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According to experts in neurology, brain tumours pose a serious risk to human 
health. The clinical identification and treatment of brain tumours rely heavily 
on accurate segmentation. The varied sizes, forms, and locations of brain 
tumours make accurate automated segmentation a formidable obstacle in the 
field of neuroscience. U-Net, with its computational intelligence and concise 
design, has lately been the go-to model for fixing medical picture segmentation 
issues. Problems with restricted local receptive fields, lost spatial information, 
and inadequate contextual information are still plaguing artificial intelligence. A 
convolutional neural network (CNN) and a Mel-spectrogram are the basis of this 
cough recognition technique. First, we combine the voice in a variety of intricate 
settings and improve the audio data. After that, we preprocess the data to make 
sure its length is consistent and create a Mel-spectrogram out of it. A novel 
model for brain tumor segmentation (BTS), Intelligence Cascade U-Net (ICU-
Net), is proposed to address these issues. It is built on dynamic convolution and 
uses a non-local attention mechanism. In order to reconstruct more detailed 
spatial information on brain tumours, the principal design is a two-stage cascade 
of 3DU-Net. The paper’s objective is to identify the best learnable parameters 
that will maximize the likelihood of the data. After the network’s ability to gather 
long-distance dependencies for AI, Expectation–Maximization is applied to 
the cascade network’s lateral connections, enabling it to leverage contextual 
data more effectively. Lastly, to enhance the network’s ability to capture local 
characteristics, dynamic convolutions with local adaptive capabilities are used 
in place of the cascade network’s standard convolutions. We  compared our 
results to those of other typical methods and ran extensive testing utilising the 
publicly available BraTS 2019/2020 datasets. The suggested method performs 
well on tasks involving BTS, according to the experimental data. The Dice scores 
for tumor core (TC), complete tumor, and enhanced tumor segmentation BraTS 
2019/2020 validation sets are 0.897/0.903, 0.826/0.828, and 0.781/0.786, 
respectively, indicating high performance in BTS.
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1 Introduction

There are two main types of brain tumours, benign and malignant, 
which are defined as aberrant cell growths in the brain (Anselmi and 
Patel, 2022). Any kind of brain tumour, benign or malignant, poses a 
serious risk to human health because it presses on other parts of the 
skull and damages the brain tissue around (Bianchetti et al., 2021). The 
importance of early identification in the treatment of brain tumours 
has been demonstrated in clinical practice. The gold standard for brain 
tumor detection right now is magnetic resonance imaging (MRI), 
which can produce a variety of tissue contrast pictures that help 
doctors diagnose and treat the disease. Precise segmentation is 
essential for the clinical diagnosis and management of brain tumours. 
Accurate automated segmentation of brain tumours is a significant 
challenge in the field of neuroscience due to their diverse sizes, shapes, 
and locations. Recently, U-Net has become the model of choice for 
resolving medical picture segmentation problems because to its 
computational intelligence and succinct architecture. There is an 
immediate need for computer-assisted automated BTS since manually 
segmenting and analysing brain tumours in MRI images is a tedious 
and time-consuming process (Dhiman et al., 2023). The uneven and 
unclear borders, different sizes, and forms of brain tumours make 
automated high-precision BTS a tough job in medical image analysis 
at present.

BTS tasks have seen the effective use of deep learning in recent 
years, leading to its progressive mainstreaming in the area. Fully 
convolutional networks (FCNs) were built in 2014 by Abdar et al. 
(2021) substituting convolutional layers for fully connected ones in 
convolutional neural networks (CNNs) (Ahmed and Prakasam, 2023). 
This solved the spatial discontinuity problem in image segmentation 
and allowed for successful pixel-level image classification, which laid 
the groundwork for deep learning image segmentation (Poulakis and 
Westman, 2021). For medical image segmentation tasks, considering 
the insufficient feature map recovery and lack of spatial consistency of 
FCNs, Shoeibi et al. (2024) proposed a variant network of FCN called 
U-Net. Understanding of the brain networks that control appetite is 
developing quickly thanks to developments in neuro-technology for 
mapping, modifying, and tracking molecularly defined cell types. 
Here, we go over these crucial instruments and how they are used in 
the circuits that regulate the desire and intake of food. These tools’ 
technical capabilities create a strict experimental framework for 
studying the neuroscience of hunger. This network consists of 
symmetric encoders and decoders, using skip connections to 
concatenate down sampled and up sampled features to retain more 
dimensional and spatial information (Stampfl et al., 2023). BTS was 
one of several medical picture segmentation tasks that it swiftly 
became the standard approach for, because to its streamlined network 
design and outstanding segmentation performance (Zhao and Zhao, 
2021). Combining up- and down-sampled features in order to 
preserve more spatial and dimensional information. Up sampling is 
the process of increasing the rate of an already sampled signal, and 

down sampling is the process of decreasing the rate. Up sampling is 
the process of altering a signal to erroneously raise the sampling rate. 
Considering the limitations of 2D U-Net in capturing contextual 
information in 3D MRI brain tumor images, researchers proposed 
3DU-Net (Vanderbecq et  al., 2020), significantly improving the 
segmentation performance of 2D network models (Li et al., 2023). In 
addition, addressing issues such as insufficient high-resolution feature 
representation of small-scale and irregular brain tumor regions based 
on 3DU-Net (Smith et al., 2023), researchers introduced autoencoders 
(Yousefirizi et al., 2022), attention mechanisms (Zhao et al., 2023), and 
cascade architectures into the network (Niyas et al., 2022), encouraging 
research into 3DU-Net models for BTS (Venkatesan et  al., 2022). 
Myronenko (Li et  al., 2023) improved the accuracy of BTS by 
cascading a VAE into the 3DU-Net on the cascade network for 
BTS. When it came time for the 2018 BTS Challenge (BraTS), this 
approach took first place. Researchers suggested 3DU-Net, which 
greatly enhances the segmentation performance of 2D network 
models, in response to the shortcomings of 2D U-Net in capturing 
contextual information in 3D MRI brain tumor pictures. Since the 2D 
CNN starts with ImageNet weights, it converges more quickly than 
the 3D CNN, whose weights are initialized at random.

Subsequently, Smith et al. (2023) and Yousefirizi et al. (2022) used 
cascade 3DU-Nets to segment brain tumours, obtaining rough 
predictive segmentation results in the first stage and combining the 
rough segmentation results with 3D brain tumor MRI images in the 
subsequent phase to foretell outcomes of finer segmentation. Smith 
et al. (2023) method won first place in the BraTS 2019 Challenge. 
Furthermore, similarly designed multi-stage cascade 3DU-Net 
methods from coarse to fine and fully utilized multi-scale information. 
The techniques clearly show that cascade networks perform better in 
BTS, which makes it a significant area of study in this area. This study 
is motivated by the remarkable performance of a 3D cascaded network 
in BTS tests. to solve the drawbacks of U-Net networks, including 
their small local receptive fields, loss of geographical information, and 
underuse of contextual information. A 3D cascaded network’s 
exceptional performance in BTS tests is the basis for this study. To 
address the shortcomings of U-Net networks, such as their limited 
local receptive fields, spatial information loss, and contextual 
information underutilization, this work builds on 3D cascaded 
networks to improve the network’s ability to express global feature 
attention and adaptively adjust its receptive fields. U-NET is a popular 
option in many medical imaging applications due to its unique 
properties, which are often used for its accuracy in picture 
segmentation. A decoding path known as the expanding path and an 
encoding path known as the contracting path are combined in U-NET:

 • A novel 3D cascaded BTS network design is presented, based on 
the existing one.

 • To enhance the network’s ability to capture features over long 
distances, ICU-Net presents a non-local expectation 
maximization attention (EMA) module that is lightweight.
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 • The efficiency of the suggested method is demonstrated by both 
ablation and comparative experimental findings, which indicate 
competitive performance in comparison to the field’s most 
advanced techniques.

Firstly, to enhance the global context information of brain 
tumours and expand the receptive field, a lightweight non-local EMA 
module (Cervantes et  al., 2023) is introduced into the cascaded 
network. Additionally, to address the difficulty of capturing tumour 
features of different shapes and sizes effectively with regular 
convolutions, an attention-based dynamic convolution (Dutande 
et al., 2021) is attempted in the network. Neuronal morphology gene 
expression (Lein et  al., 2007), markers of excitatory or inhibitory 
neurotransmitter release, and electrophysiological firing properties are 
among the utilitarian criteria that have been used to define cell types 
and are significant to different groups of experimenters (Jennings 
et al., 2013). The development and mature transcription factor codes 
information theory stimulus response sensitivity, axon projection 
targets along with intersections of these criteria (Dasen and Jessell, 
2009). The field of cough analysis has received little attention from AI 
experts. Several things might be blamed for this, such as inefficient 
auxiliary frameworks, expensive database acquisition, or difficulties 
developing classifiers (Kumar et al., 2021). A lightweight non-local 
EMA module is added to the cascaded network in order to improve 
the global context information of brain tumours and increase the 
receptive field. Additionally, an attention-based dynamic convolution 
is tried in the network to solve the challenge of efficiently capturing 
tumour features of various shapes and sizes using normal convolutions. 
This dynamic convolution adapts its kernel based on input 
dynamically, better accommodating the significant differences in brain 
tumor images, thereby further improving network performance 
without deepening or widening the network.

In this paper, loss functions are used in two stages. The output is 
calculated using the cross-entropy loss function in the network’s initial 
stage in comparison to the ground truth image. The ground truth 
image is compared using the cross-entropy loss function and the dice 
loss function.

In summary, this article constructs a new model for BTS, named 
Cascade Dynamic Attention U-Net (ICU-Net), which integrates EMA 
and dynamic convolution into a 3D cascaded U-Net framework. The 
main contributions are as follows:

 1 Based on the 3D cascaded BTS network architecture, a new 3D 
cascaded BTS network is proposed, focusing on enhancing the 
network’s ability to express tumor global context information 
and adaptively adjust the receptive field for tumours of 
different scales.

 2 In the fourth connection of the second-stage network, ICU-Net 
introduces a lightweight non-local EMA module to improve 
long-distance feature capture by the network. Simultaneously, 
all regular convolutions in the second-stage network are 
replaced with dynamic convolutions to adaptively match local 
feature receptive fields, achieving overall improvement in 
BTS performance.

 3 ICU-Net is validated on the BraTS 2019 and BraTS 2020 
datasets. Both ablation and comparative experimental results 
demonstrate the effectiveness of the proposed method, showing 

competitive performance compared to state-of-the-art 
methods in the field.

Neurotechnology is profitable to make new connections between 
previously disconnected neural system components very soon. This 
has the potential to significantly improve the lives of those with 
autism, anxiety, and chronic pain. There are very few ways to change 
the stimulation of the nervous system and very little 
continuous sensing.

The paper is organized into 4 sections, initially, Section 1 provides 
Introduction section; Section 2 covers Network Framework and 
Algorithm Principles; Section 3 presents Experiment and Results the 
major conclusions drawn from the study in the Section 4.

2 Network framework and algorithm 
principles

2.1 Complete network framework

The proposed 3D cascaded dynamic attention U-Net BTS network 
architecture is shown in Figure 1.

A two-stage network is formed by cascading two 3DU-Net 
networks with four layers of up sampling and down sampling; this 
architecture achieves segmentation results for brain tumor regions 
ranging from coarse to fine, allowing for the reconstruction of finer 
high-resolution spatial information. Initially, a 3DU-Net is employed 
to roughly segment brain tumours; the input size for this multi-modal 
tumor is 4 × 128 × 128 × 128 and the output size is left unchanged. In 
the second stage, the input of the network is the aggregation of the 
rough segmentation result and the multi-modal 3D brain tumor MRI, 
with a size of 8 × 128 × 128 × 128. By learning aggregated information, 
the rough segmentation result guides the network to learn finer 
segmentation results from 3D brain tumor MRI. The final output size 
remains 4 × 128 × 128 × 128. EMA module is presented to capture 
long-distance feature dependencies in characterizing enhancing 
tumour (ET) images. The EMA module is friendly to memory and 
computation, and it is resistant to input variance. In addition, 
we  established the normalization and maintenance procedures to 
sustain the training process. Due to the limitation of using 
conventional direct connections in the lateral connections of 
3DU-Net, which fails to capture long-distance feature dependencies 
in describing enhancing tumor (ET) images, a lightweight non-local 
EMA module is introduced. A small, non-local EMA module to 
enhance the network’s ability to capture long-range features. The 
second-stage network simultaneously replaces all of its conventional 
convolutions with dynamic convolutions to adaptively fit local feature 
receptive fields and improve overall BTS performance. Considering 
cost estimation using computational intelligence, the EMA module is 
only added at the fourth lateral connection of the second stage. The 
input feature size of this module is 128 × 16 × 16 × 16, expanding the 
network’s receptive field while enhancing global information 
representation. Additionally, all regular convolutions in the encoding 
and decoding modules of the second-stage 3DU-Net are replaced with 
dynamic convolutions to adaptively adjust the network’s receptive field 
based on tumor size, thereby strengthening the network’s ability to 
extract local tumor features.
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2.1.1 Expectation maximization attention
Global information is crucial for BTS, and introducing non-local 

self-attention can enhance long-distance feature dependencies in 
Wholetumor (WT) images. However, conventional non-local self-
attention requires point-wise calculation of spatial attention and 
generates attention maps, leading to a sharp increase in model cost 
estimation using computational intelligence when combined with 3D 
convolutions. Therefore, a lightweight non-local EMA stage is used, 
which calculates worldwide focus via means of reconstructed features. 
Since the number of voxels in the reconstruction base is much smaller 
than that of the input feature map, the cost estimation using 
computational intelligence of non-local attention can be significantly 
reduced. Early diagnosis improves the prognosis and prospects of a 
successful course of treatment for brain tumours. Early detection can 
also lessen the chance of consequences for the patients and lessen the 
damage to the surrounding healthy brain tissue. An early diagnosis of 
brain tumours is essential for bettering the prognosis and outcomes 
for patients. By identifying the warning signs and symptoms and 
getting help right away, people can guarantee a rapid diagnosis and 
have access to a variety of treatment choices. The specific structure of 
the EMA module is shown in Figure 2. It uses 1 × 1 × 1 convolution to 
change the channel number of the feature map X, and inputs it into 
the EM algorithm inside the dashed box to calculate non-local 
attention. To avoid overfitting, the input feature map is summed with 
the reconstructed feature map in a residual manner.

For the specific optimization calculation of the module, the EMA 
module uses the Expectation Maximization (EM) algorithm to iterate a 
compact set of bases, and then calculates attention on this set of bases. 
Given input feature map X ∈SD × E × G × Y and initial bases μ ∈SD × K, where 
D is the number of channels, E × G × Y is the size of the input feature map, 
and K is the number of bases, the bases μ and non-local self-attention 
A∈SE × G × Y × K learn parameters and latent variables, respectively. The goal 
of the EM algorithm is to find the optimal learnable parameters to 
maximize the data likelihood. The EM process mainly involves 
Expectation (E) step and Maximization (M) step. The F step estimates 
the expectation of A, while the M step updates through likelihood 
maximization. The specific process is as follows in Eqs. (1, 2):

 
A Xu u( ) −( )= ( )( )sofUmax
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Where, t represents the number of iterations, W = E × Y × G, and 
Ank is the attention vector of the k-th channel at position n. In this 
study, t is set to 3, meaning that the F step and M step are alternately 
executed three times. Finally, the reconstructed feature map X  is 

FIGURE 1

BTS network architecture based on cascaded dynamic attention 3D U-Net design and spatial information of brain tumours.
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obtained through the converged μ and normalized attention A, 
represented in Eq. (3) as follows:

 
Uµ=X A  (3)

Incorporating the EMA module into the network effectively 
aggregates long-distance contextual information and reduces intra-
class differences while preserving inter-class differences, thereby 
enhancing the segmentation performance of the cascaded 
BTS network.

2.1.2 Dynamic convolution
In deep neural networks, when using regular convolutions, after 

the network training is completed, all convolutional kernel parameters 
are fixed, and the convolution shares the convolutional kernel 
parameters. To improve performance, more parameters must 
be learned through network deepening or expanding. Through the use 
of the idea of dynamic convolution, which enables the convolutional 
layer to adaptively alter its receptive field based to the properties of the 

input picture segmentation, the model performance may be improved 
without expanding the depth or width of the network. In order to 
improve the model performance without increasing the depth or 
width of the network, Ye et al. (2021) and Yasin et al. (2024) proposed 
the concept of dynamic convolution, allowing the convolutional layer 
to adaptively adjust its receptive field according to the characteristics 
of the input image segmentation.

In specific implementation, dynamic convolution uses a set of K 
parallel convolution kernels instead of using one convolution kernel 
per layer. The dynamical convolutional and EMA module in detail 
later in this article. In addition, the outputs of the first and second 
stages are independently compared with the ground truth pictures to 
compute loss values, which are then combined into a final loss value 
to jointly supervise the network in order to improve network training. 
Based on the focus of the input picture segmentation, the convolution 
kernels dynamically aggregate numerous parallel convolution kernels 
and aggregate them in a non-linear manner to achieve greater feature 
representation capacity. In the meantime, dynamic convolution 
computes the attention of convolution kernels using the squeeze and 
excitation module SENet. By compressing the global spatial 

FIGURE 2

Structure of the expectation maximization attention module.
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information of the input through global average pooling, and then 
reducing the dimensionality of the features using two fully connected 
layers and an intermediate non-linear layer structure. Among them, 
the first fully connected layer reduces the dimensionality, the second 
fully connected layer reduces the dimensionality to K, and finally 
softmax generates normalized attention weights π k for K convolution 
kernels. The three-dimensional MRI brain tumor images are the result 
of this study’s extension of the two-dimensional dynamic convolution 
to three dimensions. Moreover, three-dimensional dynamic 
convolutions are used in place of all normal convolutions in the 
second stage of the cascaded network, allowing the network to 
adaptively determine convolution kernel parameters for various input 
brain tumor images and improve BTS outcomes. To facilitate the 
learning of attention πk , πk  is constrained to

k
k x∑ ( ) =π 1 . Unlike 

SENet, dynamic convolution applies attention to parallel convolutions, 
so the additional attention calculation cost is very low. The specific 
structure of dynamic convolution is shown in Figure 3.

Since MRI brain tumor images are three-dimensional, this study 
extends the original two-dimensional dynamic convolution to three-
dimensional. Although attention layers are based on human 
concepts of attention, they are just a weighted mean reduction. The 
query, the values, and the keys are the three inputs that the attention 
layer receives. When the query consists of a single key and the keys 
and values are equivalent, these inputs are frequently similar. 
Furthermore, all regular convolutions in the second stage of the 
cascaded network are replaced with three-dimensional dynamic 
convolutions, enabling the network to adaptively establish 
convolution kernel parameters for different input brain tumor 
images, thus achieving better BTS results. The convolutional neural 
network’s overall training pace and prediction capacity are somewhat 
influenced by the parameters of each layer. Determining the ideal 

parameter configuration is therefore a crucial step in convolutional 
neural network training.

2.2 Loss function

The loss function is an important factor guiding the training of the 
BTS network. Considering the severe class imbalance problem in BTS 
tasks, the cross-entropy loss function LCE and the Dice loss function 
LDC are combined in the loss function. The cross-entropy loss reduces 
the error between the predicted result and the ground truth image, 
while the Dice loss function, commonly used in medical image 
segmentation, effectively addresses the class imbalance problem. Their 
formulas are shown in in Eqs. (4, 5) respectively as:
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Where x represents the ground truth image, x represents the 
predicted segmentation result, and M is the total number of 
sample labels.

This paper divides the use of loss functions into two stages. In the 
first stage of the network, the output is computed with the 

FIGURE 3

Dynamic convolution structure diagram.
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cross-entropy loss function against the ground truth image. The BTS 
network’s training is significantly influenced by the loss function. The 
cross-entropy loss function (LCE) and the dice loss function (LDC) 
are used in the loss function to address the serious class imbalance 
issue in BTS tasks. The Dice loss function, which is frequently used in 
medical picture segmentation, successfully addresses the class 
imbalance issue, while the cross-entropy loss minimizes the error 
between the predicted result and the ground truth image. In the 
second stage, the combination of cross-entropy loss function and Dice 
loss function is used against the ground truth image. Subsequently, the 
two-stage loss functions are added together proportionally to obtain 
the complete Loss function, represented in Eq. (6) as:

 Loss CE CE DC= × + × +( )0 5 0 51 2 2. .L L L  (6)

L LCE DCand2 2  respectively represent the cross-entropy loss 
functions of the first and second stages of the BTS network, and LDC2 
represents the Dice loss function of the second stage of the network.

3 Experiment and results

3.1 Experimental environment and 
configuration

The experimental setup includes a 3.80GHz Intel(R) Xeon(R) 
Gold 5,222 CPU and a 24GB Nvidia RTX 3090 GPU. Python and the 
Adam optimizer are used for both code implementation and model 
training. A weight decay coefficient of 1 × 10–5 should be  used, 
momentum of 0.95, and an initial learning rate of 0.001. Due to the 
3D BTS model’s high memory consumption and hardware constraints, 
the batch size during training is 3 and the model training iterations 
are 550. Utilizing cascaded 3D U-Net and 3D U-Net networks, the 
Brain Tumour Segmentation Challenge 2019 dataset (BRATS 2019) 
enabled the automatic segmentation of brain tumours in magnetic 
resonance imaging (MRI) images. The brain tumor segmentation is 

first broken down into three segments: the enhanced tumour (ET), the 
tumour core (TC), and the entire tumour (WT).

3.2 Dataset and pre-processing

To test the approach, BraTS 2019 and BraTS 2020, public MRI 
BTS datasets, are used. BraTS 2019 has 335 training and 125 
validation cases. The training set includes 259 HGG and 76 LGG 
instances. BraTS 2020 improves the training set by 369 HGG 
instances and maintains the validation set at 125. The BraTS 2020 
training set comprises 293 HGG and 76 LGG. Four modes per case: 
Flair, U1, U2, and U1ce, and each MR image’s size is 
240 mm × 240 mm × 155 mm. Additionally, the training set provides 
manually segmented brain tumor results by professional physicians. 
The training set offers manually segmented results of brain tumours 
by medical professionals. The validation set does not reveal ground 
truth picture labels in order to maintain fairness in BTS results. 
Additionally, segmentation results must be submitted to an online 
evaluation portal in order for model performance to be assessed. 
Four classifications of brain tumor imaging data labels are healthy 
(0), necrotic (1), edoema (2), and enhancing (4). WT, TC, and ET 
lesion locations are classified. Each tumor lesion class—WT, TC, 
and ET—has a label. Figure 4 shows two example MRI brain tumor 
imaging samples: an HGG sample and an LGG sample. Red 
indicates necrotic areas, green edoema regions, and yellow 
enhancing tumours.

In the pre-processing of brain tumor image data, the A-score 
method is initially used for dataset standardization, as shown in Eq. 7.

 
′ =

−A A µ
δ  

(7)

Where, A stand for the input picture, A′ for the normalised image, 
μ represents the average, while δ represents the norm of deviation.

The network is a 4 × 128 × 128 × 128 resized version of the multi-
modal three-dimensional brain tumor MRI pictures, which are 

FIGURE 4

MRI brain tumor visuals with four modalities and ground truth.

https://doi.org/10.3389/fncom.2024.1391025
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Byeon et al. 10.3389/fncom.2024.1391025

Frontiers in Computational Neuroscience 08 frontiersin.org

cropped at random since brain tumor images include a substantial 
quantity of useless background information. Furthermore, techniques 
for enhancing picture data are employed, including random rotation, 
flipping, and intensity adjustments.

3.3 Evaluation metrics

To measure the model’s performance, we employ the widely-used 
Dice Similarity Coefficient (DSC) and housekeeping distance. For 
segmentation evaluation, the empirical discrepancy methods have 
been the most widely utilized techniques. By comparing the 
segmented image with a manually segmented reference image—often 
referred to as the ground truth and calculating error measurements, 
these techniques assess segmentation techniques. To measure how 
close the segmentation output is to the ground truth picture, a 
measure that can take on values between zero and one, the Dice 
Similarity Coefficient is computed in this way:

 
Dicescore =

+ +
2

2

UQ
HQ UQ HN  

(8)

UQ, HQ, UN, and HN denote the number of tumor voxels 
successfully predicted, non-tumor voxels predicted, and tumor voxels 
not identified.

To evaluate the distance between the segmentation result 
boundary and the ground truth boundary, use the Hausdorff distance 
formula: where u and q represent points in the ground truth and 
predicted regions, respectively, and d(t, p) is the distance function 
between points t and p. Hausdorff95 multiplies the final Hausdorff 
value by 95% to remove outliers.

3.4 Experiments and results

First, we perform ablation experiments using the BraTS 2020 
dataset to confirm the efficiency of the proposed ICU-Net BTS model. 
Then, we  compare it to other comparable networks in the field. 
Additionally, experimental results comparing ICU-Net to other 
models on the BraTS 2019 dataset are presented to demonstrate its 
generalisation performance. Lastly, the efficiency of the suggested 
methodology is further shown by presenting visual segmentation data.

3.4.1 Ablation experiment results
Both the datasets used for training and validating BraTS 2020 

were used to conduct the experiments to completely validate the 

outcomes of the ablation. As a starting point, we utilised the 3DU-Net 
and then transformed it into ainto a 3D transmitted U-Net using 
EMA and dynamic convolution modules in the second stage. This 
allowed us to validate the results more effectively. For simplicity’s 
sake, we’ll refer to the cascaded U-Net model as CU-Net; “+EMA” is 
for the inclusion of Expectation Maximisation Attention, and 
“+DConv” stands for Dynamic Convolution. The pictures of brain 
tumours in this dataset were randomly divided into two sets—one for 
training and one for validation—in a ratio of 80:20 for the BraTS 
2020 ablation studies. Additionally, to account for training duration 
and result stability, we trained each model twice and averaged the 
results. You may see the detailed outcomes of the ablation tests in 
Table 1.

Table 1 shows that the baseline model, 3DU-Net, achieved 
DSC values of 0.784 for ET, 0.900 for WT, and 0.797 forTC. With 
the fundamental cascaded model, CU-Net, these values changed 
to 0.788, 0.897, and 0.816, respectively. In comparison to the 
baseline model, the WT result was somewhat lower, but the ET 
and TC outcomes were better. Particularly, there was a 1.9% 
accuracy improvement in TC, verifying the effectiveness of the 
cascaded architecture. Furthermore, when the EMA module or 
dynamic convolution module was individually added to the 
cascaded model, there were overall performance improvements 
compared to the basic cascaded method. Adding the EMA 
module improved ET by 1.5% points, while adding dynamic 
convolution improved ET by 0.9% points and TC by 2.4% points, 
showing that these two modules are successful in small-scale 
BTS. The cascaded design was completed by including both 
modules to create ICU-Ne. The resulting DSC values for ET, WT, 
and TC were 0.813, 0.905, and 0.836, respectively. These 
represented performance improvements of 2.5, 0.5, and 2% over 
the cascaded basic model CU-Net, and 2.9, 0.5, and 3.9% over the 
baseline U-Net method, indicating the good performance of BTS 
using the ICU-Ne model. This is since the added modules can 
better capture tumor global context information and adaptively 
adjust the sensitivity to tumor regions. Meninges, pituitary gland, 
craniopharyngeal duct, and frontal and temporal lobes are the 
most often affected brain regions in adults. Most typically, the 
cerebellum and brainstem are the sites of brain tumours in 
children. In medical image analysis, automated high-precision 
BTS is currently a challenging task due of the irregular and 
ill-defined borders, varying sizes, and shapes of brain tumours.

The BraTS 2020 validation set was used for additional ablation 
experiments to verify the results. We trained the models using all the 
BraTS 2020 training data, then used them to segment 125 brain 
tumours in the validation set. Finally, the BraTS online assessment 

TABLE 1 Ablation experiments on the BraTS 2020 training dataset.

Segmentation method DSC

ET WT TC Average

U-Net (baseline method) 0.784 0.9 0.797 0.827

CU-Net 0.788 0.897 0.816 0.834

CU-Net + EMA 0.803 0.898 0.815 0.839

CU-Net + DConv 0.797 0.905 0.84 0.847

ICU-Net 0.813 0.905 0.836 0.851
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platform returned the index evaluation findings from the segmentation 
results. Table 2 lists experimental outcomes.

Table 2 shows that the 3DU-Net baseline technique obtained 
DSC findings of 0.769 for ET, 0.894 for WT, and 0.799 for TC. Each 
of these parameters saw an improvement of 0.4 percent, 0.3 percent, 
and 0.9% following network cascading. Adding the EMA module 
and dynamic convolution separately to the cascaded network 
improved BTS by 1.8 and 0.9% in ET and 1.6 and 3.4% in TC, 
respectively. This contrasted with the small difference in the WT 
metric when compared to the 3DU-Net. In conclusion, ICU-Net 
achieved ET performance of 0.786, WT performance of 0.903, and 
TC performance of 0.828 after incorporating the cascade and EMA 
modules and dynamic convolution. These results demonstrated that 
the cascaded design in conjunction with the two modules was 
effective, as they showed gains of 1.7, 0.9, and 2.9% when compared 
to 3DU-Net. Furthermore, the table data shows that overall 
performance was ideal across all three criteria, even if individual 
metrics were not satisfied in the results.

3.4.2 Comparison with representative methods
Tables 3, 4 compare the proposed BTS approach against others 

using the BraTS 2019 and BraTS 2020 validation sets to prove its 
efficacy and competitiveness. On the BraTS 2019 validation set, 
ICU-Net averaged 0.834 DSC values for ET, WT, and TC, which 
were 0.781, 0.897, and 0.826, respectively (Table 3). With average 
DSC values of 0.799 and 0.788, Ahamed et al. (2023) improved the 
loss function of a 3DU-Net++ network and Wu et al. (2023) built a 
unique BTS model utilising cross-stage local network design. 
Cannet presented a context-guided attention conditional random 
field using high-dimensional feature maps (Stampfl et al., 2023). 
ICU-Net outperforms author techniques. As compared to Liu et al., 
ICU-Net increased ET, WT, and TC by 2.2, 1.2, and 2.5% while 
outperforming CANet. This method outperformed multi-stage 
cascaded networks by 3.3 and 1.1%, respectively, confirming its 
usefulness. In TransBTS (Niyas et al., 2022), the Transformer, a 
popular computer vision tool, was used to segment 3D brain 
tumours. Both methods yielded similar averages. Averaging 5.69 

TABLE 3 Comparison results with representative methods the BraTS2019 testing dataset.

Segmentation 
method

DSC Hausdorff95

ET WT TC Average ET WT TC Average

Ahamed et al. (2023) 0.709 0.873 0.814 0.799 12.3 15.45 12.47 13.4

Wu et al. (2023) 0.707 0.878 0.779 0.788 – – – –

Stampfl et al. (2023) 0.759 0.885 0.851 0.832 4.8 5.89 6.56 5.75

Yousefirizi et al. (2022) 0.75 0.854 0.8 0.801 3.08 7.04 5.96 5.36

Zhao et al. (2023) 0.771 0.886 0.813 0.823 6.03 6.23 7.41 6.55

Lundervold and Lundervold 

(2019) 0.789 0.9 0.819 0.836 3.73 5.64 6.04 5.14

ICU-Net 0.781 0.897 0.826 0.834 3.39 5.91 7.77 5.69

TABLE 2 Validation data from BraTS 2020 for ablation trials.

Segmentation method DSC

ET WT TC Average

U-Net (baseline method) 0.769 0.894 0.799 0.821

CU-Net 0.773 0.897 0.808 0.826

CU-Net + EMA 0.787 0.899 0.815 0.834

CU-Net + DConv 0.778 0.895 0.833 0.835

ICU-Net 0.786 0.903 0.828 0.839

TABLE 4 Comparison results with representative methods on the BraTS 2020 validation dataset.

Segmentation 
method

DSC Hausdorff95

ET WT TC Average ET WT TC Average

Zhao and Zhao (2021) 0.729 0.886 0.802 0.806 31.97 10.26 13.58 18.6

Vanderbecq et al. (2020) 0.77 0.896 0.839 0.835 32.4 7.7 11.7 17.26

Niyas et al. (2022) 0.764 0.882 0.801 0.816 21.39 6.49 6.68 11.52

Shoeibi et al. (2024) 0.79 0.897 0.829 0.838 24.14 6.17 7.04 12.45

Newsome (2006) 0.774 0.891 0.803 0.823 26.84 15.78 8.56 17.06

ICU-Net 0.786 0.903 0.828 0.839 35.03 4.57 14.58 18.06
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Hausdorff distance, the ICU-Net technique ranks third in the table, 
with ET, WT, and TC values of 3.39, 5.91, and 7.77. This paper’s 
DSC and Hausdorff distance results proved competitive with other 
representative approaches.

Table 4 displays BraTS 2020 validate set findings, Newsome 
(2006) proposed an improved 3DU-Net by using dilated 
convolutions (Erus et  al., 2020) and adding attention in skip 
connections (Boveiri et  al., 2020), which showed significant 
performance advantages compared to the original 3DU-Net (Bui 
et al., 2019). Bernal (2002) added an EMA module to the lateral 
connections of the DMF-Net model (Bao et al., 2003). Compared 
to this, ICU-Net outperformed by 1.6% on ET but lagged by 1.1% 
on TC, with an overall performance improvement of 0.4% on 
average. In comparison with cascaded networks, Salvoro et  al. 
(2017) proposed a segmentation network with three sub-branches 
and one main branch (Seifert, 1987), where the sub-branches 
captured different brain tumor features (Kondhalkar and Parab, 
2013), and the main branch aggregated multi-modal features using 
spatial-channel fusion blocks (Liu et al., 2023). Singh et al. (2021) 
used a two-stage VAE cascaded network and added attention gates 
in the network (Eppinger et al., 2021). Compared to author and 
author cascaded BTS networks, the ICU-Net method outperformed 
author by 2.3% and author by 0.1% on average. Additionally, 
compared to Ienca and Ignatiadis (2020) SwinBTS method, which 
added Swin Transformer to the 3DU-Net, ICU-Net led by 1.2, 1.2, 
and 2.5% on ET, WT, and TC, respectively. These results show that 
the suggested BTS approach works. The ICU-Net technique 
obtained 4.57 on WT but significantly less on ET and TC in 
Hausdorff distance. This is because ICU-Net did not use more post-
processing, which may lead to inaccurate predictions for individual 
LGGs without ET, causing false positives and significantly affecting 
the model evaluation results.

3.4.3 Results visualization
To visually display the BTS results more intuitively, the results of 

the BraTS 2020 train datasets were visualized, as display in Figure 5. 
Three representative cases were selected for display in Figure 5, with 
each row demonstrating the Flair image, Ground Truth, 3DU-Net, 
and Left to right, we can see the results of the ICU-Net segmentation. 
On top of the Flair picture are the segmentation results from 3DU-Net, 
ICU-Net, and Ground Truth. Additionally, to highlight the 
segmentation results where ICU-Net outperforms U-Net, blue lines 
are used. Through the visualized images, it can be observed that the 
proposed method can effectively segment enhancing tumours, WT, 
and tumor cores, outperforming the 3DU-Net. However, there is still 
some gap compared to the Ground Truth, indicating room for further 
improvement in segmentation performance.

4 Conclusion

The introduction of the EMA module and Dynamic Convolution 
has effectively enhanced the network’s ability to capture both global 
and local tumor information. The results of the ablation experiments 
on the publicly available BraTS 2019 and BraTS 2020 datasets 
demonstrate the effectiveness of the introduced modules in 
BTS. Moreover, the comparison results with representative methods 
in the field further prove that the suggested method is competitive. In 
future work, to further enhance the accuracy of BTS, we will explore 
cascaded architectures using convolutional and self-attention modules 
that have better feature expression capabilities. Additionally, we will 
study more sophisticated data augmentation tactics and post-
processing approaches. The EMA module will be  covered in the 
future. In addition, the outputs of the first and second stages are 
independently compared with the ground truth pictures to compute 

FIGURE 5

Example of segmentation results on the BraTS 2020 training set (color images are available in the electronic version).
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loss values, which are then combined into a final loss value to jointly 
supervise the network in order to improve network training.
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