model. Panel (A) shows the differences in sex, Panel (B) shows the differences between participants with third/higher level of educational attainment and all
others, and Panel (C) shows the differences between participants with first/no level of educational attainment and all others.

FIGURE 14 | Graphical summary of features selected for the three models. Features unique to a model are shown positioned around that model’s node. Features
common to all models are positioned in the central ring of nodes; the legend for those five features is located below the UGS node. The remaining nodes are for features
common to two of the models. The thickness of lines connecting feature nodes to model nodes express a normalized mean absolute SHAP value of that feature in that
model. The normalization is performed per model to reflect the relative importance of a feature to that specific model. The colour of the features and correspondent
link depends on the subset of features: gradations of blue (from dark blue to turquoise) for socio-demographics/anthropometrics/medical history features, light green for
cardiovascular features, yellow-green for physical strength features, gradations of orange and light red for cognitive and psychological domain, and dark red/brown for
sensory features.
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Analogously, orthostatic intolerance and fear of falling may
selectively limit the more demanding MGS task but not the more
comfortable UGS task. Orthostatic intolerance can be caused by
orthostatic hypotension, which in some studies has been
associated with reduced gait speed (Briggs et al., 2020). In
addition, orthostatic intolerance can be a feature of vestibular
disorders such as benign paroxysmal positional vertigo (BPPV)
(Jeon et al., 2013), and research has suggested that the gait
characteristics of BPPV can be attributed to an inadequate,
cautious gait control (Schniepp et al., 2014), which may
preferentially manifest in the MGS task. Fear of falling can
also become stronger when facing the MGS task, compared to
walking at UGS (Bueno et al., 2019).

Unique Features
Features exclusive to UGS were depression, diastolic blood
pressure drop from sitting to standing, and resting-state pulse
interval. Higher levels of depressive symptoms have been
associated with worse performance in specific quantitative gait
variables in community-residing older adults, including lower
velocity (Brandler et al., 2012). In our model, CESD negatively
impacted UGS when CESD >2 points.

Similarly, TILDA work showed that slower recovery of BP
after standing (systolic and/or diastolic) was independently
associated with poorer gait performance (Briggs et al., 2020).
On the other hand, a higher pulse interval indicates a higher heart
rate variability and a more parasympathetic-driven autonomic
cardiac control, which has been associated with healthier states
(Abad et al., 2014) and mirrors the fact that, for the UGS model,
higher pulse intervals had positive influence. In our model, a
baseline pulse interval of 799 ms or less had a negative impact on
UGS (this is roughly 75.1 bpm: 60 s/min/0.799 s per beat).

Exclusive to the MGS model was the standard deviation of the
mean reaction time in the sustained attention to response task,
smoking, the mean heart rate pre-active stand, the total power of
the heart rate during paced breathing, and the root mean square
of successive differences between heartbeats during paced
breathing. In a previous study, community-dwelling
participants who displayed poorer sustained attention walked
more slowly during both single and dual gait tasks (Killane et al.,
2014). In our model, standard deviation of the mean SART
reaction time <157.7 ms was associated with slower MGS.
Interestingly, research has shown that, in habitual smokers,
smoking acutely reduces baseline levels of vagal-cardiac nerve
activity and completely resets vagally mediated arterial
baroreceptor-cardiac reflex responses (Niedermaier et al.,
1993), which could be in keeping with heart rate and heart
rate variability features being selected in this model. A baseline
heart rate of 67.9 bpm or more had a negative impact on MGS in
our model. Comparing this to the pulse interval of 799 ms
(equivalent to 75.1 bpm) associated with the beginning of
negative impact association in the UGS model, we see that in
terms of an increasing heart rate, MGS begins to decline earlier
than UGS.

Finally, features exclusive to GSR were accuracy proportion in
the sound-induced flash illusion (two beeps and one flash with
stimulus-onset asynchrony of +150 ms), sex, MMSE errors, and

number of cardiovascular diseases. Male sex was associated with
increased GSR, potentially because men may comparatively
accelerate more than women during the MGS task.
Alternatively, this may also be because the variance explained
by the GSR model was relatively low and the effect of sex might
disappear when additional features are selected as in other
models. One or more cardiovascular diseases was negatively
associated with GSR, which is in keeping with the possibility
that this type of disease may limit MGSmore than UGS. As noted
by a previous study (Clark et al., 2013), the difference between
UGS and MGS is predominantly dictated by the latter. A notable
exclusive associate of GSR was the proportion of accuracy in the
sound-induced flash illusion. This can be interpreted in the
context that worse visual–somatosensory integration is
associated with worse balance in older people (Mahoney et al.,
2019) and that an increase in susceptibility to the sound-induced
flash illusion during standing relative to sitting was present in fall-
prone older adults (Stapleton et al., 2014).

Strengths of the Methodology and Study
A main strength of the methodology is the use of the histogram
gradient boosting regressor machine learning model that bins
values for faster computation; offers native support for categorical
features without the need for one-hot encoding (dummy
variables); has native support for missing values not requiring
removal of features/samples or imputation procedures; obviates
the need to scale features as it is based on decision trees; allows for
non-linear relationships, making no assumptions about
underlying structure; and is capable modelling feature
interactions. The native support for both categorical features
and missing data, together with not needing to perform
scaling, reduces the time and effort required during data pre-
processing. This is especially useful in the feature selection stage
of a study where many features that do not end up in the model
would otherwise still have to undergo those pre-processing steps.

The use of a tree-basedmachine learningmodel such as HGBR
leads to another strength in that it allowed for exploration of the
input–output relationships by way of the TreeExplainer
explainable machine learning method from SHAP. So far,
TreeExplainer is the only SHAP method that allows for exact
computation of Shapely values, which, with theoretical grounding
in game theory, are used to assess the contributions of features to
the model output. SHAP values allow for visualizations of
input–output relationships and of the contributions of feature
interactions. They can also be used to derive feature importance
metrics that are built up from the contributions from each
individual sample in the test data.

With the SHAP value versus feature plots, one can recognize
the presence of what could be considered as “floor” and “ceiling”
effects in the features. This highlights the importance of using
non-linear models in this type of research, as even if the
relationship observed within the “active” region of the feature
is indeed linear, a linear model cannot detect the plateau regions
and would instead return a model coefficient that underestimates
the effect size in the “active” region. Potential clinical cutoffs and
regions of interest for certain features are identifiable, as we have
detailed above, making the models highly interpretable for
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clinicians. Beyond the technical aspects, the visualizations made
possible by the explainable machine learning methods are also a
strength for the more clinical reader. Having run a complex
machine learning model, not only the associations captured
between features and model output can be observed but also
the relationships between feature interactions and the output.
Cutoffs, regions of interest, clusters, and trends are all on show,
which can allow for better insight and hypothesis generation.

Another strength of the study is the comparison of UGS,MGS,
and GSR in terms of features selected to describe them from a
range of 88 features across multiple domains. The TILDA data
leveraged allowed for a relatively large sample size of 3,925
participants.

Limitations of Methodology and Study
However, whilst these cutoffs and regions of interest may be able
to inform the clinician, it is possible that they may vary between
populations. In terms of the analytical sample, this only
included TILDA Wave 3 participants who underwent the
health centre assessment where gait speed tests were
conducted. Even though at Wave 1, TILDA was designed as
a nationally representative cohort of people aged 50 or more
years living in Ireland (Donoghue et al., 2018), our analytical
sample at Wave 3 is not population representative, and
therefore, our results are not necessarily generalizable to the
Irish population. Indeed, TILDA work showed that participants
attending the health assessment centre were generally fitter than
those having a health assessment in their homes (Kearney et al.,
2011b), which means that other features may have been selected
in the models should frailer people have been included in the
analytical sample.

Despite having many advantages, the machine learning
methodology also has limitations. The features selected need
to be considered in terms of the “package” of features chosen
for the final model. Furthermore, it cannot be assumed that
features not chosen for a model are not also predictive of the
outcome variable.

Even though measures were put in place to help reduce
overfitting (cross-validation on training data used in choosing
features and hyperparameters, and models evaluated on a held-
out test dataset), in the absence of an external validation sample,
the risk of overfitting still exists. Despite using held-out test data,
the absence of an external validation test means that the
generalizability of the results is unknown. The confidence
intervals of the effects and associations are also not known in
this work; however, application of bootstrapping methods may be
used in future work to address this. A rigorous time complexity
analysis was not performed, but given its stepwise nature, the
computation time of the feature-selection step scales with the
square of the number of features considered. The number of
hyperparameter iterations and the k-fold cross-validation in place
also scale up the computation time. Parallelized code could help
to reduce computation time. The computation time can be
reduced by the early stopping function that halts the feature
selection if there is no improvement or a decline for two
consecutive attempts. However, when (or if) this criteria is
met depends on the data.

Furthermore, the models are dependent on the predictors that
were entered. Even though the “shortlist” of predictors was quite
comprehensive (i.e., 88 features across 5 domains), we may not
have considered potentially relevant predictors that were either
not measured or not shortlisted. In view of GSR being less
predictable than UGS and MGS, it is possible that including
additional features in the GSR model (perhaps personality/social/
lifestyle factors) would improve the model prediction. Height-
normalized gait speed could have been considered in the models,
but this is not something that we wanted to consider a priori given
the data-driven approach.

Another limitation touched on in the discussion is regarding
the sex differences in grip strength and height. Height is not too
much of an issue, as it is non-modifiable and is a common choice
for gait speed normalization, but the thresholds observed in grip
strength with respect to positive or negative deviation from the
mean in UGS, MGS, or GSR are heavily distorted by sex. A sex-
stratified investigation of grip strength in this context may be of
clinical benefit given its modifiable nature and its high
importance in all three models.

Finally, it must be made clear that despite the use of word
“impact”when explaining the relationship of input features to the
output, all results are associations and causal relationships cannot
be assumed.

Potential Clinical Relevance
The five features selected for all three models (age, grip
strength, chair stands time, mean motor response time, and
height) show common factors effecting UGS, MGS, and GSR:
age, upper and lower body strength, physical reaction ability,
and height.

Whilst there are similarities between the three gait speed
models, the differences in features chosen for each model
suggest that there are physiological differences in the nature of
the three gait variables. This was also suggested in the different
clinical associations between the gait speeds and clinical
outcomes such as falls and faints. In the domain of psychology
and cognition, UGS and MGS differ the most, with UGS being
associated with depression, whilst MGS is associated with
cognitive performance in the SART and MOCA tests (MOCA
was also associated with GSR). Education was associated with
MGS and GSR but not with UGS. Fear of falling being present in
MGS and GSR but not in UGS could suggest that the fear may not
be in relation to usual day-to-day activity and walking but instead
towards moving out of comfort zone. The unique presence of
MMSE and a sound-induced flash illusion variable in the GSR
model could suggest that GSR is related to a cognitive and sensory
domain. The sound-induced flash illusion test assesses
multisensory integration. It may be possible that UGS is more
reflective of baseline health and perhaps is more sensitive to
negative health outcomes, leaning more towards the frailty end of
the frailty-fitness spectrum (Romero-Ortuno and O’Shea, 2013).
MGS and GSR, on the other hand, may reflect more of the fitness
end of the spectrum, the ability to go beyond baseline towards
better fitness and more reserve but not necessarily less frailty. A
potential clinical take away from this work is that modifiable
associates could be targeted for a particular gait characteristic
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with a view to improving the higher-level aspects of health such as
frailty or fitness that is more linked to that variable. Given that
each of the gait speed variables was predictive of potentially
different health outcomes, this work shows avenues for ultimately
targeting modifiable predictors of clinically meaningful
outcomes.

CONCLUSION

The selected variables explained a greater proportion of
variation in MGS and UGS than GSR. There were common
features to all three models (i.e., age, grip strength, chair
stands time, mean motor reaction time in the choice
reaction time test, and height) but also some unique
features to each of them. By SHAP feature importance, the
top 4 features were chair stands time, age, BMI, and number of
medications to the UGS model; age, chair stands time, grip
strength, and height to the MGS model; and level of
educational attainment, grip strength, mean motor
response time, and MOCA errors to the GSR model.
Overall, findings on all three models were clinically
plausible and support a network physiology approach
(Bartsch et al., 2015) to the understanding of predictors of
performance-based tasks. Each model contains features from
multiple physiological systems and thus support the
hypothesis that GSR and UGS and MGS are multisystem
phenomena. By employing an explainable machine learning
model, our observations may help clinicians gain new insights
into the possible determinants of physiological reserve in
older adults. Of the features selected, some are non-
modifiable, e.g., age, sex, and height. Others, however, may
be directly modifiable through changes in lifestyle, engaging
in physical exercise, or cognitive stimulation (e.g., BMI,
weight, smoking, education, chair stands time, grip
strength, MOCA, motor response time, and SART). For
some variables, it may be useful to focus on ensuring that a
patient avoids reaching threshold values that are associated
with a rapid decline in gait speed. Conversely, if engaging in
rehabilitation, those threshold values may be the targets so as
to reach a more stable situation with respect to walking speed.
Having explored the predictors of GSR and found multisystem
associations, further work will investigate whether GSR is a
useful measure in predicting adverse health outcomes and if it
can contribute to informing on overall physiological reserve.

The machine learning approach allowed for the stepwise
selection of the set features that best explained a target variable
in a non-parametric manner that can also capture high-order
interactions. Explainable machine learning allowed for the
selected models to be visualized to observe the input–output
relationships and the relationship between feature
interactions and the model output. Using a tree-based
machine learning model enabled the use of the TreeSHAP
explainable machine learning package, which uses the tree
structure to be able to compute exact Shapely values in low-
order polynomial time. Bootstrapping will be implemented in
future iterations of the method to allow for confidence

intervals to be included in the model explanation
visualisations.

Future work will use these methods to explore other available
gait parameters and physical markers and may include new
features from other domains as additional inputs.
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