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As the apparent intelligence of artificial neural networks (ANNs) advances, they

are increasingly likened to the functional networks and information processing

capabilities of the human brain. Such comparisons have typically focused on

particular modalities, such as vision or language. The next frontier is to use the

latest advances in ANNs to design and investigate scalable models of higher-

level cognitive processes, such as conscious information access, which have

historically lacked concrete and specific hypotheses for scientific evaluation. In

this work, we propose and then empirically assess an embodied agent with a

structure based on global workspace theory (GWT) as specified in the recently

proposed “indicator properties” of consciousness. In contrast to prior works

on GWT which utilized single modalities, our agent is trained to navigate 3D

environments based on realistic audiovisual inputs. We find that the global

workspace architecture performs better and more robustly at smaller working

memory sizes, as compared to a standard recurrent architecture. Beyond

performance, we perform a series of analyses on the learned representations

of our architecture and share findings that point to task complexity and

regularization being essential for feature learning and the development of

meaningful attentional patterns within the workspace.

KEYWORDS
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1 Introduction

While neuroscience had a profound influence on the fields of artificial neural

networks (ANNs) and deep learning (DL) in the past (Rosenblatt, 1962; Fukushima,

1980; Rumelhart et al., 1986; LeCun and Bengio, 1995), in recent years the direction

of influence has largely changed, and deep neural networks (DNNs) have emerged as a

popular model of processing within the biological brain. The success of convolutional

neural networks (CNNs; LeCun and Bengio, 1995; Krizhevsky et al., 2012; Simonyan and

Zisserman, 2014) in the ImageNet visual object recognition competition (Russakovsky

et al., 2015) spurred comparisons between trained CNNs and areas of the brain

related to visual processing (Afraz et al., 2014; Seijdel et al., 2017; Pogoncheff et al.,

2023). This trend soon extended to investigating similarities between ANNs and the

auditory cortex (Pichevar and Rouat, 2007; Szabó et al., 2016; Drakopoulos et al.,

2021). Furthermore, the development of ANNs for natural language processing tasks has

advanced our understanding of language processing in the human brain. For example,

these models have been used as tools to explore and generate hypotheses on the neural

mechanisms involved in language comprehension and production (Caucheteux and King,

2022). Similarly, biological research on other aspects of cognition, such as memorization,
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has benefited from comparative studies between populations of

neurons and their artificial analogs (Bedia et al., 2007; Li and

Fan, 2019), such as recurrent neural networks (RNNs), which

are a prominent class of architecture used to process temporal

data (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Sak

et al., 2014). Another type of ANN, the Transformer (Vaswani

et al., 2017) has similarly served as an empirically grounded tool

to investigate the mechanism of attention and abstraction in the

brain (Belinkov and Glass, 2019; Wilterson and Graziano, 2021).

Given the progress in using DL for studying natural

intelligence, we believe that now is a prime time to use the

latest advances in DL to investigate higher-order thought processes

and functions in the brain, such as the access and processing of

conscious information (Bengio, 2017; Goyal and Bengio, 2022;

Juliani et al., 2022a). In the same way that DL, which can

directly process raw inputs such as images or audio, is used

to investigate representations in the brain, we are now able to

scale up computational models of consciousness. In particular,

we focus our efforts on global workspace theory (GWT; Baars,

1993), which is one of the most popular theories of conscious

function. This theory was heavily inspired by the structure of the

biological brain: the existence of multiple specialized functional

networks, and the fact that they process the information flow

from the environment in parallel (Baars, 1993, 2005). Early

computational implementations of GWT were necessarily limited

in their sophistication and what domains they could be applied

to Baars (1993) and Shanahan (2006). More recent studies (Goyal

et al., 2021; Juliani et al., 2022b; Butlin et al., 2023) have focused on

DL models which can achieve behavior consistent with cognitive

phenomena related to consciousness, attentional control, and

working memory, considered critical components of GWT (Baars,

2005; Goyal et al., 2021; Butlin et al., 2023); however, each of

these previous studies have lacked evaluation of the model while

embodied within a multimodal environment. The maturation of

both leading theories of consciousness and artificial models of

cognition therefore warrants additional integration attempts, with

the potential for increasing our understanding of both biological

and artificial intelligence.

In this study, we followed the recently outlined “indicator

properties” of consciousness: criteria for artificial agents tomanifest

behavior consistent with contemporary theories of conscious

function (Butlin et al., 2023). While Butlin et al. (2023) proposed

indicator properties for various theories of consciousness, these

lacked concrete implementation details. Hence, one of our main

contributions is designing an agent architecture that satisfies all

four GWT indicator properties which they outlined—a feat that

they claimed was not achieved by prior artificial intelligence

implementations. We then trained this agent to perform audio-

guided navigation in a visually realistic 3D environment (Chen

et al., 2020, 2021, 2022), which, to the best of our knowledge, is the

most realistic setting a global workspace agent has been tested in.

We analyzed how the agent’s representations compare to a standard

DL baseline (Alain and Bengio, 2016; Dai et al., 2022; Zhang et al.,

2022), as well as its attentional patterns. Another one of our main

contributions is performing an extensive set of experiments over

a large range of global workspace sizes, elucidating the impacts of

imposing a significant bottleneck on the global workspace size in

the development of dynamic patterns of attention.

Our study reveals key insights from deploying a global

workspace embodied agent in realistic multimodal tasks. In our

chosen task, the global workspace agent performs better and more

robustly than the baseline for smaller working memory sizes,

although the difference disappears as the size of the bottleneck

increases. Beyond this, we believe that a more sophisticated task or

environment may be needed to reveal potential behavioral benefits

conferred by a global workspace. In particular, this is confirmed

by an ablation on the size of the global workspace, as larger agents

do not perform significantly better. We also show that the smaller

agents, with more of a bottleneck, develop more mixed attention

patterns, integrating information from different modalities over

time, and all agents primarily use cross-attention across input

modalities to perform the navigation task. Finally, an analysis of

the weight matrices within the global workspace agent’s sensory

encoders indicates that these agents prefer to utilize the global

broadcast to process information over time, as opposed to the more

direct recurrent feedback within the global workspace itself. These

revelations highlight the nuanced, consciousness-related processes

of artificial agents and emphasize how the global workspacemodel’s

attention mechanisms are intricately linked to the size of its

workspace. This research paves the way for deeper understanding

and development of artificial agents capable of more human-like

processing in diverse, sensory-rich environments.

2 Materials and methods

2.1 Functional theories of consciousness

A prominent division of research topics within the domain

of consciousness science is between the study of the so-called

“hard problem,” which seeks explanations for why the phenomena

of consciousness exist given our physical universe, and the “easy

problems,” which consist of explanations for why specific patterns

of brain activity correlate with specific states of consciousness

(Chalmers, 1995). The related “hard question” provides a third

possibility of inquiry, seeking explanations for the functional role

of consciousness as it manifests in evolved organisms (Dennett,

2018). This functional approach enables the extension of the study

of consciousness from the exclusively physical domain to the

virtual domain, where artificial systems with various functional

properties can be compared to systems in the physical world which

we believe instantiate and in some sense “utilize” consciousness

in order to accomplish goals. It is within this domain that

theorists have proposed models such as GWT (Baars, 1993, 2005),

information generation theory (Kanai et al., 2019), and attention

schema theory (AST; Graziano, 2017;Wilterson et al., 2020), among

others (Rosenthal, 1993; Juliani et al., 2022a; Butlin et al., 2023).

GWT (Baars, 1993, 2005) is a framework proposed

to formalize access consciousness—the idea that what is

conscious is information that is accessible across various

mental processes (Block, 1995). Given its abstract and functional

nature, it has also been theoretically extended to artificial agents

as well (Dehaene et al., 2021). GWT firstly posits that the brain

consists of numerous specialized information processing modules

interconnected with each other, where, as an approximation, these

modules can be thought to correspond to functional networks
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within the brain. The global workspace can then be understood

as a common representational space of fixed capacity where the

aforementioned modules can share information. It therefore

functions as a pivotal bottleneck, only letting through the most

salient information originating from diverse input modalities and

sources, while integrating them into a coherent representation. The

process of information gating itself can be understood as a specific

instantiation of internal attentional modulation. In addition, the

global workspace can be interpreted as working memory within the

brain, as it is also expected to maintain the information required to

sustain a state of consciousness across variable lengths of time (Lau

and Rosenthal, 2011; Park and Tallon-Baudry, 2014).

Several approaches have been proposed that take inspiration

from modern cognitive science and DL to attempt to provide a

concrete implementation of a global workspace in an artificial

system (Goyal et al., 2021; Juliani et al., 2022b). Juliani et al. (2022b)

demonstrated that the Perceiver architecture (Jaegle et al., 2021b)

meets the criteria of a functional global workspace as described

by Baars (1993). Namely, the proposed Perceiver-based agent

structure was empirically shown to satisfy requirements of GWT

such as broadcasting across modules, selective attention and working

memory over a set of behavioral tasks inspired by those used in

the cognitive science literature. However, prior work has been

restricted to unimodal input data, namely either visual or textual

information (Goyal et al., 2021; Juliani et al., 2022b). Humans,

on the other hand, manifest consciousness while navigating the

relatively more complex physical world, which is perceived through

multiple sensory inputs or modalities. This increased complexity

creates strong incentives for the emergence of specialized

independent modules, as well as central mechanisms for sharing

the relevant information from multiple modules to construct

behavior. This multimodality has previously been highlighted as

an important aspect of the global workspace (VanRullen and

Kanai, 2021). The tenets described above are critical components

of GWT (Baars, 1993, 2005; Butlin et al., 2023). Consequently, the

investigation of the existence of consciousness in artificial agents

could benefit from being conducted in a similar setting.

Despite the breadth of its explanatory power, GWT still leaves

many implementation details underspecified, which has resulted

in many interpretations by different researchers over time (Baars,

1993, 2005; Shanahan, 2006; Goyal et al., 2021; Juliani et al.,

2022b). In their recent position paper on consciousness in AI

agents, Butlin et al. (2023) presented a comprehensive overview of

various theories of consciousness from a functionalist perspective,

including recurrent processing theory (RPT; Lamme, 2006, 2010),

GWT (Baars, 1993, 2005), and AST (Graziano, 2017; Wilterson

et al., 2020), while also touching upon the aspects of agency

and embodiment of such agents. Based on this broad survey of

existing theories of consciousness, they produced a list of indicator

properties that would be highly correlated with the existence of AI

consciousness, from which we compiled the properties relevant to

the scope of this study in Table 1.

While such properties broadly emerge from existing works

investigating consciousness in AI and proposing various

implementations (Goyal et al., 2021; Juliani et al., 2022b),

there is no clear consensus on which method should be used to

implement them. In this work, we analyzed the proposed indicator

properties for GWT and developed a concrete implementation

TABLE 1 Indicator properties relevant to a global workspace agent.

Property Description

RPT-1 Input modules are independent and use algorithmic

recurrence

RPT-2 Input modules generate organized and integrated

perceptual representations

GWT-1 Multiple specialized systems capable of operating in

parallel, and independently from each other

GWT-2 Limited capacity workspace, entailing a bottleneck in

information flow and a selective attention mechanism

GWT-3 Global broadcast makes information in the workspace

available to all modules

GWT-4 State-dependent attention, giving rise to the capacity to

use the workspace to query modules in succession to

perform complex tasks

that explicitly satisfies all of the outlined indicator properties.

We note that while there are other possible neural architectures

which may also satisfy these properties, our goal here is not to be

exhaustive of the space of possibilities, but rather to demonstrate

the characteristics of an empirically validated architecture which is

consistent with the indicator properties as described above.

2.2 Implementations of global workspace
theory

While the primary goal of DL methods may not be the creation

of conscious agents, some of the algorithms and architectures

developed to date share parallels with the high-level cognitive

mechanisms exhibited by humans. Because of these parallels,

we can find some aspects in which existing DL algorithms and

ANN architectures that already align with some of the indicator

properties of consciousness, which makes them promising

candidates for implementing high-level cognitive mechanisms.

For example, Transformers (Vaswani et al., 2017) are DL

architectures heavily reliant on an attentional mechanism, which

is a core component of theories of consciousness such as

GWT (Baars, 1993; Juliani et al., 2022a) and AST (Graziano, 2017;

Wilterson et al., 2020).While Transformer-based architectures have

meteorically risen in popularity and become widely used across

numerous academic and industrial applications, they lack the

overall structure of a system with a global workspace. Transformers

use self-attention to integrate information from different positions

in a sequence, and from different modules, thus resembling a

limited-capacity workspace. However, neither those pre-processing

modules, nor the Transformers themselves, are recurrent, and their

residual stream not only lacks a distinct workspace integrating

other elements as a global workspace would, nor does it make such

a workspace accessible to downstreammodules (Butlin et al., 2023).

The Transformer architecture has been modified to include the

addition of a global-workspace-like module (Goyal et al., 2021). In

the system of Goyal et al. (2021) there is a sharing of information

between multiple modules through a common bottlenecked
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representation. However, the global workspace presented in this

system is not recurrent, meaning that it is unable to satisfy GWT-4.

The Perceiver (Jaegle et al., 2021b) and PerceiverIO (Jaegle

et al., 2021a) architectures are consecutive iterations of the

seminal concepts of attention-based processing introduced in

Transformers, and are better able to satisfy the indicator properties.

Namely, the Perceiver and PerceiverIO focus on a limited-

capacity latent space to integrate information from specialists,

addressing the computational expense of pairwise interactions

in self-attention. PerceiverIO employs self-attention and cross-

attention to process information in the latent space, allowing it

to handle inputs from multiple modalities. An argument could

be made that Perceiver-based architectures satisfy the property

of having specialized modules (GWT-1), but they only do so

implicitly. While they do feature a latent workspace, the Perceiver

architecture notably lacks global broadcasting to the independent,

pre-processing modules, thus falling short of satisfying GWT-

2. With this in mind, Juliani et al. (2022b) proposed a refined

implementation of the Perceiver which is more in line with the

GWT indicator properties. However, this architecture was applied

to unimodal behavioral tasks inspired by cognitive psychology,

which can be a limiting factor for the emergence of high-level

cognitive processes.

From a distanced perspective, architectures such as the

conscious Turing machine (CTM; Blum and Blum, 2022) also offer

a model of consciousness, inspired by both GWT and theoretical

computer science. While the CTM implementation is concrete

and well-defined, it diverges from the GWT model specification.

Notable differences lie in either the elimination or simplification

of certain GWT aspects, such as implementing direct connections

from input to output modules, instead of transiting through a

shared workspace. The CTM emphasizes a computational model

with predictive dynamics and a multimodal inner language which

contributes to its concept of consciousness. From a broader

perspective, this model also considers the roles of special processors

and the interplay of prediction, feedback, and learning in forming

the consciousness experience. We also note that the CTM is purely

theoretical and has not been empirically evaluated.

In this study, we design a global workspace agent that explicitly

accounts for the GWT indicator properties, thereby including those

for RPT. Moreover, we investigate the potential benefits of such

architecture in a realistic audiovisual embodied navigation task.

2.3 Embodied agents

Embodied agents are agents that have a physical body (real or

virtual) with which they interact with their environment (Franklin,

1997). Butlin et al. (2023) emphasized the importance of

embodiment for either biological or artificial agents to be endowed

with higher-level cognition mechanisms such as memorization,

language, planning, reasoning, emotions, consciousness, and

manifest their functional properties: namely, the existence of

multiple sensory inputs ranging over various modalities, which

must be selectively processed to make decisions given a limited

computational budget. First, this creates pressure on agents to

develop internal (implicit) mechanisms of information processing

and integration. Moreover, it requires the agents to leverage

internal representations toward the completion of goal-oriented

behavior, which is theorized to result in meta-phenomenon such as

consciousness (Gibbs, 2005; Baker et al., 2019; Mugan andMacIver,

2019; Blum and Blum, 2022).

Although only tangentially motivated by the goal of recreating

consciousness-like phenomena in an artificial context, the field of

deep reinforcement learning (DRL) has spurred a plethora of efforts

in the development of environments (Baker et al., 2019; Chen et al.,

2020, 2021, 2022; Cobbe et al., 2020; Suarez et al., 2021) and agent

architectures (Mnih et al., 2013; Schulman et al., 2017; Espeholt

et al., 2018; Hafner et al., 2020) that learn to achieve a given goal

while navigating through them.

The core components of such agents include sensory modules

which are capable of processing information from different

modalities. For example, CNN-based blocks have been leveraged to

build agents that can play video games directly from pixels (Mnih

et al., 2013; Hafner et al., 2020) or other types of high-dimensional

inputs (OpenAI, 2018; Akkaya et al., 2019; Chen et al., 2020, 2021,

2022). Solving some complex tasks also requires the ability to

store and process information in a working memory—a capacity

which can be made possible through the use of RNNs (Hochreiter

and Schmidhuber, 1997; Cho et al., 2014; Hafner et al., 2020).

Together, embodied agent components should include (multiple)

sensory modules, a working memory, and a policy to take actions

in the environment. Sensory modules can be categorized under

the umbrella of feature-extracting components, allowing agents

to implicitly build representations of their own state, as well as

that of the environment. Those representations are then used

by downstream components, namely the policy network, which

outputs actions that affect the environment (Sutton and Barto,

2018). The policy network is usually implemented as a multi-

layer perceptron (MLP), with blocks built out of linear layers and

nonlinear activation functions (Goodfellow et al., 2016). Figure 1A

illustrates the main components of an embodied agent architecture.

2.4 Global workspace agent

In line with GWT-1, we assume that our agent is embodied

and experiences a multimodal stream of observations, with each

modality being handled by specialized modules that operate in

parallel. Given the audiovisual navigation task utilized in this study

(Section 2.6), a candidate agent architecture is expected to have

an input processing module for each of the visual and acoustic

modalities. Asmotivated in Section 2.3, we leverage CNNs as a basis

for encoding information from either of these modalities, which

happens to also align with the requirement of having organized and

integrated perceptual representations, as stipulated by RPT-2. Each

input processing module is then equipped with a gated recurrent

unit cell (GRU; Cho et al., 2014) allowing it to leverage a summary

of the previously observed information from the same modality (its

past state), thus satisfying the condition of algorithmic recurrence

as stipulated by RPT-1. The recurrent encoders are augmented with

the ability to incorporate the agent’s previous working memory,

wmt−1, which is processed along with its past state, as illustrated

in the upper half of Figure 1B. The working memory is a central,
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FIGURE 1

Diagram of agent architectures. (A) Baseline GRU agent with recurrent encoders. (B) Global-workspace agent satisfying all RPT and GWT indicator

properties. The double bars marking the path from the past step’s working memory in the recurrent encoder for each modality emphasize the

gradient-stopping operation during training that was required to stabilize the learning of this agent variant. (C) The proposed cross-attention

mechanism takes as input the past step’s working memory, the current visual and acoustic features to be used as query sources, and then computes

an attention mask for each of those items, along with a null input; this therefore simultaneously incorporates bottom-up, cross, self, and top-down

attention. Intuitively, the attention mask determines which information to incorporate from each input.

recurrent module that exists in all agents we use in this work, and

in the case of our global workspace agent, we consider the working

memory to be the current state of the global workspace. This

feedback connection therefore satisfies GWT-3, i.e., the concept

of a global broadcast that makes the information contained in the

workspace available to other modules.

GWT-2 stipulates a limited capacity workspace, entailing a

bottleneck in information flow from the input modules into the

shared workspace, which is overseen by a selective attention

mechanism (Baars, 2005; Juliani et al., 2022b; Butlin et al., 2023).

Consequently, our proposed agent architecture is augmented with

an attention mechanism (Vaswani et al., 2017), making the overall

architecture compliant with both GWT-2, but also introducing a

top-down, state-dependent attention from which the workspace

can directly query modules to perform downstream tasks. The

attention mechanism allows the querying of information that will

be passed from both input modalities’ features into the working

memory for downstream use—for example, to the policy. Making

the query mechanism depend on the previous step’s working

memory, on top of the other two modality components, enables

our proposed architecture to satisfy the state-dependent attention

criterion, thereby fulfilling GWT-4. To allow a fairer ablation

study over the impact of the global workspace as an informational

bottleneck, a linear projection is used to match the dimension of

the input modality features and the working memory vectors.

Up to this point, due to the nature of the softmax operation

in the attention mechanism, the proposed architecture forces the

agent to allocate all of its attention over the three inputs (i.e.,
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visual and acoustic features, as well as the working memory).

To allow the working memory to be “inattentive”, a null input

component was added to the key and value components of the

attention mechanism, as proposed in RIMs (Goyal et al., 2019).

In case there is no salient information that warrants attending to

the visual, acoustic, or working memory inputs, the model can

(potentially) learn to utilize the null input instead. The detailed

attention mechanism is illustrated in Figure 1C.

The proposed mechanism therefore outputs modulated

features corresponding to the previous working memory, the

acoustic, and the visual modalities, respectively. A central GRU

cell will then receive the modulated previous working memory

as its hidden state while receiving the modulated acoustic and

visual features as inputs to produce the next working memory

representation for the current time step, wmt . Analogous to the

GRU baseline variant (Section 2.5), the working memory is then

passed to the policy (“actor”), as illustrated in the lower half of

Figure 1B.

2.5 Baseline agent

Our baseline agent is as similar as possible to the global

workspace agent while ablating the GWT indicator properties. The

simplest of these is to prevent the working memory of the previous

step, wmt−1, from being fed to the GRU cell of each input modality

encoder, thereby negating GWT-3 (global broadcast); this does

however retain RPT-1 and RPT-2.

Altering the overall structure of the agent by having a

joint input processing module over both the visual and acoustic

modalities would introduce a significant gap when compared to the

global workspace agent and the original reference implementation

provided in SoundSpaces 1.0 (Chen et al., 2020). Therefore, the

independent nature of each input modality encoder is maintained,

meaning that the baseline agent does satisfy the GWT-1 property,

as illustrated in the upper half of Figure 1A.

All other GWT indicator properties are then negated by

removing our proposed cross-attention mechanism, leaving only

the central GRU cell. While the total size of the input modalities’

features is greater than the size of the state feature vector, hence

resulting in a bottleneck in information flow, there is no attention

mechanism as required by GWT-2 or GWT-4. Instead, the baseline

agent generates the working memory using the unaltered GRU

cell. Finally, the working memory is fed to the actor component

that produces actions used for either training or evaluation, as

illustrated in the lower half of Figure 1A. This baseline agent is thus

equivalent to the SoundSpaces 1.0 agent, augmented with recurrent

input encoders for each modality.

2.6 Multimodal 3D navigation

In this work, we approach the study of the global workspace

in a realistic embodied task by grounding our experiments in

the environments provided by the SoundSpaces library (Chen

et al., 2020, 2022) for audiovisual navigation. SoundSpaces

introduces a high-quality simulator based on 3D-scanned real-

world environments, paired with a novel sound simulation

engine able to simulate sound sources and wave propagation in

the reconstructed 3D environments. Agents in a SoundSpaces

environment are tasked with reaching an object spawned at

an arbitrary location following acoustic cues produced by said

object, while also using visual information to navigate the 3D

environments. The native audiovisual navigation task proposed in

SoundSpaces 1.0 (Chen et al., 2020) and 2.0 (Chen et al., 2022)

requires the agent to reach the location of a continuously ringing

phone, as illustrated in Figure 2A. However, the lack of additional

classes of objects that can serve as targets can result in relatively

trivial learned representations, while also limiting the emergence of

associations between the acoustic and visual modalities. Therefore,

we leveraged the semantic audiovisual navigation (SAVi; Chen

et al., 2021) extension to SoundSpaces, which incorporates a richer

variety of target object categories and their acoustic properties

(a dripping sink, moving chair or table, crackling fireplace, and

others). Furthermore, the acoustic cues in SAVi are only provided

for a variable length duration from the beginning of the episode.

Having access to a long-lasting acoustic cue during navigation helps

the agent accurately estimate the location of the target location

and find the sounding object, as illustrated in Figure 2B (magenta

trajectory). However, acoustic cues of a shorter duration (orange

trajectory in Figure 2B) only help the agent get a general directional

hint, which would force it to commit early acoustic cues into

memory and combine them with visual cues to identify the target

location. Thereby, SAVi provides a challenging environment with

which to test working memory, thus creating a relevant scenario

for investigating the properties of an agent with global-workspace-

inspired mechanisms.

2.7 Agent training

Although the SoundSpaces and SAVi suite of tasks were

originally intended for the training and evaluation of goal-oriented

RL agents, we used imitation learning, as there are several

complexities introduced by RL training on SAVi. Firstly, the

reference agent architecture for SAVi relied on additional input

fields such as the agent and target’s locations—an assumption

that can limit extensions to broader settings. The agent also

contained manually engineered components specifically geared

toward goal-oriented navigation. Despite these additions, the agent

was only able to achieve an average success rate of 25%. Moreover,

training under the RL paradigm introduces greater variance in

the results. Namely, two agent architectures trained under RL

might achieve drastically different final performances or learned

representations (Lindsay et al., 2021). Compared to other machine

learning paradigms, RL agents influence their training data, and

will normally observe highly correlated observation-action pairs.

Therefore, we adopted the behavioral cloning (BC; Pomerleau,

1988) imitation learning algorithm to reduce confounding factors

that might stem from the online RL training paradigm and to

ensure a high baseline level of task performance across conditions.

BC uses supervised learning on expert trajectory data in order

to train an agent. It also guarantees that all agent variants
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A

B

FIGURE 2

(A) Audiovisual navigation task provided by SoundSpaces. The agent has to navigate the rooms to reach the source of the noise (a ringing phone),

using a single RGB camera view and binaural audio spectrograms as input. Figure reproduced from Chen et al. (2020) with the authors’ permission.

(B) Two example trajectories of the SAVi (SoundSpaces extension) navigation task. In SAVi tasks, the source of noise can originate from target objects

of 21 di�erent categories. In the first trajectory (magenta), the agent hears the sound of a dripping sink, while in the second trajectory (orange), it

hears the sound of a cabinet door that is either opened or closed. The duration of the acoustic cues varies. Figure reproduced from Chen et al. (2021)

with the authors’ permission.

under consideration are exposed to the same observation-action

distribution, hereby allowing for isolating the impact of the learned

representations on the type of agent architecture, for a fairer and

more objective comparison.

To this end, we used the native oracle agent included in

the SoundSpaces simulator to generate a dataset D consisting of

500, 000 tuples (ot , a
∗
t , dt) of observation, action, and environment

termination samples. An observation consists of 128×128×3 RGB

images for the visual modality, and 65 × 25 × 2 spectrograms for

the acoustic modality. The action spaceA is discrete and consists of

four actions: allowing the agent to either go forward, turn left, turn

right, or stop, which terminates the episode once the target location

is reached. All the recurrent components of the agents architectures

specified in Sections 2.4 and 2.5 were implemented as GRUs (Cho

et al., 2014), with layer normalization (Ba et al., 2016) to further

stabilize the learning (Hafner et al., 2020; Yoon, 2023).

For a given agent, with policy πθ parameterized by weights θ ,

we perform training using minibatches of data sampled from D.

Specifically, we sample B = 10 (batch size) contiguous trajectories

of length T = 150 (batch length) from D to produce N =

B × T action logits {x̂i = πθ (oi)}
N
i=1 via the forward pass. The

base BC algorithm optimizes the cross-entropy between the action

distribution and the oracle action, a∗t . We augment this with an

entropy regularization term, scaled by a coefficient η = 0.2,

to mitigate overfitting of the agent’s policy (Kang et al., 2018;

Eysenbach and Levine, 2021). Thus, the agents are trained to
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minimize the following objective function (Equation 1):

LBC(θ) = −
1

N

N∑

i=1

|A|∑

j=1

log
exp(x̂i,j)

∑|A|
c=1 exp(x̂i,c)

· a∗i,j + ηH(πθ ), (1)

where |A| = 4 is the size of the action space, andH(π) denotes the

entropy of the policy.

In order to find the best hyperparameter settings for a range

of working memory sizes, for both the baseline (GRU) and global

workspace (GW) agent, we performed Bayesian hyperparameter

optimization using Weights & Biases (Biewald, 2020). For the

shared modules, i.e., the audio and visual modality encoders,

central GRU cell, and policy network, the same hyperparameters

were used across all agents. We tuned the learning rate ∈

[0.0001, 0.005], the entropy coefficient η ∈ [0, 0.5], and the

maximum gradient norm (gradient clipping) ∈ [0.25, 10], based on

ranges commonly observed in the DRL literature (Dhariwal et al.,

2017; Raffin et al., 2021; Huang et al., 2022). Each hyperparameter

search was conducted over 10 runs, using 25, 000 iterations, after

which time the majority of performance could be reached. For

the final experiments, we used the optimized hyperparameters

(Table 2) for five runs with different seeds, running for 50, 000

iterations. Each run (50, 000 iterations) takes ∼5 days on an

NVIDIA RTX 3090 GPU, requiring more than 8,616 GPU hours

in total for the final experiments.

Diverging from the reference work by Chen et al. (2020), the

dimension of each modality’s feature vector, as well as that of the

working memory was set to 64. A critical implementation detail to

stabilize the learning of the global workspace agent was to detach

the gradients flowing from the GRU cell of each modality encoder

into the previous step’s working memory wmt−1, as illustrated by

the two bars on the corresponding arrows in Figure 1B. All code

to support our experiments and analysis can be found at https://

github.com/arayabrain/multimodal-global-workspace-agent.

2.8 Agent analysis

We employ a multifaceted approach to evaluate and interpret

the performance, learned representations, and attention

mechanisms (when applicable) of the agent variants under

consideration. These three distinct analysis methods enable us to

shed some light on the inner workings of the global workspace

agent architecture.

2.8.1 Performance evaluation
In DRL, a straightforward approach to validate a given agent

architecture is to monitor the episodic return or an equivalent

successmetric during the agent’s training. Consequently, each agent

is evaluated every 100 training iterations, using a deterministic

policy where the action with the highest probability is always

picked. Each evaluation phase consists of collecting the success

score (1 if the agent has reached the target location and executed the

stop action, 0 otherwise) over five episodes, which are continuously

appended to a first-in-first-out list of size 50. To analyze the

final performance and sample efficiency of the agent variants, we

followed best practices and computed the interquartile mean (IQM;

Agarwal et al., 2021), as it is robust to outliers.We calculate the IQM

across the latest 50 evaluation episodes, then over the five seeds, and

report the final IQM ± 95% confidence interval (CI) using 2, 000

bootstrap samples.

2.8.2 Probing learned representations
The SAVi task (Chen et al., 2021) features two semantic

concepts that can be queried from the features learned by the agent.

This informs us of how well information about the state of the

environment is integrated into the learned representations. First,

the target object category, which varies across episodes, is provided

to the agent via the acoustic modality observation, and is available

only for a variable duration from the start of the episode. Intuitively,

this covers scenarios such as briefly-ringing doorbell, a door either

opening or closing, and other frequently occurring situations in

the real world. This information is crucial to success, as the agent

must narrow down the goal to the target object, and the binaural

audio also indicates the general location of and distance of the

agent from the goal location. There are 21 classes of target object

categories in total, covering various daily life objects such as chairs,

tables, cabinets, sinks, and more (Chen et al., 2021). Second, the

scene (room) in which an episode takes place can also be obtained

from the simulator, as well as inferred from the visual observation.

While this information is ancillary to solving the SAVi task itself,

it can serve as a proxy to measure how well visual information is

integrated into the shared workspace. In total, there are 56 scenes in

the training dataset.

Probing neural network representations involves evaluating

and analyzing internal representations within a pre-trained neural

network to understand the learned features and information

encoded at different layers. It is thus an invaluable tool for

interpreting the inner workings of ANNs and uncovering the

latent knowledge encoded in their parameters. Namely, we can

use probing to investigate how well information about either the

target object category or the scene is integrated into intermediate

layers of the investigated agent architectures, i.e., the learned visual

and acoustic features, as well as the working memory. Various

works (Pasukonis et al., 2022; Zhang et al., 2022) employ relatively

simple MLP architectures conditioned on intermediate network

features and trained via supervised learning to classify concepts

of interest, then use the classification accuracy as a metric of

effective information representation. Intuitively, attaining high

classification accuracy using linear probes suggests informative

and unambiguous learned representations since the concepts

of interest can be reliably classified with such simple function

approximators (Zhang et al., 2022). Conversely, features that do

not encode enough information to predict the target category

with a higher than chance accuracy can be deemed uninformative

to complete the task at best, and detrimental at worst. We

therefore adapt this methodology to train probe networks over

features extracted from the fully trained agent architectures under

investigation to classify either the target object category or the

scene. Note that the probe training happens independently of

the agent’s training, thus excluding any form of information
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TABLE 2 Optimized hyperparameters for each agent architecture type and working memory size.

Model GRU GW

Working memory size 32 64 128 256 512 32 64 128 256 512

Learning rate (10−3) 3.526 2.881 3.148 2.581 0.403 1.231 1.902 0.328 4.502 1.248

Entropy coefficient 0.497 0.066 0.221 0.055 0.363 0.420 0.223 0.396 0.200 0.331

Max gradient norm 2.349 8.999 6.728 7.127 8.387 1.890 2.696 1.704 4.817 7.505

leakage from the additional labels programmatically extracted from

the environment.

Let X = {vis, aud,wm} denote the set of candidate input

features for the probes corresponding to visual features, acoustic

features, and the working memory respectively. Let Y =

{target object category, scene} denote the set of candidate probe

targets. For each pair (x, y) ∈ {X × Y}, we define a probe network

ξ
y
φ(x) parameterized by weights φ, which produces the logits zy(x).

In practice, each probe is defined as a 2-layer MLP with ReLU

activations (Fukushima, 1975). Although a two-layer MLP is not

a linear function approximator, recent works (Pasukonis et al.,

2022) demonstrated that probes with higher expressive power are

beneficial and sometimes even necessary for interpreting complex

learned representations. The probe training leverages the same

training datasetD that was used in Section 2.7. We first extractN of

each of the visual features, acoustic features, and working memory

representations that correspond to one batch of observations. Each

probe then receives a mini-batch of size K = 30 of the appropriate

input features x, and is trained to minimize the cross-entropy loss

corresponding to its target y over 3, 250 iterations, using the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 2.5 ×

10−4. Finally, we evaluate each probe’s accuracy over a held-out

evaluation set of 150 trajectories spanning six different target object

categories and five scenes, and report the classification accuracy.

2.8.3 Attention weights
The exploration of attention weights produced in

attention mechanisms proves invaluable in unraveling the

intricate interplay between inputs of Transformer-based

models (Bahdanau et al., 2014; Clark et al., 2019; Caucheteux

and King, 2020). With the capability to concurrently focus

on distinct segments of the input modalities, attention

becomes a powerful tool for understanding information

processing from different modalities, and their integration

into the global workspace. Therefore, one key aspect attention

weights help us investigate is the dynamic nature of inter-

modality interactions. By scrutinizing these weights, we aim

to discern whether specific modalities consistently capture

the same content from input modalities, unveiling the

nuanced relationships between different types of information.

Moreover, attention weights can also serve as a quantitative

metric for gauging the importance of each modality.

Namely, the higher the attention weight, the greater the

significance attributed to a particular modality or feature.

This quantitative measure would thus allow us to identify crucial

elements involved in the decision-making of the proposed

global workspace agent.

2.8.4 Contribution of the global workspace
broadcast

The broadcast operation is a critical component of GWT. It is

designed to share available information across different cognitive

processes and modules, allowing them to either prioritize or ignore

some local stimuli to the benefit of the overarching objective. As

illustrated in Figure 1B, the broadcast is implemented by passing

the working memory from the previous time step to the memory

cell of the visual and acoustic encoders, respectively. We investigate

the general contribution—or lack thereof—of the global workspace

at the local level of input processing. To this end, we compute

the average magnitude of the linear layer’s weights, normalized

by the average magnitude of the input features, split on whether

they map either the input modality or the past working memory

to the encoder recurrent cell. The relative magnitudes give us a

basic measure of the relative importance of the bottom-up vs. top-

down inputs. By normalizing by the average magnitude of the

inputs, we account for the audio or vision features having a different

distribution to that of the working memory features.

3 Results

3.1 Performance evaluation

Figure 3 shows the success rate of each agent type over

the training process grouped by their working memory sizes.

As detailed previously (Section 2.8.1), we calculated the IQM

± 95% CI of the rolling average over the last 50 evaluations.

The global workspace agent is relatively robust, achieving ∼80%

performance across all memory sizes, apart from size 256, where

some runs performed poorly; we believe that given the rest of the

results, these could be outliers. For reference, a random policy

achieves 0% success, while the original SAVi agent trained with

RL only reached 25% success on average (Chen et al., 2021).

In comparison to the global workspace agent, the baseline GRU

agent was less robust, achieving only over 60% performance

during the course of training across all memory sizes, and only

becoming more stable and competitive with the global workspace

agent at higher working memory sizes. Performance sometimes

declines after the halfway point, which may be an artifact of our

hyperparameter optimization runs stopping at this point to reduce

the computational requirements by∼4,000 GPU hours. Regardless,

the negligible difference observed across different working memory

sizes for the global workspace agent implies that the capacity of

the short-term memory required by the task is relatively small.

Thus, SAVi is not an adequate benchmark for testing working

memory capacity.
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FIGURE 3

Success rate of each agent type, across a range of working memory sizes. We report the IQM ±95% CI of the rolling average over the last 50

evaluations, aggregated over five independent runs (random seeds). The performance of the global workspace agent is more robust, particularly for

smaller working memory sizes.

FIGURE 4

Probing accuracy for the target object category and scene, conditioned on the working memory, visual features, and acoustic features respectively,

grouped by working memory sizes and agent variants. Accuracies are averaged over all evaluation trajectories and five independent runs, with error

bars representing ±1 standard deviation.

3.2 Probing

Figure 4 shows the probing accuracy for the target object

category (top row) and the scene (bottom row), averaged over the

held-out evaluation trajectories and grouped by agent architecture.

First, we can ascertain that information relating to the target object

category is indeed prevalent in the features produced by the acoustic

modality encoder (green bars in the top row of Figure 4), given the

relatively high accuracy in predicting the category based on said

features. The baseline agent does retainmore information about the

target object category in working memory as the size of the memory

increases, whereas there is no trend for the global workspace agent.

However, there is no other clear difference between the agents,

and neither is there any obvious relationship to performance

(Section 3.1). Surprisingly, the classification accuracy of the target

object category given visual features ranges from 14 to 37%, which is

significantly above chance accuracy of 1/21 ≈ 4%, thus suggesting

that parts of the visual observations also provide target object

category related information. Indeed, we can expect the agent to be

exposed to some information about the target object category (e.g.,

chair) as they come within its visual field of view.

Analogously to the target object category, the highest probing

accuracy for the scene comes from the visual features. This

also aligns with our intuitive understanding of an audiovisual

navigation task, in that the visual modality is the most important

when it comes to identifying which room the agent is navigating

through. There is no particular trend in probing accuracy across

working memory sizes or between the baseline and global

workspace agents. The lowest accuracy is 4% for the smallest

baseline agent, which is only slightly above chance (1/56 ≈
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FIGURE 5

Probing accuracy for the target object category based on the agent’s working memory, across five di�erent trajectories. The gray area delineates the

part of each trajectory where the acoustic cues are playing.

1.79%). As the task can be solved without knowledge of the scene’s

identification or its layout, this is perhaps to be expected. When

it comes to predicting the scene based on the audio features,

the variants achieved between 6 and 14%. This is still higher

than chance accuracy, and might be attributed to specific acoustic

cues that uniquely characterize some scenes, such as reverberation

patterns that depend on the room’s layout (Chen et al., 2020,

2021, 2022). While most agent variants managed to integrate

enough information from both visual and acoustic modalities

into their working memory to succeed at the task, the global

workspace agent with memory size 128 seems to achieve the best

information integration from both modalities. Figure 5 shows the

probing accuracy based on the working memory for the target

object category over five unrolled trajectories, grouped by working

memory sizes and agent types. The gray area delineates the part

of each trajectory where acoustic cues are playing. We observe

that both agent variants encode the relevant information in their

working memory sufficiently enough for reliable prediction when

rich acoustic cues are playing. However, once the sound is cut

off, the prediction accuracy drops abruptly for both variants. For

smaller memory sizes (≤128), the global workspace agents exhibit

higher probing accuracy on average, when compared to their

GRU counterparts. This suggests that the global workspace agents

are better at integrating information from the input modalities,

allowing for consistent performance and robustness across memory

sizes (Section 3.1). While this does suggest that neither the

conventional GRU nor the proposed attention mechanism help in

preserving a high enough probing accuracy for the target object

category after the sound cutoff, this does not seem to affect the

final performance of the agents, as illustrated in Figure 3. In some

cases, the agent may already be in a location where the task can

be solved purely through visual navigation, and of course, none of

the agents achieve a 100% success rate. This nevertheless contrasts

with the hypothesized ability of the global workspace to sustain a

representation over time.

Figure 6 shows the probing accuracy based on the working

memory for the scene over five unrolled trajectories, grouped by

working memory sizes and agent types. As was already shown

in Figure 4, all of the global workspace agents encode some

information from the visual modality into the working memory,

which translates into a higher probing accuracy for the scene

concept over time.

3.3 Attention weights

Figure 7 shows the attention weights resulting from the cross-

attention based on the working memory query, across five unrolled
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FIGURE 6

Probing accuracy for an episode’s scene based on the agent’s working memory, across five di�erent trajectories. The gray area delineates the part of

each trajectory where the acoustic cues are playing.

trajectories, and five independent runs (seeds), grouped by the

workingmemory size. For the same workingmemory size, there are

no consistent attention patterns across all runs; each agent develops

unique strategies to attend to the input components. However,

there is a clear pattern as workingmemory size increases—attention

becomes more binary (less mixing of modalities) and the change

in attention access decreases—with attention for the largest agents

essentially saturating at the beginning of the episode. The attention

weights resulting from the cross-attention based on either visual

or audio queries follow similar trends. Despite the differences in

attentional patterns, all agents were still able to achieve similar task

performance. This suggests that with a small bottleneck, agents

are forced to use dynamic attention patterns, but given sufficient

capacity, there is no pressure to do so.

For a more comprehensive view of the attention weights, we

investigated the average attention weights over all 150 evaluation

trajectories for each query and key-value combinations, grouped

by working memory size, shown in Figure 8. In general, the audio

queries largely map to the vision keys, and the vision queries largely

map to the audio keys, which means that the agents largely perform

cross-attention across input modalities. The working memory is

matched with either one, or both, of the input modalities. Notably,

the working memory and null keys are largely unattended to,

potentially implying that most of the important information lies

with the current inputs. However, due to the global broadcast,

past information can also influence the final stage of sensory

input processing.

3.4 Contribution of the global workspace
broadcast

Figure 9 documents the normalized magnitude of the linear

layer mapping the input features (audio or vision) and the previous

working memory wmt−1 to downstream representations for the

recurrent encoders in each sensory module. By this measure, the

previous working memory is prioritized over the current sensory

inputs, for both the audio and vision encoders. Although at first,

Figure 8 appears to show the importance of information from the

current time step, these results indicate that the agents are in fact

using the global broadcast to propagate information over time in

order to solve the audiovisual navigation task.

4 Discussion

Motivated by a functionalist approach to consciousness, we

introduced a concrete implementation of an embodied agent
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FIGURE 7

Overview of the attentional patterns of the global workspace agents, based on the working memory query, over five unrolled trajectories.

architecture that fulfills the indicator properties of GWT, as

delineated by Butlin et al. (2023). We then proceeded to investigate

the benefits, or lack thereof, of such an architecture in a

realistic audiovisual navigation task (Chen et al., 2020, 2021,

2022), via feature probing and inspection of learned weights and

attentional patterns.

The global workspace architecture does seem to confer

improved performance and robustness at smaller working memory

sizes. In fact, the performance of the global workspace agents

is similar across sizes, and hence we believe future work should

investigate more challenging domains. In line with our initial

experiments on the SoundSpaces 1.0 task before moving to SAVi,

this hints at the possibility that a more complex environment and

task definition are required to properly investigate consciousness-

related properties and other high-level cognition mechanisms in

artificial agents. For instance, Mugan and MacIver (2019) argued

that the massive increase in the complexity of terrestrial habitats

as compared to aquatic ones is likely to have played a role in the

development and emergence of higher-level cognitive abilities such

as planning, reasoning, and consciousness in land-based mammals.

Similarly, Blum and Blum (2022) emphasized the importance

of resource limitations when studying consciousness and related

concepts in artificial agents. This is echoed in our ablation study

on the capacity of the working memory, which suggests that a

stricter informational bottleneck induces more pressure for the

selective attention mechanism, incentivizing the latter to learn

more dynamic attention strategies over the input modalities. Our

study highlights the need for consciousness research to further

define the tasks and environment in which candidate architectures

for conscious agents and high-level cognitive mechanisms

can be suitably evaluated. Unfortunately, the development of

realistic simulator environments for training and testing artificial

agents is a labor-intensive effort, and beyond the scope of

this work.

Two alternative possibilities also exist. The first is that there is a

trivial evolutionary advantage conferred by the global workspace.

The second is that the “indicator properties” outlined by Butlin

et al. (2023) are not sufficiently detailed to capture the unique
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FIGURE 8

Attention weights averaged over all 150 evaluation trajectories and independent runs (seeds) for each query and key-value combination, grouped by

working memory size.

FIGURE 9

Normalized average magnitude of the input weights for the audio and vision recurrent encoders, for the sensory inputs vs. the previous working

memory, grouped by working memory size.

computational advantages provided by a global workspace in

biological organisms such as humans. Given the energy expenditure

required to operate the cortex, along with the preservation of

workspace-like dynamics over millennia, the latter might be more

likely than the former. As such, a fruitful area of future work may

be to refine the indicator properties using additional insights from

computational and experimental neuroscience.

Potential avenues for future work would thus be to further

investigate the role of the global workspace as a bottleneck in the

proposed architecture, as well as other quantitative and qualitative

properties, such as the connectivity patterns in the inputs and

their representations in the shared workspace, or the emergence

of cross-modal analogies that encode shared abstract concepts

across modalities.
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