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Introduction: Novel technologies based on virtual reality (VR) are creating

attractive virtual environments with high ecological value, used both in

basic/clinical neuroscience and modern medical practice. The study aimed to

evaluate the effects of VR-based training in an elderly population.

Materials and methods: The study included 36 women over the age of 60,

who were randomly divided into two groups subjected to balance-strength

and balance-cognitive training. The research applied both conventional clinical

tests, such as (a) the Timed Up and Go test, (b) the five-times sit-to-stand

test, and (c) the posturographic exam with the Romberg test with eyes

open and closed. Training in both groups was conducted for 10 sessions

and embraced exercises on a bicycle ergometer and exercises using non-

immersive VR created by the ActivLife platform. Machine learning methods with

a k-nearest neighbors classifier, which are very effective and popular, were

proposed to statistically evaluate the differences in training effects in the two

groups.

Results and conclusion: The study showed that training using VR brought

beneficial improvement in clinical tests and changes in the pattern of

posturographic trajectories were observed. An important finding of the

research was a statistically significant reduction in the risk of falls in the

study population. The use of virtual environments in exercise/training has

great potential in promoting healthy aging and preventing balance loss and

falls among seniors.
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1 Introduction

We are currently witnessing dynamic changes in the structure
of societies around the world (Lutz et al., 2008; Sanderson
and Scherbov, 2010; United Nations, 2017). Medical advances,
improved living conditions and increased life expectancy are
making old age an integral part of modern reality (Barbaccia
et al., 2022). United Nations (UN) and World Health Organization
(WHO) projections indicate that the number of seniors will double
in three decades, reaching 1.5 billion people in 2050 (United
Nations, 2020; World Health Organization [WHO], 2020), and
people aged 60 and older will make up about 22% of the world’s
population (United Nations, 2019). Old age, in addition to its
inevitable time dimension, comes with limitations and difficulties
in maintaining physical activity that promotes physical and mental
health (Viswanathan and Sudarsky, 2012; Chen et al., 2021). These
individuals are more prone to falls due to the natural aging process,
which negatively affects muscle strength, tissue flexibility, and
overall body stability (Moreland et al., 2004; Carapeto and Aguayo-
Mazzucato, 2021). Pain and limited joint mobility are the cause
of reduced physical fitness, leading to an increased risk of falls
and loss of independence (Rubenstein, 2006; Bischoff-Ferrari, 2011;
Stevens and Lee, 2018). Activities aimed at strengthening muscles,
improving endurance, exercising cognitive function, and reaction
speed help prevent falls (Nelson et al., 2007; Zhang et al., 2015;
Chantanachai et al., 2021). These elements are an integral part of
the recommended holistic approach to maintaining physical and
psychosocial fitness in the elderly. Regular balance training in older
people contributes significantly to improving stability, reducing the
risk of balance loss and falls (Marzetti et al., 2017).

Among the elderly, the limited variety of exercises and their
repetition is often the cause of lack of commitment and boredom.
Therefore, modern training systems have begun to be introduced
to complement conventional work methods and provide the
much-desired element of positive and strong motivation
(Evans, 1999; Ehrari et al., 2020). The dynamic development
of IT/ICT technologies (information technology/information
communications technology) and their use also allows the elderly
to enter a new digital world – attractive virtual reality – creating
an atmosphere of curiosity, even enjoyment, and a significant
increase in motivation for regular exercise both in clinical facilities
and at home under the supervision of a physiotherapist. Many
systems have already been developed to serve these purposes by
incorporating virtual reality (VR) into physical activity work.
One of these is the ActivLife platform used in our study. It is
tailored to prevent falls, especially in people at high risk of falling,
providing appropriate and safe support/training and, just as
importantly, cognitive support. The system offers a variety of
physical exercises, also including a variety of tasks to improve
cognitive function. This combination of activities allows us to
treat elderly persons precisely holistically, and their health as a
complex phenomenon, where physical health is also influenced by
emotional wellbeing and cognitive health. The proposed exercises
and tasks allow participants/seniors to activate each muscle group,
improve joint mobility, and enhance fitness using an attractive
form of interactive games, cognitively engaging and creating
an atmosphere of fun. However, being in virtual environments
(VEs) can be associated with adverse symptoms of cybersickness

(Séba et al., 2023; Kourtesis et al., 2024). This is more often
experienced by immersive VE participants, and very rarely by non-
immersive VR users (Venkatakrishnan et al., 2023; Sokołowska,
2024). Despite these (a) unfavorable effects (Drazich et al., 2023;
Dopsaj et al., 2024), but also (b) the lack of standardization of
virtual tools/environments (Kourtesis et al., 2021; Porffy et al.,
2022; Kim et al., 2023; Holmqvist et al., 2024), (c) researching to
prepare recommendations for the use of VR in specific patient
populations (Juras et al., 2019; Brassel et al., 2021; Liu et al., 2022;
Rodríguez-Almagro et al., 2024), (d) discussing emerging user
data protection/privacy issues and ethical dilemmas (Segkouli
et al., 2023; Goldstein et al., 2024; Rudschies and Schneider, 2024),
researchers and clinicians/physiotherapists highlight the enormous
potential of innovative technologies (Jonson et al., 2021; Bateni
et al., 2024; Moulaei et al., 2024). Today’s societies are aging at a
very rapid pace, which necessitates measures to support the elderly
in preventing falls and their serious consequences, including
exercising cognitive function in progressive senile dementia
(Barbaccia et al., 2022; Yang J. G. et al., 2022; Buele et al., 2023;
Ren et al., 2024; Siette et al., 2024; Tortora et al., 2024; Wilf et al.,
2024) – these actions are the future of modern clinical practice in
(neuro)geriatrics.

Current research demonstrates that the application of virtual
environments is effective in supporting such important balance
training in older adults. Various virtual protocols are being
proposed and tested, showing comparable or even greater benefits
of VR training compared to traditional physical training. An
important thread related to the development of novel technologies
is the computational approach for evaluating the usability and
effectiveness of various systems offered via VR (Cavedoni et al.,
2020; Yang A. H. X. et al., 2022; Nieto et al., 2024; Veneziani
et al., 2024; Wen et al., 2024). In clinical applications, machine
learning algorithms are proving to be very useful (Bao et al.,
2019; Eichler et al., 2022). Machine learning (ML) (a) is a
type of artificial intelligence (AI) focused on building computer
systems that learn from data, (b) is a powerful tool for
solving problems, streamlining various complex operations, and
automating tasks, and (c) has broad applications in many areas,
for example, science, engineering, industry, economics, databases,
healthcare, and medicine (Michalski et al., 2013; Alpaydin, 2016;
Zhu et al., 2020; Sarker, 2021; Singh et al., 2021; Barton
et al., 2024; Haimovich et al., 2024; Khalid et al., 2024). ML
offers a wide range of techniques, such as decision trees, rule
induction, neural networks, support vector machines (SVMs),
clustering and classification methods, association rules, feature
selection procedures, visualization, graphical models, or genetic
algorithms; which are many more complex and use techniques
well beyond traditional statistical techniques [i.e., hypothesis
testing, experimental design, ANOVA, linear/logistic regression,
generalized linear model (GLM), or principal component analysis
(PCA)] (Mitchel, 1997; Ben-David and Shalev-Shwartz, 2014;
Marsland, 2015; Arnold et al., 2019; Bradley and Trevor, 2021).

Moreover, in the context of the presented significant and
already global problem of aging and the consequences of falls
among seniors, methods for assessing balance and developing
effective methods of maintaining it in various situations are
important (Silva et al., 2017; Lo et al., 2019; Roshdibenam
et al., 2021; Albites-Sanabria et al., 2024; Song et al., 2024).
Posturographic techniques are often used for this purpose
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(Phu et al., 2019; Błaszczyk and Beck, 2023; Liang et al., 2024;
Pennone et al., 2024), also in our research relies on posturography
(Sokołowska et al., 2015, 2018; Sadura-Sieklucka et al., 2023).

The study aimed to evaluate and compare the effectiveness
of training using a non-immersive virtual environment, such
as balance-strength training, but additionally balance-cognitive
training, in preventing balance loss and fall risk in older adults. The
effect analysis proposed an approach using ML methods, which are
increasingly used in medical applications of new technologies due
to their high effectiveness.

2 Materials and methods

2.1 Participants

The study included 36 women aged 62–87 who were
patients of the National Institute of Geriatrics, Rheumatology and
Rehabilitation in Warsaw. Before starting the training program,
they were randomly assigned to two groups, with only the
experimenter having knowledge of the type of group. Eighteen
of them took part in balance-strength training (VR BST), and
18 in balance-cognitive training (VR BCT) using the ActivLife
virtual platform (Alreh Medical, Inc., Poland). The mean age of
the participants was 73.8 ± 6.2 years, height 1.61 ± 0.05 m,
and weight 68.9 ± 10.6 kg. In the group with balance-strength
training, the age was 73.9 ± 6.1 years, height 1.62 ± 0.04 m
and weight 69.8 ± 10.2 kg. In the group with balance-cognition,
age was 73.7 ± 6.6 years, height 1.60 ± 0.05 m and weight
67.9 ± 11.2 kg. Inclusion criteria for the study were age over 60
and the ability to move independently (Stuckenschneider et al.,
2023). The subjects had no history of falls. Exclusion criteria
included persistent or transient disturbance of consciousness,
moderate and severe dementia, advanced hearing loss and visual
impairment, or a serious condition of the subjects due to
serious illness or major life events. The study was conducted
in accordance with the Declaration of Helsinki, and approved
by the Ethics Committee of the National Institute of Geriatrics,
Rheumatology and Rehabilitation in Warsaw for research involving
humans, no. KBT-2/2/2023. All subjects gave written consent to
participate in the study.

2.2 Clinical balance tests

2.2.1 TUG and FTSS tests
The study used standardized tests and examined static and

dynamic balance, and lower limb strength to evaluate the
effectiveness of training by the Timed Up and Go (TUG) test and
the five-time sit-to-stand (FTSS) test (Beck Jepsen et al., 2022;
Poncumhak et al., 2023). The TUG test involves getting up from a
standard chair, walking a distance of 3 m, turning around, returning
to the chair, and sitting. The FTSS test involves sitting and standing
up straight 5 times as quickly as possible, with no breaks in between,
in addition to arms crossed over the chest (Buatois et al., 2010). For
these tests, lower times mean better scores and the risk of recurrent
falls corresponds to times >15 s. The study assessed participants for
fall risk based on the TUG test with a cutoff point of 10 s; above this
value, the test subjects were classified as having an increased risk

of falling (Podsiadlo and Richardson, 1991). The tests were always
conducted by the same experimenter using a stopwatch.

2.2.2 Romberg tests with eyes open and closed
Static posturography can be used as an objective tool to

complement clinical balance tests to assess and control balance
(Błaszczyk and Beck, 2023). The posturography exam was
performed with a 30-s Romberg test with eyes open (EO) and
eyes closed (EC), using a FreeMed Maxi posturography mat
(Koordynacja, Inc., Poland) by the same experimenter. The
Romberg test is performed as follows: (a) the subject stands
with feet together, eyes open and hands spread to the sides,
and then (b) the subject closes the eyes while the examiner
observes the person for 30 s. An important feature of this test
is that the person becomes more unsteady with eyes closed.
The FreeMed Maxi consists of a plate equipped with sensors
that measure the distribution of pressure force and changes in
the projection of the center of pressure (COP) on the support
surface. The body sways can be translated into COP values in the
medial-lateral and anterior-posterior directions, and the trajectory
(stabilogram/posturogram) represents the displacement of COP in
these two directions, projection onto the X and Y axis, respectively,
during the posturographic exam (Sokołowska et al., 2018; Sadura-
Sieklucka et al., 2023). The following COP trajectory (posturogram)
parameters were recorded and calculated: total COP path length
(TL), average COP velocity (V), COP ellipse area (predictive ellipse
area with 95% COP values) (EA), and two lengths of directional
components of sways in left-to-right frontal and forward-backward
plane movements (LRL and FBL, respectively).

2.2.3 Course of the study
In the present study, clinical tests (TUG, FTSS, and Romberg

with EO and EC) were conducted twice, i.e., before participation
in a 10-day training program using a non-immersive virtual
environment and immediately after its completion. The training
sessions used the ActivLife platform, which offers various virtual
physical and cognitive exercises. The ActivLife system consists of a
parapodium-based frame equipped with a corset with a seat and an
integrated GymUp system (to assist in getting up from a squat), a
large screen and a Kinect 3D camera, as shown in Figure 1.

The outcome measures were as follows: (a) the primary
outcome was functional balance assessed by TUG and FTSS scores
and (b) the secondary outcomes were static balance parameters
assessed by the posturographic trajectory pattern in the Romberg
test with EO and EC.

2.3 Virtual reality-based training sessions

The subjects participated in a 10-day program that included
conventional physical training and exercises in a VE created by
the ActivLife platform. A single session lasted about 30 min.
Each group included 15 min of exercises on a bicycle ergometer,
followed by 15 min of exercises aimed at improving lower limb
strength, trunk stabilization, and balance in balance-strength
training in group 1 (Figure 2), corresponding strength and
cognitive exercises in balance-cognitive training in group 2
(Figure 3). The progression of exercises in subsequent sessions
of the program consisted of increasing their intensity, the speed
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FIGURE 1

View of ActiveLive set with a GymUp technology corset, screen, and
Kinect 3D camera. (The material comes from our NIGRiR
repository).

at which each exercise/task was performed, and increasing the
number of repetitions. One of the common and effective machine
learning algorithms, based on the k-nearest neighbors (k-NN)
learning rule, was used to evaluate the effects of the training
program.

2.4 Data analysis

2.4.1 Machine learning and k-NN algorithm
Machine learning is often classified by the way an algorithm

learns to become more accurate in its predictions. There are four
basic types of machine learning, such as supervised, unsupervised,
semi-supervised, and reinforcement learning (Bishop, 2006; Kroese
et al., 2019; Alnuaimi and Albaldawi, 2024a,b). In supervised
learning, data scientists provide algorithms with labeled training
data and define variables. Both the input and output of the
algorithm are specified in supervised learning. There are several
supervised learning algorithms. Some of the commonly used
algorithms of supervised learning are k-NN, naive Bayes classifiers,
decision trees, logistic regression, and SVMs (Hastie et al., 2009;
Pandey et al., 2019).

The k-NN is a non-parametric supervised learning classifier
that uses proximity to make classifications or predictions about the
grouping of an individual data point (an object), which is simple
to implement, performs well in practice and can be easily extended
to new data. In classification problems, the class label is assigned
based on the majority vote – i.e., the label that is most frequently
represented around a given data point is used, as shown in Figure 4
(Devijver and Kittler, 1982; Duda et al., 2000; Jain et al., 2000).
The classifier quality criterion, depending on the number of the

k-nearest neighbors, is called the error or misclassification rate (Er),
defined as Er = m/n, where m is the number of misclassified objects,
and n is the total number of the objects in the reference set. The
Er is calculated for all possible values of k using the leave-one-out
method (Duda et al., 2000). A value of k should be determined in
such a way that offers the smallest probability of misclassification.
The lower the Er , the easier it is to differentiate classes. The k-NN
makes no assumptions about the data, which means it can be used
to solve a wide variety of problems (Figure 5).

In agreement with the aim of the study, in the analysis using
the k-NN classifier, two classes were defined corresponding to
the two test groups: class 1 was the balance-strength training
group (VR BST), and class 2 was the balance-cognitive one
(VR BCT), which additionally takes into account an important
cognitive component in balance training. Both primary clinical
and secondary posturographic outcomes were analyzed. Based on
the posturographic measurements, the effects before and after
10 VR sessions were analyzed: feature 1 – total length of the
posturographic trajectory (TL), feature 2 – velocity of body swings
(V), feature 3 – ellipse area of the trajectory (EA), feature 4 –
length of left-to-right frontal plane motions, as X displacement
(LRL), and feature 5 – length of the forward-backward length of
movements in the sagittal plane, as Y displacement (FBL). The
analysis was performed for the Romberg test with EO and EC,
additionally without and with the feature selection procedure (to
indicate the features most strongly related to the classes). The
redundant features make the classification more complex and
spoil its performance. For this reason, the feature selection is
recommended. We should select the feature set, out of all available
features, which offers the minimum value of the error rate for the
optimum k-NN rule. A similar analytical approach was used in
our research using a posturography platform, e.g., in Sokołowska
et al. (2015, 2018), Sadura-Sieklucka et al. (2023), among others.
Figures 4, 5 illustrate the operation of the k-nearest neighbors rule
and the classification model approach adopted in our research.

2.4.2 Statistical analysis
The statistical package STATISTICA (StatSoft Poland Inc.,

version 12) was used, as well as computational algorithms based on
the standard k-NN learning rule (for Euclidean distance) and the
leave-one-out method for assessing the quality of classification, and
also a feature selection procedure. These algorithms are presented
and described in Maciejewska et al. (2008), Jóźwik et al. (2011),
Sokołowska et al. (2018), among others. Additionally, the analysis
used (a) a two-factor repeated measures ANOVA with the Tukey
HSD test as a post-hoc test (Table 1), and (b) a χ2 test with Yates’s
correction or Fisher’s exact test (Table 3) to assess the level of
statistical significance of the obtained results (for two VR programs
before and after VR training). A Shapiro–Wilk test was performed
to evaluate the normality of parameters in each group. The value of
statistical significance was p < 0.05.

3 Results

The results obtained by the participants in the TUG and FTSS
tests before and after the 10-day training program in the non-
immersive virtual environment are shown in Table 1. The results
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FIGURE 2

Illustration of a virtual balance-strength training session. The left panel presents the “Right Leg Push-up” exercise. The starting position is a standing
position with hands resting freely on the handle. The exercise aims to inflate the car tire as quickly as possible by bending the knee and hip joints.
Increasing the difficulty of an exercise increases its duration. The right panel presents the “Stairs” exercise. The starting position is standing and the
hands hold specially adapted handles. The exercise aims to climb the appropriate number of stairs by performing a full squat and returning to the
starting position. The difficulty level of the exercise concerns increasing its frequency, i.e., shortening the interval between steps and increasing the
number of steps. (The material comes from our NIGRiR repository).

FIGURE 3

Illustration of a virtual balance-cognitive training session. The left panel shows the “Counting” exercise. The starting position is standing with arms
along the body. The exercise aims to reflect the number on the side by adding bags. The bags are added up by touching and highlighting them. The
difficulty level of the task concerns increasing the range of numbers. The right panel illustrates the “Ambulance” exercise. The starting position is
with arms resting freely, and the exercise is aimed at avoiding cars in front of the ambulance by side-bending the torso. Increasing the difficulty level
of the task is to accelerate the ambulance and reduce the distance between the cars. (The material comes from our NIGRiR repository).

(of all participants) demonstrate statistically significant favorable
changes in both tests between pre- to post-training values, from
9.1 ± 2.2 and 15.6 ± 4.1 to 8.2 ± 1.5 and 13.5 ± 3.1 s,
respectively. Moreover, among the subjects, TUG test values >10 s
were found in 13 subjects (36%) before training (7 in group 1
and 6 in group 2), and after training in only two of them (6%)
(one each in both groups). These changes indicate a statistically
significant reduction in the risk of falls in individuals from both
groups (p = 0.0015). However, the observed differences in these

clinical tests between the two training groups are small and do
not reach statistical significance. This indicates similarly favorable
effects achieved by exercise participants in groups 1 and 2, i.e.,
equally effective fall prevention and balance maintenance. Table 1
also presents the results of the Romberg test with eyes open and
closed for posturographic trajectory parameters, and showed non-
significant differences between both virtual training sessions, except
the EA parameter during EO, whose value significantly decreases
after VR BST compared to VR BCT, i.e., (a) before 86 ± 94
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FIGURE 4

Illustration of the standard k-NN rule. “Blue cube” – points
belonging to class 1 and “yellow ball” – points belonging to class 2.
The symbols 1-NN, 2-NN, and 3-NN stand for the first, second and
third nearest neighbor of the new classified point (marked with a
“green circle”), respectively. According to the 3-NN rule, the new
point “circle” is assigned to class 2, since two, out of its three
nearest neighbors are from class 2 (“cube” – points from class 1,
“ball” – points belonging to class 2).

versus 119 ± 155 mm2 (p = 0.453), and (b) after 42 ± 32 versus
107 ± 127 mm2 (p = 0.043), respectively. In turn, the same
parameter in the EC test decreased statistically significantly after
the virtual program (of all participants), i.e., from 95 ± 94 (value
before) to 52 ± 45 mm2 (value after) (p = 0.014), but this change
does not reach statistical significance in either VR BST (from
91 ± 87 to 49 ± 45 mm2, p = 0.079) or VR BCT (from 100 ± 103 to
54 ± 46 mm2, p = 0.093) independently.

An analytical model based on machine learning algorithms
with supervised learning, i.e., a k-NN classifier with known class
membership, was proposed and used to evaluate the effects of
the VR program. The estimation was based primarily on class
recognition of the posturographic trajectory pattern. Table 2
shows the results of distinguishing the training program into two
classes, class 1 – virtual balance-strength training (VR BST) and
class 2 – virtual balance-cognitive training (VR BCT) for each
feature independently, i.e., recorded/calculated posturographic
parameters. Table 3 shows the results of analyzing a set of all these
features together before and after feature selection, indicating the
features that best differentiate the classes (feature selection reduced
the error rate). Table 4 summarizes the results of the k-NN-based
classification (after feature selection) in the form of confusion and
confidence matrices.

As shown in Table 2, in the posturography exam with EO, lower
misclassification errors (Er) are offered by single features no. 2 and
3, relating the parameters of V and EA. However, in the EC test,
lower Er values (compared to the EO test) were observed for other
features no. 1 and 4, corresponding to TL and LRL. Additional
differentiation (not shown in the table) of the two virtual training
according to the TUG test yields an Er equal to 0.333 (3-NN), and
Er = 0.361 (4-NN) according to the FTSS test. The set of these
clinical tests together {TUG,FTSS} gives an Er equal to 0.361 (6-
NN). Therefore, it is more effective to distinguish between classes
according to the TUG feature, correctly identifying both classes
in 67% (p = 0.046). As Table 3 shows, considering all features
(all posturographic parameters), i.e., the set of features {1,2,3,4,5},
yields a large Er (0.444 in the EO test and a slightly lower 0.389
in the EC one). This situation is improved by the feature selection,

which also indicates important parameters in recognizing training
effects (classes considered). After feature selection, a set of two
features {1,2} is significant in the EO test, i.e., TL and V (Er = 0.278).
In the EC test, a single feature no. 4, i.e., LRL, at the same Er
differentiated the two classes. As shown in Table 4, the confusion
matrix for selected features (i.e., panel A for a priori probabilities),
(a) can be seen that (a) the fraction of correct decision was obtained
for class 1, 0.667 for the EO test and 1.000 for the EC test, (b) for
class 2 was 0.778 for EO and only 0.444 for EC. In addition, panel B
also shows a confidence matrix (for a posteriori probabilities), i.e.,
the probabilities that the case assigned to a row class comes, in fact,
from a column class. As can be seen, (a) in the case of EO, slightly
more correct assignment decisions apply to class 1 compared to
class 2 (the probabilities of correct decisions are 0.750 and 0.700,
respectively, (b) while for EC, class 2 was precisely assigned (1.000),
class 1 was correctly assigned with a probability of 0.643. The
accuracy of the k-NN classifier in distinguishing between VR BST
and VR BCT was 0.722 (Er = 0.278).

As expected, while differentiating the effects of virtual sessions,
the inclusion of two additional features in the considered set of
posturographic features (related to the TUG and FTSS tests) does
not improve the results based on the posturographic pattern. For
such an extended set of features, Er = 0.472 (13-NN) was obtained
in the EO test and Er = 0.472 (8-NN) in the EC test, and after feature
selection, those lower values of 0.278 (9-NN) and 0.333 (1-NN)
were observed, respectively.

All participants reported that the exercises were attractive and
engaging. None of them experienced adverse virtual symptoms
during the VR program.

4 Discussion

Our research deals with a computational approach based on
machine learning algorithms in the very timely topic of using
cutting-edge VR-based technologies to prevent falls, a very serious
problem in the elderly. The study involved 36 women aged 62–
87. They participated in two different training sessions with the
same non-immersive VR platform designed for fall prevention
training, i.e., VR BST (n = 18) and VR BCT (n = 18). The
main difference between the VR sessions was the inclusion of
cognitive tasks in the VR BCT in addition to the required strength
exercises. The results of classical clinical tests such as the TUG and
FTSS showed similarly beneficial effects of both virtual training.
Clinical Romberg tests along with posturographic trajectory pattern
analysis were also used to evaluate the effects of virtual training.
The analytical model was based on both classical statistics and
the ML supervised learning algorithm with the k-NN classifier.
Distinguishing the effects of VR BST and VR BCT was a difficult
task for the classifier, which it handled well, achieving an accuracy
of 0.722 (72%) based on a set of posturographic features/parameters
along with the use of a feature selection procedure. In the classical
statistical analysis, the vast majority of comparisons did not reach
statistical significance.

This was due, among other things, to the fact that there were
common elements of exercising motor functions (in terms of
balance, coordination, and reaction speed) to maintain a stable
posture in both proposed training sessions. The training programs
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FIGURE 5

Model of analysis approach based on machine learning with supervised classification employed in our research, e.g., in Sokolowska and Jozwik
(2007), Maciejewska et al. (2008), Sokołowska et al. (2008, 2018), Jóźwik et al. (2011), and Sokołowska and Sokołowska (2019).

TABLE 1 Meanand standard deviation of parameters of clinical balance tests before and after training sessions using VR for balance-strength training
(BST) and balance-cognitive training (BCT).

Parameters in various conditions All participants
(N = 36)

VR BST
(N = 18)

VR BCT
(N = 18)

Classical clinical tests

TUG (s) Before 9.1 ± 2.2 9.1 ± 2.1 9.0 ± 2.4

After 8.2 ± 1.5** 8.1 ± 1.2** 8.4 ± 1.7

FTSS (s) Before 15.6 ± 4.1 15.1 ± 3.4 16.1 ± 4.8

After 13.5 ± 3.1*** 13.1 ± 2.1* 13.9 ± 3.9**

Romberg test with EO

TL (mm) Before 254 ± 67 254 ± 70 255 ± 67

After 241 ± 63 240 ± 61 242 ± 66

V (mm/s) Before 8.7 ± 2.3 8.7 ± 2.3 8.7 ± 2.3

After 8.2 ± 2.1 8.2 ± 2.1 8.2 ± 2.2

EA (mm2) Before 102 ± 127 86 ± 94 119 ± 155

After 74 ± 97 42 ± 32 107 ± 127#

LRL (mm) Before 6.0 ± 3.9 4.8 ± 3.3 7.2 ± 4.2

After 5.2 ± 4.5 5.9 ± 5.1 4.5 ± 3.8

FBL (mm) Before 13.1 ± 8.9 12.2 ± 8.1 14.0 ± 9.8

After 12.5 ± 8.2 11.9 ± 6.9 13.2 ± 9.5

Romberg test with EC

TL (mm) Before 285 ± 85 292 ± 95 277 ± 76

After 269 ± 61 272 ± 61 266 ± 58

V (mm/s) Before 9.7 ± 2.8 9.9 ± 3.2 9.4 ± 2.5

After 9.0 ± 2.4 8.7 ± 2.7 9.2 ± 2.1

EA (mm2) Before 95 ± 94 91 ± 87 100 ± 103

After 52 ± 45* 49 ± 45 54 ± 46

LRL (mm) Before 6.1 ± 3.4 5.8 ± 3.4 6.4 ± 3.4

After 5.8 ± 5.0 6.7 ± 4.4 4.9 ± 5.6

FBL (mm) Before 12.1 ± 6.3 12.9 ± 5.2 11.3 ± 7.3

After 11.9 ± 7.6 11.2 ± 6.7 12.5 ± 8.6

TUG, Timed Up and Go test; FTSS, five-time sit-to-stand test; TL, total length of the trajectory; V, velocity of body swings; EA ellipse area of the trajectory; LRL, length of left-to-right frontal
plane movements; FBL, forward-backward length of movements in the sagittal plane; EO, eyes open; EC, eyes closed. Symbols used for two-factor repeated measures ANOVA: (a) *p < 0.05,
**p < 0.01, ***p < 0.001 for comparisons before and after VR training in VR BST and VR BCT; and (b) #p < 0.05 between VR BST and VR BCT.
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were designed to effectively support individuals at (high) risk
of falling (in the case of the presented study of seniors). It is
worth emphasizing that posturography is one of the objective

TABLE 2 Results of the k-NN analysis for single posturographic
features/parameters in distinguishing between two classes,
corresponding to VR BST and VR BCT (for EO and EC tests).

Features of
posturographic
trajectory

EO test EC test

k-NN Er k-NN Er

1 – TL K = 5 0.417 K = 7 0.333

2 – V K = 5 0.389 K = 1 0.361

3 – EA K = 25 0.333 K = 15 0.417

4 – LRL K = 28 0.417 K = 2 0.278

5 – FBL K = 4 0.444 K = 19 0.361

The optimal number of k-nearest neighbors and Er error rate are given. TL, total length of
trajectory; V, velocity of body swings; EA, ellipse area of trajectory; LRL, length of left-to-
right frontal plane movements; FBL, forward-backward length of movements in the sagittal
plane; EO, eyes open; EC, eyes closed.

TABLE 3 Results of k-NN analysis for the full set of
features/posturographic parameters in distinguishing two classes,
corresponding to VR BST and VR BCT, without and with feature selection.

Statistical
parame-
ters

EO test EC test

Without
selection

With
feature

selection

Without
selection

With
selection

K-NN K = 4 K = 5 K = 13 K = 2

Er 0.444 0.278 0.389 0.278

Set of
features

{1,2,3,4,5} {1,2} {1,2,3,4,5} {4}

p(χ2) 0.345 0.019 0.264 0.001

The results are presented for EO and EC tests. The optimal number of k-nearest neighbors,
Er error rate and p(χ2) are given.

methods/techniques of evaluating the human balance system both
in healthy and unhealthy individuals (Lipowicz et al., 2023; Oczadło
et al., 2023). In particular, static posturography is a simple non-
invasive technique commonly used in modern laboratories and
clinics to quantify the adaptive mechanisms of the central nervous
system involved in postural and balance control (Błaszczyk and
Beck, 2023). The main value of a posturography exam is the
objective information it provides, making it possible to evaluate:
(a) different sensory systems involved in balance (vestibular, visual,
and somatosensory), (b) changes of automatic and voluntary
motor responses, (c) postural strategies, (d) deviations from the
center of gravity, and (e) changes of limits of stability (Schubert
et al., 2012a,b; Błaszczyk and Beck, 2023; Oczadło et al., 2023).
Posturography is, therefore, an adequate tool for conducting our
research with seniors, both now and in the future [including
dynamic or virtual posturography (Sokołowska et al., 2020, 2022)].
As expected, the results show that choosing a posturographic
exam with the Romberg test with EO, that is, under the subjects’
visual control, effective in analyzing body swings in terms of
total trajectory length and sway velocity. Other, slightly more
favorable balance-stabilizing changes compared to VR BST (group
1) were observed in VR BCT (group 2), with slightly smaller
swings and velocities on average. They allowed 78% of participants
in this group to be identified (p = 0.019). On the other hand,
the results of the EC test (in the absence of visual control)
indicate another change in the pattern by a slight decrease in
the average LRL in group 2, while it increases in group 1. This
direction of change allows 100% of participants in group 1 to be
identified (p = 0.0014) and is probably due to the predominance
of motor tasks and, consequently, the greater ranges of motion
required in balance-strength tasks compared to group 2 in
balance-cognitive tasks.

Summarizing the results of our study, we note that both virtual
training sessions, according to the results of the clinical TUG
and FTSS tests, are effective in reducing the risk of falls and
balance loss in participants. As Bohannon points out (Bohannon,
2006), the FTSS test is used to assess the functional capabilities
of the elderly population. Both training programs also exercised
the lower limbs, resulting in improved scores on the FTSS one.

TABLE 4 Confusion (panel A) and confidence (panel B) matrices for a priori and a posteriori probabilities for selected posturographic features for EO
({TL,V}) and EC ({LRL}) tests.

A. .Probabilities that a case from the class i (row) will be
assigned to the class j (column)

B. .Probabilities that a case assigned to the class i (row)
comes in fact from the class j (column)

EO test

True class Assigned class Assigned class True class

1 2 1 2

1 0.667 0.333 1 0.750 0.250

2 0.222 0.778 2 0.300 0.700

EC test

True class Assigned class Assigned class True class

1 2 1 2

1 1.000 0.000 1 0.643 0.357

2 0.556 0.444 2 0.000 1.000

The accuracy of the k-NN classifier was 0.722 (Er = 0.278) for distinguishing between VR BST (class 1) and VR BCT (class 2).
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In our study, we observed slightly different directions of changes
in the pattern describing posturographic trajectories in the two
VR training groups based on the posturographic exam with EO
and EC in the Romberg test. This indicates that the strategies
developed by the participants in the VR BST and the VR BCT
were slightly different. It should also be noted that both training
programs proved equally effective in achieving the stated goal of
the 10-day sessions using the VE, i.e., reducing the risk of falls and
postural stabilization. Those who took part in the training did not
experience any symptoms related to the use of VR. They also all
found the activities attractive and were eager to participate. For
example, Liang et al. (2024) also demonstrated the effectiveness
of the ML (machine learning) and XAI (explainable artificial
intelligence) approach with (static) posturographic parameters to
classify fall risk based on TUG scores in older adults. Bao et al.
(2019), on the other hand, in their study, proposed an automated
balance assessment using trunk sway data and ML methods.
Their model, evaluated in a leave-one-participant-out scheme,
achieved a classification accuracy of 82%. The authors suggested
that the ML technique could provide accurate assessments during
standing balance exercises. Such automated assessments could
reduce physiotherapists’ consultation time and increase users’
adherence to recommendations outside the clinic. This research
model may also be a good suggestion for balance assessments, such
as home programs/exercises for the elderly in fall prevention. In
turn, Eichler et al. (2022) also noted the importance of developing
automation of fall risk assessment in an efficient and non-invasive
way, especially in older adults. This approach could provide a
basis for screening individuals for fall risk and determining their
need for participation in fall prevention programs. The authors
proposed an automated and effective fall risk evaluation system
based on a human motion tracking system using a multi-depth
camera and the validated Berg Balance Scale (BBS). Trained
machine learning classifiers predict the subjects’ 14 scores for
BBS tasks. In addition, researchers proposed their efficient BBS
system (referred to as E-BBS), which reduces the number of
tasks in a conventional BBS test by about 50% (from 14 to
just 4–6 tasks) while maintaining 97% accuracy. The authors
concluded that their ML-based approach enables the effective
diagnosis/recognition of people at risk of falling in a way that
does not require significant time or resources from the medical
community. The researchers emphasize that the technology and
ML algorithms can be implemented in other sets of clinical
tests and evaluations. An example of such a universal approach
using ML methods can be seen in our current (and previous)
research. Interesting results are presented by Yousefi Babadi and
Daneshmandi (2021), who analyzed the effect of VR compared
to conventional balance training on the balance of elderly people.
The researchers showed that after the intervention/training, there
were significant improvements in both groups (p < 0.05), and the
beneficial changes were similar (p > 0.05). The authors concluded
that both VR and conventional balance training methods are
equally effective. They also suggested that VR training programs
could be used as a new home training method to improve the
balance of the elderly. The researchers also pointed out important
facts such as that (a) VR training is a fun way to improve physical
activity for the older participants, and (b) VR is a great way to
simulate movement and transfer it to real-world tasks. A study by
Lima Rebêlo et al. (2021) found that immersive VR was effective

in rehabilitating older adults with balance disorders and fall risk,
and similarly, VR training (VRT) was no better than conventional
physiotherapy. Moreover, improvements in functional balance
after 2 months were maintained after both trainings. In contrast,
Liu et al. (2022) quantitatively analyzed the effects of VRT on
functional mobility and balance in healthy older adults in their
systematic review and meta-analysis, conducted in 15 studies on
a total of 704 participants. The analysis showed that compared
to traditional physical therapy (TPT), VRT significantly improved
TUG. The researchers indicated that VRT can be more effective
than TPT in improving functional mobility and balance in the
study population of healthy seniors. Similarly, Rodríguez-Almagro
et al. (2024) reviewed recent evidence on the effectiveness of
VR in improving balance and gait among healthy older adults
compared to other therapies. The researchers concluded that VR
therapy was more effective than minimal intervention or usual
care in improving static balance, dynamic balance, and gait in
healthy seniors. The authors indicated that VR therapy gives
even better results compared to conventional balance training and
exercise in improving balance and gait in this senior population.
The authors also confirmed the effectiveness of both virtual and
conventional methods. Interesting approaches combining both
forms of training are also being used. An example is the study
by Sadeghi et al. (2021), which evaluated the effects of 8-week
conventional balance training, virtual training, and combined
exercise (MIX) in older men. The researchers demonstrated that
MIX induced the greatest improvements in lower limb muscle
strength, balance and functional mobility of all these workouts, and
recommended that MIX is an effective method for reducing the risk
of falls among older adults.

As emphasized in the Introduction, it is VEs that offer new,
highly attractive, interesting, engaging, and motivating conditions
(both in the clinic and at home) designed not only for short-
term exercise (e.g., our study), but also provide the opportunity to
exercise for longer periods, without fatigue or boredom, depending
on the needs and abilities of the exercising individuals. Our research
combines conventional training with a virtual environment, thus
leveraging the advantages of each for the greater benefit of program
participants (e.g., increasing the appeal, engagement, and direct
impact of the participant on the training through an interactive
game format). Since we use novel VEs in our research, it is worth
noting that sometimes users in virtual worlds may experience
adverse symptoms due to cybersickness (Lima Rebêlo et al., 2021;
Sokołowska, 2023, 2024; Kourtesis et al., 2024). Cybersickness is
accompanied by a mix of unfavorable symptoms such as headache,
nausea, dizziness, fatigue, oculomotor, and postural disturbances
(Kourtesis et al., 2023; Venkatakrishnan et al., 2023). An interesting
overview of research on this problem using the machine learning
approach was presented by Yang A. H. X. et al. (2022). ML can
be used to detect them and is a step toward overcoming these
adverse limitations of new technologies. The researchers concluded
that while various models for detecting cybersickness have been
developed, there is no model to predict early adverse events in
VEs. Future, more accurate and effective ML approaches will
undoubtedly be inspired by current knowledge of how the brain
works, as well as the new brain/organism models/approaches being
developed and linking them to these bio-digital frontiers (Benelli
et al., 2023; Daşdemir, 2023; Yang et al., 2023). These and similar
studies (Chang et al., 2023; Souchet et al., 2023) indicate, as does
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our research, that we are still at the beginning of understanding
the potentially beneficial and detrimental effects of digital worlds
on their users, especially older adults (Drazich et al., 2023;
Séba et al., 2023).

It should also be noted that, as outlined above, ML techniques
have enormous potential, particularly in computational
neuroscience. These methods have several key advantages
over traditional statistical techniques, including learning
from data and making predictions based on patterns and
relationships present/hidden in the data (Cristancho Cuervo
et al., 2022). Consequently, ML methods in neuroscience and
contemporary medical practice provide very effective support
for accurate diagnosis (Rosenfelder et al., 2023), assessment
of beneficial or adverse effects of therapy and rehabilitation
(Yang A. H. X. et al., 2022), as well as natural aging using
innovative IT/ICT technologies, which can effectively help
maintain joy/satisfaction and good quality of life for the elderly
(Yousefi Babadi and Daneshmandi, 2021).

4.1 Limitation of our study and prospects

A limitation of our study is the small number of participants. In
the future, it would be necessary not only to increase the number of
subjects but also to include men. The training program included
only 10 sessions in the virtual environment, and increasing the
number of sessions would enhance the beneficial effects, and
the effects would also be worth evaluating in the longer term.
A longer training period allows the exerciser to become more
familiar with the techniques and develop a habit of regular
physical activity, which can result in long-term maintenance of
the positive effects of training (Cadore et al., 2013). Sherrington
et al.’s (2017) research indicates the beneficial effects on balance
and often strength after longer periods of training. Characteristic
problems of the senior population are muscle weakness and balance
disorders. It would be interesting to be able to continue training
not only as presented in a medical facility, but also at home,
under the remote supervision of a physical therapist. To put in
perspective, virtual environments can simulate real-life situations
and challenges related to balance and fall risks in the elderly while
providing them with a safe, controlled, and engaging/motivating
training environment in which they can practice and effectively
improve their balance.

5 Conclusion

First, our study demonstrated the effectiveness of the proposed
research approach, using a combination of traditional and VR-
based balance/cognitive training, dedicated to people at high
risk of falls, including seniors. Second, the results showed
that the proposed VR training positively improved TUG and
FTSS, i.e., a statistically significant reduction in the risk of
falls in the research population of seniors. Third, the analytical
approach based on machine learning algorithms is also useful
in VE, not only confirming the effectiveness of the proposed
virtual training but also indicating a change in the pattern of
posturographic trajectory depending on the type of virtual training,
VR BST or VR BCT.
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Daşdemir, Y. (2023). Classification of emotional and immersive outcomes in
the context of virtual reality scene interactions. Diagnostics 13:3437. doi: 10.3390/
diagnostics13223437

Devijver, P., and Kittler, J. (1982). Pattern Recognition: A Statistical Approach.
London: Prentice-Hall.

Dopsaj, M., Tan, W., Perovic, V., Stajic, Z., Milosavljevic, N., Paessler, S., et al. (2024).
Novel neurodigital interface reduces motion sickness in virtual reality. Neurosci. Lett.
825:137692. doi: 10.1016/j.neulet.2024.137692

Drazich, B., McPherson, R., Gorman, E., Chan, T., Teleb, J., Galik, E., et al. (2023).
In too deep? A systematic literature review of fully-immersive virtual reality and
cybersickness among older adults. J. Am. Geriatr. Soc. 71, 3906–3915. doi: 10.1111/
jgs.18553

Duda, R., Hart, P., and Stork, D. (2000). Pattern Classification, 2edn Edn. New York,
NY: Wiley.

Ehrari, H., Larsen, R., Langberg, H., and Andersen, H. (2020). Effects of playful
exercise of older adults on balance and physical activity: A randomized controlled trial.
J. Popul. Ageing 13(Suppl.2), 207–222. doi: 10.1007/s12062-020-09273-8

Eichler, N., Raz, S., Toledano-Shubi, A., Livne, D., Shimshoni, I., and Hel-Or, H.
(2022). Automatic and efficient fall risk assessment based on machine learning. Sensors
22:1557. doi: 10.3390/s22041557

Evans, W. (1999). Exercise training guidelines for the elderly. Med. Sci. Sports Exerc.
31, 12–17. doi: 10.1097/00005768-199901000-00004

Goldstein, S., Nebeker, C., Ellis, R., and Oser, M. (2024). Ethical, legal, and social
implications of digital health: A needs assessment from the Society of Behavioral
Medicine to inform capacity building for behavioral scientists. Transl. Behav. Med.
14, 189–196. doi: 10.1093/tbm/ibad076

Haimovich, A., Shah, M., Southerland, L., Hwang, U., and Patterson, B. (2024).
Automating risk stratification for geriatric syndromes in the emergency department.
J. Am. Geriatr. Soc. 72, 258–267. doi: 10.1111/jgs.18594

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Vol. 2. New York, NY: Springer.

Holmqvist, S., Jobson, K., Desalme, D., Simone, S., Tassoni, M., McKniff, M.,
et al. (2024). Preliminary validation of the Virtual Kitchen Challenge as an objective
and sensitive measure of everyday function associated with cerebrovascular disease.
Alzheimers Dement. 16:e12547. doi: 10.1002/dad2.12547

Jain, A., Duin, R., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 4–37. doi: 10.1109/34.824819

Jonson, M., Avramescu, S., Chen, D., and Alam, F. (2021). The role of virtual reality
in screening, diagnosing, and rehabilitating spatial memory deficits. Front. Hum.
Neurosci. 15:628818. doi: 10.3389/fnhum.2021.628818
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