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Artificial cognition vs. artificial
intelligence for next-generation
autonomous robotic agents
Giulio Sandini, Alessandra Sciutti and Pietro Morasso*

Italian Institute of Technology, Cognitive Architecture for Collaborative Technologies (CONTACT) and
Robotics, Brain and Cognitive Sciences (RBCS) Research Units, Genoa, Italy

The trend in industrial/service robotics is to develop robots that can cooperate

with people, interacting with them in an autonomous, safe and purposive

way. These are the fundamental elements characterizing the fourth and the

fifth industrial revolutions (4IR, 5IR): the crucial innovation is the adoption

of intelligent technologies that can allow the development of cyber-physical

systems, similar if not superior to humans. The common wisdom is that

intelligence might be provided by AI (Artificial Intelligence), a claim that

is supported more by media coverage and commercial interests than by

solid scientific evidence. AI is currently conceived in a quite broad sense,

encompassing LLMs and a lot of other things, without any unifying principle,

but self-motivating for the success in various areas. The current view of AI

robotics mostly follows a purely disembodied approach that is consistent with

the old-fashioned, Cartesian mind-body dualism, reflected in the software-

hardware distinction inherent to the von Neumann computing architecture.

The working hypothesis of this position paper is that the road to the next

generation of autonomous robotic agents with cognitive capabilities requires a

fully brain-inspired, embodied cognitive approach that avoids the trap of mind-

body dualism and aims at the full integration of Bodyware and Cogniware.

We name this approach Artificial Cognition (ACo) and ground it in Cognitive

Neuroscience. It is specifically focused on proactive knowledge acquisition

based on bidirectional human-robot interaction: the practical advantage is to

enhance generalization and explainability. Moreover, we believe that a brain-

inspired network of interactions is necessary for allowing humans to cooperate

with artificial cognitive agents, building a growing level of personal trust and

reciprocal accountability: this is clearly missing, although actively sought, in

current AI. The ACo approach is a work in progress that can take advantage

of a number of research threads, some of them antecedent the early attempts

to define AI concepts and methods. In the rest of the paper we will consider

some of the building blocks that need to be re-visited in a unitary framework:

the principles of developmental robotics, the methods of action representation

with prospection capabilities, and the crucial role of social interaction.

KEYWORDS

embodied cognition, self-organization, body model, neural simulation of actions,
developmental robotics, social robotics
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1 Introduction: artificial cognition vs.
artificial intelligence

There is no doubt that AI (Artificial Intelligence) and ACo
(Artificial Cognition) are frequently confused, in the engineering
community as well as in the media, assuming that somehow
are synonyms and functional for a common growing process
of innovation in AI technologies. As a matter of fact, AI is a
generic label that has been around since the 50’s of the last
century, whereas the ACo label is quite recent, although the
conceptual framework has been outlined at the same time of AI.
Moreover, a similar confusion affects also the scientific community
at large, including philosophy, psychology, and neuroscience: the
issue is old and highly debated but still is far from allowing a
shared definition of either Intelligence or Cognition, including
the clear identification of similarities and differences. This also
includes the use of quasi-oxymoronic expressions, as embodied
intelligence, and is further clarified if we consider the etymology
of intelligence and cognition.

Intelligence comes from the Latin verb intelligere and is
defined as the Activity of the highest/purest part of the soul/mind
(Latin “anima,” Greek α̋νεµoς or wind or breathing); more
specifically, the etymology of Intelligence derives from the
hierarchy of activities of living organisms defined by Aristotle,
ordered from the lowest to the highest abstract layer: vegetativum
→ sensitivum → motivum → intellectivum. Intelligere applies
only to intellectivum, implying that intelligence does not include
perception and action but is only focused on the ideal forms or
abstract essences of real phenomena: in summary, intelligere means
to deal with impersonal, static knowledge, as far as possible from
practical/bodily activities.

Cognition comes from the Latin verb Cognoscere and it is
defined as the faculty of knowing, in the sense of the ability of
an agent to learn and evaluate the surrounding reality. It is a
personal, not impersonal faculty. Knowledge is not in the “cloud”
but is acquired through personal experience in a dynamical way,
filtered through the moving/sensing body as well as from past
personal experience.

Thus, the main differences between intelligence and cognition
for cooperative robots of the next generation can be summarized as
follows:

• Cognition is embodied – Intelligence is likely to be dis-
embodied.
• Cognition rejects the mind-body dualism – Intelligence

implies the mind-body dualism.
• The goal of intelligence is to reason about encyclopedic

knowledge and bounded by data.
• The goal of cognition is to improve the chance of personal

survival, in the Darwinian as well as in the Enactivist sense,
within a strong social context and exploiting internal models.

In summary, we suggest that Intelligence and Cognition
correspond to two very different approaches to the acquisition,
representation, accumulation, and exploitation of knowledge:
Intelligence aims at abstract, impersonal, encyclopedic knowledge,
independent of the personal and/or social process of action
and interaction between brain, body, and environment; in

contrast, Cognition deals with the individual process of knowledge
acquisition through personal experience, possibly mediated
by social interaction, a process constrained and guided by
dynamics (between brain, body, and environment), development
(ontogenetic as well as phylogenetic) and a value system of some
type that is intrinsically alien to Intelligence per se. For example,
E = m c2 is a piece of knowledge that captures the essence of
a large variety of phenomena, independent of the humans that
invented/discovered it and of the actual use by human society,
e.g., understanding the nature of black holes vs. developing atomic
bombs. This does not imply that Intelligence and Cognition are
antithetic and mutually exclusive: on the contrary, they should be
integrated carefully and “wisely,” in particular when we address
the technological counterpart of such categories of knowledge,
namely AI & ACo. On the other hand, it is not uncommon, in
the neuroscience/cybernetic literature, to find expressions like
“motor intelligence” that appear to contradict the distinction above
and the crucial role of “embodiment.” In our opinion, this is just
an example of the unavoidable ambiguity of natural language,
including the language used in science: motor intelligence and
related concepts are intrinsic embodied components of cognition
and have little to share with disembodied, abstract intelligence. For
AI a chair is a 3D shape while for ACo is a goal of the act of sitting.

At the same time, we should also consider a criticism of
embodied cognition (Goldinger et al., 2016), suggesting that
cognitive science (the whole of mental life, articulated in terms of
perception, attention, memory, reasoning, and language) has little
to gain from the posited integration of body and mind typical
of embodied cognition. The main point is that, according to the
authors, different forms of disembodied cognition, somehow in a
similar way with the disembodied outline of AI, are characterized
by a substantial underestimation of the fundamental concept of
action in relation with other cognitive concepts as perception,
attention, memory and so on. The cognitive importance of
this concept is highlighted by the need of prospection, namely
the mental simulation of actions for evaluating their potential
sensorimotor effects in the future, either positive or negative, and
thus supporting an informed decision-making process that escapes
and bypasses the trap of trial and error. For example, mentally
simulating “sitting” as part of the process to find a chair.

Historically, the starting point of the debate between AI and
ACo can be identified with the invention of Cybernetics (Wiener,
1948), namely the discipline that deals with Communication
and Control in the Animal and the Machine. Communication
and Control are the basic ingredients when dealing with both
Intelligence and Cognition and indeed Artificial Intelligence,
including neural networks, is one of the many disciplines coming
out from the cybernetic revolution. One of the hot issues that
divided and still divides the cybernetic community at large is the
degree of overlap between the application of cybernetic concepts
to “Animals” or to “Machines”: in particular, to which extent
engineers should focus on a bio or brain inspired approach for
the design of intelligent/cognitive agents? Wiener himself was
much in favor of a fundamental communality between natural
and artificial prototypes/paradigms whereas the AI community
was and is still oriented in the opposite direction, supporting
the hypothesis that accelerating innovation methods of AI can
approach a “different kind” of intelligence that, according to some
“to be specified” metric, can even surpass human intelligence in
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many application areas, with a very thin degree of connection to
biology and neuroscience.

The history of AI is marked by a number of booms and
busts, driven by the dynamic interplay between science, technology,
and economy. The last decade or so is clearly a booming period,
marked by well publicized achievements in gaming (e.g., chess or
go), computer vision and natural language technologies, driven by
machine learning methodologies applied to deep neural networks.
Artificial neural networks employed in AI are relatively simple and
easy to use but are essentially “black boxes” whose connection
weights can be refined through learning techniques, like back-
propagation, without attempting any linkage with biology and
neuroscience (another source of ambiguity of the term “neural
networks”): the results are opaque for the designers and/or the
user of the AI application, independent of the success of the
app. In general, AI apps can make decisions or predictions
based on parameters that the programmer has not defined and
cannot deduce by looking at the output or the network code: the
fundamental source of information behind the produced result is
the intrinsic correlation hidden in the data used to learn. Two
identical networks may behave in a quite different way depending
on the random selection of the initial connection weights and, more
importantly, on the choice of the big data set used for training
the network as well as the order in which these data are acquired.
This kind of opacity, due to the intrinsically passive nature of
the learning mechanism, is clearly in contrast with standard
engineering design methodologies related to safety and reliability
and is likely to imply ethical and legal adoption problems as soon
as the application domains include sensitive problems as medical
diagnosis, autonomous driving, fraud detection, econometric
analysis, and economic decision making. Moreover, the expansion
of the application areas is motivating the growth of the number
of layers and parameters of deep neural networks, supported by
the continuous development of new software tools and the still
increasing computational power: each layer of these networks
represents the knowledge extracted from the training data at
progressively more abstract levels, whose interpretation becomes
more and more difficult to ascertain, highlighting fundamental
limitations of the deep learning framework, such as catastrophic
forgetting (French, 1999) and never-ending learning (Mitchell et al.,
2018). Moreover, even in the specific application areas where
AI technologies achieved unprecedented advancements, a strong
impediment to the generally accepted adoption of such systems
is “explainability,” namely the lack of transparency due to the
black-box nature of these systems: they may provide powerful
predictions that cannot be directly explained (Adadi and Berrada,
2018; Rahwan et al., 2019). The causal relationship between the
acquired training data is lost and does not emerge.

Such problems motivated the rise of a recent discipline on
a side of AI: Explainable Artificial Intelligence (XAI) (Barredo
Arrieta et al., 2022). A major focus of XAI is not on the design
and structural feature of such systems but on the audience
for which explainability is sought and the different purposes
of the explanations, e.g., explain to justify/control/improve
performance/discover causal relationships. At the same time, the
value of XAI is frequently called into question, claiming that the
credibility of an AI system can be evaluated directly by monitoring
the quality of the result over time and observing that modification
of AI systems in such a way to explain every decision could decrease

speed and efficiency. In any case, AI as well XAI research is far away
from any brain-inspired formulation, somehow based on cognitive
neuroscience.

Thus, it is somehow surprising that recent papers (Taylor
and Taylor, 2021; Iglesias, 2022) associated Artificial Intelligence
with Artificial Cognition1 proposing to “explain” the black boxes
produced by AI technologies by means of the methods of analysis
of the mind developed by Psychology and Cognitive Neuroscience,
based on controlled stimuli and measurement of behaviour in
various network architectures. The underlying rationale is that
also the mind, investigated by such methods, can be treated as a
black box and thus by importing cognitive methodology in the
analysis of AI apps can allow to make causal inferences about
the structure, architecture, and functioning of the black boxes
generated by AI methods. This approach to XAI has been called
Artificial Cognition and is based on the hope that experimental
psychology can help generate explainable neural networks: the
problem is that this is a post-hoc method that in no sense can be
interpreted as a brain model.

In general, the definition of artificial cognition as a tool
to measure decision making in artificial neural networks is
clearly reductive, at best describing, not explaining, how the
system works and does not consider a totally different approach
for the development of cognitive architectures for autonomous
agents that is fundamentally brain-inspired to start with and
“proactive/exploratory” in nature. This approach can be traced
back to the early times of AI although the name ACo was
not specifically used and/or publicized but it is clearly behind
the pioneering studies on Enactivism, Embodied Cognition and
Self-Organization of living organisms (Maturana and Varela,
1980; Varela et al., 1991), leading to a formulation of cognitive
neuroscience arguing that cognition arises through a dynamic
interaction between an acting organism and its environment,
mediated by a sensing and acting body, namely a purposeful,
proactive, exploratory interaction that emphasizes the importance
of adaptability and compositionality in artificial cognition while
mirroring a fundamental organizational principle of the brain
expressed as neural reuse: “. . .the brain as a dynamical system
where individual regions are functionally diverse and are used
and reused in many different tasks across the cognitive domain”
(Anderson, 2010). In our opinion, this is the appropriate starting
point for the development of reliable autonomous agents of the
next generation, guided by the concept that acting is an aspect of
decision making and perhaps the ultimate reason for a brain to
exist.

In the following part of the paper, some crucial founding
concepts and building blocks for conceiving and designing
Artificial Cognitive agents will be outlined but we wish to
emphasize that it is not explainability per se, as defined by XAI, the
most urgent need for society, which demands to understand how
and on what basis intelligent/cognitive agents support decisions
that may affect everybody. One of the goals of AI is to achieve
Artificial General Intelligence (AGI) that captures human cognitive
abilities in general, aiming at a sort of “impersonal super-
intelligence.” This would clearly overcome the understanding

1 To our knowledge the two papers (Taylor and Taylor, 2021; Iglesias, 2022)
are the first ones to contain the term Artificial Cognition in the title.
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capability of any single individual, although there are reasons to
doubt that this is an unrealistic and even impossible goal (Fjelland,
2020). We believe that a decision-making process based essentially
on correlation, having lost any causal relationship between training
data cannot “explain” the “why” of its outcome (Fjelland, 2020)
but only “how” similar is the decision to past decisions. On the
contrary, Cognitive Penetrability, in the sense defined by (Pylyshyn,
1999)2, allows humans to communicate and interact on the basis
of a shared value system and this is the basis for achieving
mutual trust in a cooperating society: for this reason, cognitive
penetrability rather than explainability should be the starting point
for the development of Autonomous Robotic Agents of the next
generation.

In summary, the ACo formulation of the development
of autonomous agents is fundamentally brain-inspired but its
biomimetic approach is not intended to imitate the fully developed
brain of Nobel prize winners or other remarkable cultural
leaders but the process of progressive knowledge and competence
acquisition, leading to autonomous decision-making ability. Thus,
a fundamental building block of ACo robots can be outlined by
re-visiting the basic issues of evolutionary robotics, emphasizing
the difference between the data-driven, passive nature of training
deep and large neural networks (the AI/AGI approach) and the
active exploratory-driven knowledge acquisition nature of sensory-
motor-cognitive development of human cubs. As suggested by von
Hofsten (2004), “development is about systems with the urge to act
and explore.” One crucial aspect of the developmental process is
that it is made possible by internal and external constraints: the
intrinsic plasticity of the brain and the persistent/sought interaction
with the physical and social environment. The role and the
computational mechanisms of the former type of interaction will
be addressed in section 3 “Body model and Prospection capabilities
for Artificial Cognition” and the latter type of interaction will
be touched upon in section 4 “Social support of Developmental
Artificial Cognition.” In particular, the issue of prospection will
be linked to the memory system that accompanies and supports
the accumulation of knowledge, at increasing levels of abstraction,
on the basis of mental (covert) simulation of action and mental
(covert) speech. Of course, this short list of items does not cover
all the relevant components of ACo, such as the specific role of
consciousness/awareness in artificial cognition and inner language
in the development of cognition that are only briefly mentioned.

2 Principles of developmental
robotics

In the context of artificial cognition, we suggest that a brain-
inspired cognitive architecture for autonomous robotic agents
of the next generation should consider general principles
of Developmental Robotics. This is a multifaceted and
interdisciplinary research area at the intersection of robotics,
developmental psychology and developmental neuroscience. It is
more than twenty years old (Sandini et al., 1998; Asada et al., 2001;

2 Z.W. Pylyshyn: “if a system is cognitively penetrable then the function
it computes is sensitive, in a semantically coherent way, to the organism’s
goals and beliefs.”

Lungarella et al., 2003; Schmidhuber, 2006; Cangelosi et al., 2015;
Min et al., 2016; Huang et al., 2017) and it clearly represents a
brain-inspired approach to the design of robots: in contrast with
industrial robots that perform repetitive predefined tasks in a
predefined environment: these robots are supposed to be dynamic
models of how humans develop, explore, and quickly adapt in an
open-ended manner to a changing environment through lifelong
learning, in order to cope with unpredictable challenges. Thus, the
biomimetic goal of developmental robotics that is pursued is not
to imitate the brain per se, namely the performing brain of trained
adults, but the process of progressive knowledge acquisition,
leading to autonomous decision-making ability by interaction with
the physical and social environment.

In particular, we suggest that developmental robotics is
intrinsically based on two basic pillars: (1) personal embodiment
and (2) personal/social (accumulation of) knowledge. In relation
with the first pillar, analyzing the emergence of fetal and neonatal
movements Asada et al. (2009) observed that predefined (“innate”)
circuits exist in the nervous system: in particular, the stretch reflex
in the spinal circuit and the oscillator neurons in the medulla
that lead to central pattern generators involved in locomotion; in
contrast, it appears that there is no predefined circuit specifying
coordination of full-body actions. Thus, it is suggested that the
observed synergies of adults emerge from an embodiment process,
namely the interaction between the brain and the environment
through the body, in the early development stage, and the body
model, later on as a result of neural maturation and physical
growth. Such internal representation of the body, for describing
and predicting the evolution of actions, requires an abstraction
from specific sensory modalities (Squeri et al., 2012) and this is
the result of a multisensory, multimodal integration-fusion process
that is known to occur in late childhood (Chen et al., 2004; Gori
et al., 2008, 2012a,b; Gori, 2015).

The general principles of developmental robotics are strongly
interleaved with the central tenet of embodied cognition,
namely that cognitive and behavioral processes emerge from the
reciprocal, dynamic and evolving coupling between brain, body
and environment throughout the entire life of an individual.
This means, in particular, that cognition and intelligence
cannot be captured by a complex computer software, such
as a deep neural network, because the three-ways interaction
mentioned above is intrinsically hybrid, with digital, analogic, and
physical components.

As regards the personal/social nature of robot
learning/training, we may observe that developmental robots
are typically supposed to share the environment with humans, in
the framework of a common goal or cooperative task. Therefore,
it is beneficial for the robot to infer humans’ goals, imitate
their behaviors and/or follow their suggestions in order to
accelerate the autonomous acquisition of know-how, marked
by the memorization of critical episodic occurrences. Curiosity,
exploration and motivation are the essential ingredients to be
combined in a synergic way, by linking intrinsic motivation to
the attention for the human partner behavior; the role of social
environment in this process will be expanded in section 4 “Social
support of developmental artificial cognition.”

The crucial role of embodiment, including its ecological
aspects, for developmental robotics is apparently challenged by
“Vehicles” (Braitenberg, 1986) and the notion of “intelligence
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without representation” (Brooks, 1991): it is suggested that
purposive behavior does not necessarily have to rely on accurate
models of the environment, but rather might be the result of the
close interaction of a simple control architecture with a complex
world. In other words, according to such view there is no need to
build enduring, full-scale internal models of the world, because the
environment can be probed and re-probed as needed, thus closing
the loop in real-time. More recently, Pfeifer and Scheier (1994)
argued that a better global understanding of the perception–action
cycle might be required. The authors propose an alternative view
that breaking up perception, computation and action into different
subsystems might be too strong a commitment. In other words, the
minimal unit of processing should be a complete perception–action
cycle that includes the environment in the loop (Vernon et al.,
2015b).

We may also add that such computational kernel is likely
to evolve during development, with multi-sensory fusion and
progressive abstraction from the specific sensory modalities,
maintaining and updating an internal eco-body model based on
a unifying simulation/emulation theory of action with prospective
capabilities (Decety and Ingvar, 1990; Jeannerod, 2001; Grush,
2004; O’Shea and Moran, 2017; Ptak et al., 2017). Clearly,
prospection cannot be obtained through the representation-less
models of Brooks and Braitenberg that only operate in the present:
prospection operates in the future to control the present in a
purposive way. It is also worth considering that, despite his
emphasis that in general quite complex “intelligent” behavior
can be achieved without representation, Brooks accepts a role
for representations as building blocks, emerging in a bottom-up
fashion (Brooks, 2002). This is a view that matches at the same time
the fundamental role of embodied cognition and its ontogenetic
evolution as a bottom-up process: internal representations could
be introduced at different stages in service for action (Clark, 1997;
Steels, 2003). As examples of approaches following such a bottom-
up approach we may also quote the DAC architecture (Verschure
and Althaus, 2003) or the walking agent model (Schilling and
Cruse, 2017; Schilling et al., 2021).

Sensory-Motor-Cognitive Development in humans is an
incremental process, involving maturation, integration and
adaptation, following the blueprints of a dynamic process moving
through more and more skilled cognitive states (Piaget, 1953) and
mediated by social interaction (Vygotsky, 1962). However, this
process is somehow ragged and the genetically pre-programmed
roadmap is steered and implemented by epigenetic phenomena
affected by environment. This is related to the long-term discussion
of the role of nature and nurture in the development of a personal
agent. In other words, development is largely decentralized, event
and environment driven, exhibiting the typical features of a self-
organizing system. Moreover, there is ample evidence that such
spontaneous self-organizing process is aided and amplified through
social interactions with adults and peers (Vygotsky, 1962). This
includes various types of social support, as scaffolding, guidance,
coaching and apprenticeship; moreover, mimetic processes such as
mimicry, imitation and emulation are likely to play a central role
in cognitive development. More specifically, the development of
skilled actions in children can be investigated with three different
but complementary approaches that focus, respectively, (1) on
the intrinsic maturation of the nervous system (Gesell, 1946),
(2) on the information processing aspects, associated with the

interaction of the developing nervous system with newly emerging
cognitive processes, driven by the interaction with the environment
(Connolly, 1970), and (3) on the dynamics of such interaction,
i.e., a dynamic systems approach. In summary, it is suggested
that the acquisition of new motor skills is guided by the drive
to explore (curiosity) and supported equally by the developing
nervous system and its interactions with sensory-motor processes
and the environment (Bernstein, 1967; Gibson, 1979; Thelen and
Smith, 1998; Oudeyer et al., 2016; Schillaci et al., 2016). Moreover,
there is mounting evidence (Alderson-Day and Fernyhough, 2015;
Fernyhough and Borghi, 2023) that such process of cognitive
development is accompanied by the evolution of inner or covert
speech that associates a symbolic component to the maturation of
subsymbolic sensorimotor capabilities. Such linguistic component
has also been linked to the role of inner speech in working memory
(Miyake and Shah, 1999), namely the retention of information
“online,” critical for a complex task.

If developmental robotics is to be taken seriously in the long
run, it should be considered that human cognitive development
(approached by means of the theoretical frameworks proposed
either by Piaget or Vygotsky) is inexorably interleaved with
educational issues and this should be the basis for training and
educating autonomous robotic agents during development. The
main motivation and attractive promise for pursuing this line of
research is that it may allow to overcome the explainability issue,
namely the generalized level of distrust affecting AGI and to give
rise to mutual understanding. In other words, we may assume that
humans may be readier to trust cognitive robotic agents if they are
well educated (i.e., robotic agents and humans share a value system),
according to clear and public training plans, including such things
as a certified CV and reference list. Moreover, by relying on social
education and training it will be possible to differentiate the type of
skills achieved by the robotic agents in order to obtain some kind of
social balance between human and robotic populations as well as to
interact differently with human with different abilities (e.g., young
or elderly persons).

On the other hand, in spite of the intense and wide research
activities on developmental robotics in the last two decades (Min
et al., 2016; Huang et al., 2017; Wieser and Cheng, 2018; Naya-
Varela et al., 2021; Rayyes et al., 2022), we are still far away from
a level of understanding of the global implementation issues that
may allow testing and evaluation in a sufficiently general manner.
Certainly, there are still limitations regarding the “bodyware”
capabilities of robots used to implement a developmental process
inspired by humans, including the two most advanced child
robots, namely iCub (Sandini et al., 2004) and CB2 (Minato et al.,
2008). Their limited sensory and motor abilities is not the most
relevant factor so far, to investigate the organization of Sensory-
Motor-Cognitive Development in realistic robots, but the fact
that most research has been focused on the biomimetic, time
frozen implementations of specific aspects of human cognitive
development, missing to address the large picture as well as its
temporal continuity: in some sense, it is like implementing a
specific ability of a three-year-old without figuring out where the
system is coming from and how it may progress beyond. This
strategy is in contrast with the theory of development, expressed by
Vygotsky (1978), describing the “zone of proximal development”
as the distance between the actual developmental level and
the level of potential development. The actual developmental
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level characterizes mental development retrospectively, while the
Zone of Proximal Development characterizes mental development
prospectively. For example, we may quote a representative list of
studies in the two preceding decades that cover in isolation some of
the specific issues of developmental robotics: Self-exploration and
early imitation (Kuniyoshi et al., 2003), Modeling joint attention
(Nagai, 2007), Scaffolding Robot Action Learning (Nagai and
Rohlfing, 2009), Affordance-based perception (Min et al., 2016),
Bootstrapping the semantics of tools (Schoeler and Wörgötter,
2016), Perception of Localized Features (Giagkos et al., 2017),
Bootstrapping of Sensory-Motor Skills (Wieser and Cheng, 2018),
Developing Reaching Ability like human infants (Luo et al., 2018),
Sensorimotor Communication (Donnarumma et al., 2012, 2018;
Pezzulo et al., 2019), Integration of Sensing, Cognition, Learning,
and Control (Li et al., 2019), Evaluation of Internal Models (Smith
and Herrmann, 2019), Emergence of symbolic representations
(Ugur et al., 2015; Taniguchi et al., 2019), Grounded affordances
(Saponaro et al., 2020), Bodily Expression of Emotion (Tuyen et al.,
2021), Morphological development (Naya-Varela et al., 2021), Skill
Learning Strategy with Dynamic Motion Primitives (Li et al., 2021),
Interest-driven exploration (Rayyes et al., 2022, 2023).

This “stroboscopic” view of development, even if advancing the
field, completely misses the continuous dynamic process behind
sensorimotor and cognitive development. To advance the field
of developmental robotics we should focus on a wider view
of cognition, making explicit the relationship between different
cognitive skills and their shared functions, although we should not
disregard bodyware technologies because, obviously, better bodies
can be advantageous.

In spite of the intrinsic fragmentation of the growth/integration
process that needs to be overcome to give developmental robotics
its full potential, the alternative roadmap that aims at the design
of fully developed “adult” cognitive architectures for autonomous
robots is only apparently more direct and simpler: in contrast, we
believe that it misses the crucial fact that it is precisely this being
always “under construction” that characterizes human intelligence
and its open cognitive development.

A recent review of forty years in Cognitive Architecture
Research for autonomous robotics (Kotseruba and Tsotsos, 2020)
clearly shows that we are still far away from a solid platform.
The problem is that it does not make sense to aim at a General-
Adult Cognitive Architecture that (as the dream of AGI) can be
easily adapted to any application area; at the same time, it is not
very attractive to aim at a population of cognitive architectures,
specifically designed for each application, without a well-defined
common computational core. In contrast, the developmental
roadmap, which is apparently more arduous, would take advantage
of a close interaction with humans and the well-developed human
tools for building, communicating and transmitting knowledge and
culture (Vernon, 2014).

One of the crucial problems that will challenge in the future
the research in developmental robotics might be the identification
of a minimal set of sensory-motor-cognitive kernels capable
to bootstrap the growth, through self-organization, interaction,
and training, of sensory-motor-cognitive abilities optimized for
different application areas. With respect to this minimal set
it has become clear that the apparent simplification offered
by the analogy to human development, characterized by an
incremental improvement of cognitive skills, on one side reduces

FIGURE 1

iCub: the first baby robot.

the complexity of the learning processes by suggesting the sequence
of the functions to be learned but on the other does not make
explicit the complexity of the underlying computational/functional
architecture of the system which is fully formed during the
gestational period and expressed through highly structured brain
connectivity. The baseline architecture represents the blueprint of
evolution providing the scaffolding for innate behaviors as well
as for continuous learning (Zador, 2019). It is the opinion of
the authors that without a baseline cognitive architecture with
the potential to express all cognitive functions the advantage
offered by a developmental approach to the design of ACo system
will continue to produce temporally and functionally fragmented
robots. It is worth mentioning that this baseline cognitive
architecture is not the result of learning but is encoded in the
genome and marginally modified epigenetically and, therefore, in
ACo systems may require different computational tools than those
used during the successive developmental and lifelong learning
phases (among other differences its structure is only marginally
affected by sensory and social interaction).

From the computational point of view, we may suggest that the
cognitive architecture of cognitive agents will not be a closed piece
of software running on a powerful but traditional von Neumann
computer: in contrast, it can be conceived as a hybrid dynamical
system that changes over time as an effect of learning and on-line
interaction with humans or other cognitive agents. This growth
process may take advantage of a number of possible tools, for
example using neuromorphic computing technologies that may
match better than traditional von Neumann design the need of
self-organized growth (Tang and Huang, 2018).

Moreover, we expect that the converging integration of
technologies and methodologies will be facilitated by the
development of the next generation of baby robots, following
the first baby robot iCub (Figure 1) with better sensory-motor-
cognitive capabilities.
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3 Body model and prospection
capabilities for artificial cognition

Evolutionary pressure is behind the increase and expansion
of motor redundancy in the human species, with emphasis on
two functional areas: manipulation (through the availability of
thumb opposition) and vocalization (through the development
of a sophisticated vocal tract). Such bodily evolution has been
accompanied by the emergence of specialized brain regions
required to tame the abundance of DoFs, with a dual computational
function: control of overt (real) actions and generation of covert
(imagined) actions for allowing adult subjects to reason in a
proactive way, in agreement with the fundamental cognitive
capability of prospection (Gilbert and Wilson, 2007; Seligman
et al., 2013; Vernon et al., 2015a,b). Prospection includes
planning, prediction, imagination of hypothetical scenarios, and
evaluation/assessment of possible future events. Prospective
abilities – how much and how well a person is able to bring mental
representations and evaluations of possible futures to bear on the
selection of action – is a fundamental cognitive faculty akin to other
basic faculties as language and reasoning.

The key achievement for cognitive mastering the physical
interaction with the environment is prospection, which can
also be described as “Mental Time Travel” (Suddendorf and
Corballis, 2007) in order to emphasize the extended role of
memory in purposive actions: episodic memory (retrieving from
the past events/situations, specifically relevant for the current
state) as well as procedural memory (namely, the identification
of the appropriate selection of tools and sub-actions as well
as the prediction of the perceptual feedback); such memorized
know-how can be combined for imagining future scenarios and
evaluating alternative courses of action. Mental time travel allows
cognitive agents to act skillfully by integrating and fusing in the
performed action the past (through smart retrieval of goal-driven

experiences), the present (through the activation of previously
trained synergies), and the future (through the anticipated
internal and external consequences of the action). Moreover,
the propensity for prospection and mental time travel can be
greatly enhanced by another intrinsically social mental ability,
i.e., flexible communication and language, enhancing the potential
predisposition of humans to cooperate by pooling information and
resources (Tomasello, 2009; Slocombe and Seed, 2019).

In relation with the unifying simulation/emulation theory of
action (Decety and Ingvar, 1990; Jeannerod, 2001; Grush, 2004;
O’Shea and Moran, 2017; Ptak et al., 2017) we suggest that the
basic computational module required for a cognitive agent to
achieve prospection is an internal representation of the whole body
or body schema. In neuroscience “body schema” is a label (with
other similar labels, as body image etc.) that covers a scattered
range of phenomena rather than a specific well-modeled neural
mechanism (Head and Holmes, 1911; Penfield and Boldrey, 1937;
Gallagher, 1985; Graziano and Botvinick, 1999; Paillard, 1999;
Holmes and Spence, 2004; Preester and Knockaert, 2005; Hoffmann
et al., 2010; Morasso et al., 2015; Di Vita et al., 2016). However,
there is an agreement on some computational features that are
relevant for the development of cognitive robotic agents: the body
schema (1) is spatially encoded (with multiple reference frames),
(2) is intermodal/supramodal (including the dynamic integration
of sensory and motor information (Azañón et al., 2016), (3) is
distributed and modular (in multiple cortical maps dynamically
interconnected into networks such as the “default mode network”)
(Horn et al., 2013), (4) is characterized by a short-term plasticity
and reorganization on the time scale of seconds, as shown by
the quick integration of tools into the body schema for skilled
performers (Maravita and Iriki, 2004).

Moreover, there is ground to believe that the body schema
is directly responsible for the kinematic-figural invariants that
characterize the spatio-temporal features of biological motion
(Johansson, 1973). Such invariants are mainly related to the

FIGURE 2

Spatio-temporal or figural-kinematic invariants in trajectory formation. (A) Planar reaching movements between six target points; note the invariant
straight point-to-point trajectories and the invariant bell-shaped speed profiles. (B) Three examples of continuous hand gestures displayed as
digitized trajectories, including the profiles of the velocity (V) and curvature (C); note the anti-correlation of the two profiles. From Morasso, 2022.
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spatio-temporal features of the end-effectors rather than joint
coordination, suggesting that the brain representation of action is
more skill-oriented than purely movement/muscle-oriented. For
example, Figure 2 shows that in reaching movements the trajectory
of the end-effector is straight with a symmetrical bell-shape of the
corresponding speed profile, independent of the starting position,
direction and of the specific end-effector; in whole body gestures,
as handwriting or drawing, the curvature and speed profiles are
anti-correlated (Morasso, 2022) and characterize what is known
as “biological motion” (see below). Since these invariants are
independent of the number of DoFs recruited in a given action, we
may suggest that the computational machinery producing them is
actually solving, at the same time and in an intrinsic manner, what
Bernstein (1967) called the Degrees-of-Freedom-Problem.

It is also worth considering that the study of motor imagery
provided evidence that kinematic invariants are also present in
covert movements (Decety and Jeannerod, 1995; Karklinsky and
Flash, 2015). Such evidence, together with the finding that the
same invariants characterize the actions of congenitally blind
persons (Sergio and Scott, 1998), suggests to focus the attention
of the computational analysis of kinematic invariants from their
phenomenological description [e.g., the minimization of jerk (Flash
and Hogan, 1985) or the 2/3 power law (Lacquaniti et al., 1983)]
to the organization of internal models incorporating the intrinsic
dynamics of the bodyware.

The Mental Simulation Theory (Jeannerod, 2001) provides a
powerful approach to the solution of this problem: it posits that
the brain generates a mental flow of simulation-states in such a
way as to simulate the activity produced during the same, executed
action and this process “would put the action representation in
a true motor format so that it would be regarded by the motor
system as a real action.” A computational implementation of the
mental simulation theory that can be easily integrated in the
cognitive architecture of autonomous robots is the PMP model of
trajectory formation (Passive Motion Paradigm: Mussa Ivaldi et al.,
1988, 1989; Mohan and Morasso, 2011; Mohan et al., 2019): its
basic rationale is the same as the models of action representation
and motor control based on a force-field approach, namely the
idea that the motor coordination of multiple, redundant DoFs
of the body is the consequence of (real or virtual) force fields
applied to an internal representation of the body (the body model).
The body model is viewed as a network of spring-like elements
that individually store elastic potential energy, contributing to a
global potential energy that recapitulates, in a smooth, analogic
manner, the complex set of bodily interactions: the network is
then characterized by an attractor neurodynamics that aims at
equilibrium states of minimum potential energy, in a similar way
to the dynamics of Hopfield networks (Hopfield, 1982). The PMP
model applies the concept of passive motion to active synergy
formation by updating the control input of each element of the
body model so as to cancel the “stress” induced by a simulated
external perturbation, e.g., the attractive force field to a designated
target.

There is also an interesting relationship between the Passive
Motion Paradigm and Active Inference (Friston et al., 2011): the
anti-symmetry between active inference and passive motion speaks
to the complementary but convergent view of how we use our
forward models to generate predictions of sensed movements.
This view is an example of Dennett’s “strange inversion” (Dennett,

2009), in which motor commands no longer cause desired
movements – but desired movements cause motor commands (in
the form of the predicted consequences of movement). Thus, the
PMP model can tame the abundance of degrees of freedom of
the human body by using a small number of primitives (force
fields, associated with specific end-effectors as a function of a given
whole-body gesture): the diffusion of such fields throughout the
internal body model distributes the activity to all the DoFs, with
an attractor neurodynamics, driven by the instantiated force fields,
that indirectly produces at the same time the kinematic invariants
mentioned above for both the overt and covert actions.

At the end of the ontogenic development of adult subjects,
we may assume that the redundant degrees of freedom of the
human body are coordinated by the brain in such a way to exhibit
the observed kinematic invariants by animating the body schema
according to something similar to the PMP computational model.
From what is known of the sensory-motor-cognitive development
of humans we may exclude that the organization of the body model
is somehow innate and genetically preprogrammed3. In contrast,
we may expect that it is built and refined during development by
exploiting plasticity, consolidating a physical self-awareness and
conquering two crucial developmental targets; (1) multi-modal
sensory fusion and calibration, for achieving perceptual abstraction
(Gori et al., 2008, 2012a) (2) generalized kinematic invariance, for
general end-effectors and/or skilled tool-use.

As regards self-awareness/self-body-consciousness, it has been
suggested (Tononi, 2004) that it is the result of a general process
of information integration carried out by the brain through the
neural connectome (Tononi, 2005) and, from a developmental
point of view, is an emergent property of the interaction between
brain, body and environment, with the crucial role of visuo-haptic
information (Morasso, 2007). Infants spontaneously touch their
own body and reach to tactile targets on the skin already in
the final part of pregnancy and with even more intensity in the
post-natal period (Figure 3), when touching and being touched
occurs systematically, with the reinforcement effect of mother
care (Corbetta and Snapp-Childs, 2009; Di Mercurio et al., 2018):
infants are active explorers of their own body as well as of their
peripersonal space (Cardinali et al., 2009) from the first days of life
and such self-generation of multi-sensory information is likely to
shape and adapt Tononi’s connectome. This primordial and self-
generated sense of self-unity is suggested to be the crucial initial
base from which learning and development may evolve (Rochat,
2019). However, the self-exploration mentioned above in early
childhood, although crucial for building a solid awareness for the
emergence of a “body space,” with the surrounding “peri-personal
space,” as well as a strong sense of unity is initially rather qualitative
and sensory-modality dependent. As shown by Gori et al. (2008),
children before 8 years of age fail to integrate visual and haptic
spatial information. More generally, Gori (2015) proposed a cross-
sensory calibration theory, according to which before 8−10 years
of age the more accurate sensory modality “teaches/calibrates” the
more variable sensory source and only afterwards accurate and
reliable multisensory information is made available by the CNS. In

3 This issue is related to the baseline architecture previously mentioned
as the blueprint of evolution providing the scaffolding for innate behaviors
(Zador, 2019), such as the observed prenatal synergies possibly facilitated by
the viscous amniotic liquid.
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FIGURE 3

Pre-natal and post-natal visuo-haptic experience.

contrast, adults are able to optimally fuse multisensory information
in an abstract form (Ernst and Banks, 2002). An effective internal
representation of the body, for describing and predicting the
evolution of actions, requires an abstraction from specific sensory
modalities as well the corresponding motor information flow
(Squeri et al., 2012).

As regards the emergence of kinematic invariants, as indicators
of the consolidation of the body schema, it is worth considering
the maturation of the kinematic patterns of reaching movements.
First of all, it has been observed that although infants reliably
grasp for objects within their workspace 3−4 months after the
onset of reaching, stereotypic kinematic motor patterns begin to
emerge between the 2nd and 3rd year of life (Konczak et al., 1995;
Konczak and Dichgans, 1997; Gonçalves et al., 2013; Zhou and
Smith, 2022): for example, only at that stage, the majority of trials
exhibit a single peaked velocity profile of the hand. The observation
of reaching movements beyond the 3rd year of life (Schneiberg
et al., 2002) reveals that development is characterized by a gradual
decrease of the variability of Interjoint coordination and end-
point trajectories and an increase of their smoothness: the highly
stereotyped and stable patterns that characterize adults are reached
only after 10−12 years of age and probably further consolidated in
early adolescence (Mitchell, 1998).

In general, the concept of body schema implies an internal
awareness of the body (Berlucchi and Aglioti, 1997) and the
relationship of body parts to each other, encompassing cognitive
aspects. In the framework of the Piaget theory of cognitive
development that identifies four stages of maturation, the
preliminary consolidation of the body schema as a working
computational mechanism may be located at the end of the third
stage (concrete operational thinking, at the age of 11−12 years)
that marks the beginning of abstract or operational thought: this
means that the child can imagine things/situations internally in
the mind, rather than physically try things out in the real world.
However, such operational thought is only effective if the child is
asked to reason about materials that are physically present. Only
afterwards, at the later stage of formal operational thinking while
entering adolescence, children may gain the ability to think in a
more abstract and systematic manner, reasoning about what might

be as well as what is, as an effect of their actions and the related
reactions of the environment. As a matter of fact, such fourth
stage of Piaget’s theory is open-ended and strongly dependent on
the specific interaction with the physical/social environment as a
life-long learning/training process (Flesch et al., 2023).

In summary, we suggest that the Body Schema (animated
through the mental simulation theory) and the Prospection
capabilities, which are essential for the Artificial Cognition of the
next generation of cognitive robots, may be achieved more naturally
in a developmental, self-organized framework. The achievement
of this goal will probably require the adoption of new computing
technologies, beyond the traditional von Neumann approach,
allowing the implementation of a kind of large connectome as
the basic skeleton for the cognitive development of the robot.
The connectome may support the emergence of a number of
self-organizing maps, derived from the pioneering research of
Kohonen (Kohonen, 1982; Martinetz and Schulten, 1994): this self-
adaptive neural substrate, evolving under the action of Hebbian
learning mechanisms, should be driven by a built-in, spontaneous
tendency to explore the body space and the peripersonal space:
a generalized, spontaneous babbling strategy (Kuperstein, 1991;
Goldstein and Schwade, 2008). Babbling is a stage in child
development (4−12 months of age) and a precursor to language
acquisition: infants experiment with phonation by uttering sounds
that not yet produce recognizable words but are essential to self-
generation of training data for the phonatory system. A similar
babbling strategy appears to be in operation in the same period, for
experimenting manipulation and acquiring self-awareness of the
body that initiates the construction of the body schema. Thus, we
suggest that such generalized babbling mechanism, ranging from
phonation to manipulation, is a crucial bootstrap mechanism for
cognitive developmental robotics. At the same time, the maturation
of prospection capabilities via the evolution of mechanisms for
the mental simulation of covert actions can be integrated with
the evolution of covert and overt speech (Alderson-Day and
Fernyhough, 2015) that associates a symbolic component to the
maturation of subsymbolic sensorimotor capabilities. Moreover,
reinforcement learning (Neftci and Averbeck, 2019) can support
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the strategic organization of purposive actions for cooperative
human-robot interaction.

4 Social support of developmental
artificial cognition

For cognitive robots conceived in the framework of
developmental robotics, cognitive capabilities are not
preprogrammed but can be achieved and organized through
interaction with the physical and social environment.

While the former sections have addressed the development of
cognition mostly focusing on an individual agent, the current one
underlines the importance of the social dimension and advocates
the need of considering it since the beginning of the modeling
process of artificial cognition. This claim draws parallels with
human cognition, where the innate predisposition of humans for
social interaction from early stages influences cognitive, emotional,
and motor development. Then, a pathway to model core cognitive
abilities in artificial agents based on a social perspective is
proposed. It starts from the incorporation of social motives into
artificial cognitive systems, moves on emphasizing the impact
of bidirectional non-verbal linguistic interactions for effective
cognitive development in robots and concludes by highlighting the
role of social interaction in consolidating cooperation, teamwork,
and the transmission of ethical norms and cultural values in
cognitive agents.

Human beings show a marked predisposition to work together
toward joint goals and in cooperation, to teach (and be taught
by) others and to consider their perspectives and intentions
(Tomasello, 2009, 2018; Slocombe and Seed, 2019). It has even been
proposed that human beings have evolved special social-cognitive
skills beyond those shared by primates in general for living and
exchanging knowledge in cultural groups, by communicating,
learning and “reading the mind” of others in complex ways
(Herrmann et al., 2007). In particular, the generalized capacity for
teaching, which involves the use of shared attention and other
forms of verbal and non-verbal information exchanges, is one of
the features at the basis of the extreme capacity for cultural learning
shown by humans (Laland and Seed, 2021).

The predisposition to social interaction is apparent since the
initial moments of human life. Already before birth, the direct
interaction with the mother and, when present, with the twins
(Castiello et al., 2010) and with the social inputs coming from
outside the womb (e.g., as sounds) play an important role in
shaping the future interaction of the baby with the world and others
(Ciaunica et al., 2021).

Since birth, human neonates are attracted by other people
and are endowed with skills that facilitate the establishment of
an interaction, ranging from the preference for biological motion
(Simion et al., 2008) and for faces looking directly to them (Farroni
et al., 2002), with preference for human voices to other sounds
(Alegria and Noirot, 1978) and especially infant directed speech
(Cooper and Aslin, 1990). As soon as about half an hour after birth
newborns can imitate facial expressions of happiness and surprise
(Meltzoff and Moore, 1977, 1983; Field et al., 1983) and within the
first following days, newborns look significantly longer at a happy
facial expression than a fearful one, suggesting a sensitivity to the

facial characteristics that maximize their chances of interacting with
others (Farroni et al., 2007).

It appears that particular high relevance is given since the
earliest moments of development to elements that ensure the
affiliation with conspecifics. This is not unexpected in a species
where newborns are born with undeveloped skills and strongly
depend on the support of their caregivers to survive and grow in
the first portion of their life (i.e., an altricial species, in contrast to
precocial ones (Vernon, 2014).

Such social inclination at birth is not the result of supervised or
unsupervised learning algorithms but an inherited predisposition
to exploit social interaction for the development of cognitive
abilities through the production and understanding of social
signals, such as gestures, gaze direction and emotional displays.
It is worth mentioning here that some of these innate “social
signs” are in fact exapted functions (Gould and Vrba, 1982) in the
sense that the main motivation they appeared during evolution
was not for their “social use.” For example, facial expression
(Murray et al., 2017) are supported by part of the system for
regulating ingestion in relation to breathing and the need to control
the direction of gaze is mainly motivated by the computational
advantages of human space variant retina (Sandini and Tagliasco,
1980). Starting from these innate skills the social competence
of the newborn develops very rapidly. Around 3 months of age
infants engage mutual gaze with adults, i.e., both agents attend
to each other’s eyes simultaneously (Kaplan and Hafner, 2006).
At around 6 months of age infants can perceive the direction of
attention of others, at least in term of discriminating whether the
caregiver’s gaze is directed to the left or to the right (Butterworth,
1991; Butterworth and Jarrett, 1991). In the sensitive period for
social coordination, from 3 to 9 months of age, parents and
infants establish social interaction by coordinating gaze, affect,
vocalizations and touches. These reciprocal exchanges shape the
child’s development, impacting not only the social domain, but
also the emotional, cognitive and brain development (Feldman,
2007, 2012).

By the end of their first year of life infants start to understand
pointing as an object-directed action (Woodward and Guajardo,
2002) and to address it, their gazing and vocalizations more often to
people than to inanimate objects, showing that they are aware of the
person’s attentional state (Legerstee and Barillas, 2003). Still during
the first year of life infants demonstrate action understanding
skills strongly correlated with the infants’ prior motor experience
(Sommerville and Woodward, 2005; Sommerville et al., 2005).
For instance, the capability to execute and anticipate reaching
(Kanakogi and Itakura, 2011) or eating actions (Kochukhova and
Gredebäck, 2010) appears at 6 months-of-age, while at least 9−12
months of life are required in order to skillfully perform and
anticipate the goal of a transport action (Falck-Ytter et al., 2006).

Instrumental helping emerges already at 18 months of age,
when toddlers altruistically try and help adults when they don’t
manage to reach a certain goal (Warneken and Tomasello,
2009) and then increases its complexity and selectivity with age
(Slocombe and Seed, 2019).

The presence of innate skills and the rapid development of
early abilities suggest a preparedness for social interaction and
a primary importance of social relationships in the development
of cognition. Such importance is confirmed also by studying
the behavior of caregivers, as it has been proven that maternal
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postpartum behavior shapes children’s symbolic competence and
cognitive skills (Feldman et al., 2004; Feldman and Eidelman,
2009). Immediately after birth human mothers express specific
newborn directed behaviors, such as gazing at the infant’s
face and body, expressing positive affects, modulating their
prosody by using high-pitched vocalizations (“motherese”), and
affectionate touch. Importantly – and proper for the human
species only – mothers show reciprocity, i.e., mothers adapt
their behavioral intensity to the neonate’s moments of alertness
(Feldman and Eidelman, 2003, 2007).

These findings suggest that, when attempting to model
cognition, it is mandatory not only to address the individual
agent and its relation with the environment, but also to consider
the impact of being immersed in the social world and somehow
predisposed to social interaction since the earliest moments of
development. In this perspective, the necessity to thrive in a
social context becomes a foundational element of how the agent’s
cognition develops and of which are the basic abilities with which it
needs to be endowed first.

A similar shift has recently informed the field of neuroscience
with the call for a change in paradigms toward the so-
called “second-person neuroscience” (Schilbach et al., 2013),
in which neural processes are examined within the context
of a real-time reciprocal social interaction. Neuroimaging and
psychophysiological studies have provided evidence that social
cognition is fundamentally different when someone is involved in
an interaction and emotionally engaged as compared to being just
an observer (Redcay and Schilbach, 2019).

Also studying artificial cognition could benefit from shifting
from modeling of the individual agent and of its (passive)
understanding of the social environment to a perspective where
active social interaction is foundational and transformative,
impacting the way the agent faces the complex problem of
understanding and anticipating others and its cognition overall.
Rather, approximating the development of cognition as sequential
process where the agent first develops in isolation certain skills and
then merely exploits them in its interaction with others might lead
to overseeing some crucial components of what makes human-like
cognition so advanced and capable of generalization.

Some authors have even proposed that social interaction
might be the brain’s default mode (Hari et al., 2015). Indeed,
although social interaction represents one of the most complex
functions that human cognition enables and one of the most
difficult to implement on cognitive artificial agents, still it
appears to us incredibly easy. A paradigmatic example is that
of dialogue: turn taking during human-human conversation is
naturally achieved effortlessly and with an extreme temporal
accuracy, yet unmatched in human-agent verbal exchanges. It
has been suggested (Garrod and Pickering, 2004) that humans
are “designed” for dialogs, endowed with unconscious interactive
processing, seamlessly aligning the linguistic representations of the
interlocutors. Furthermore, the evidence that children learn best
during interaction than by observing others (Moll and Meltzoff,
2011) has been proposed as another evidence in favor of the
primacy of interaction (Hari et al., 2015).

This is not to deny the principle that individual first-hand
competence (e.g., action execution) plays a crucial role in shaping
the understanding of the social world, which has received very
strong support also from neuroscience. As an example, it has

been proven that children have first to learn how to perform an
action themselves before being able to automatically anticipate
the outcome of the same action, when it is executed by another
agent (Falck-Ytter et al., 2006). This process maintains its validity
also during adulthood (Flanagan and Johansson, 2003). It’s only
through extensive first-hand motor experience that athletes become
extremely proficient at predicting the outcome of others’ actions in
the same sport, e.g., guessing whether a basketball will enter the
loop or whether a certain kick will lead to a goal. Sport journalist,
though accumulating a similar amount of observational exposure,
do not reach comparable anticipatory capabilities (Aglioti et al.,
2008).

However, the centrality of the reciprocity in infant-caregiver
behaviors in the development of children cognition (Feldman and
Eidelman, 2009) and the evidence that a great component of human
learning is inherently social and (almost uniquely in the human
species) relies on teaching (Csibra and Gergely, 2011; Laland and
Seed, 2021), indicate that the traditional approach of “developing
the individual” and then face it with the social environment could
lead only to a partial comprehension of human-like cognition.
Citing Hari et al. (2015) “If the goal is to achieve human-like
behavior, it is not enough to build on the bottom-up stimulus-driven
effects, but the centrality, eventually primacy, of social interaction
should be incorporated to the models.”

Following this approach, it would be worth analyzing the
core cognitive capabilities currently identified for Cognition
(Perception, Attention, Action Selection, Memory, Learning,
Reasoning, Metacognition and more recently Prospection: Vernon
et al., 2007; Vernon et al., 2016; Kotseruba and Tsotsos, 2020)
through a “social lens”: how they developed based on the necessity
of being a social agent in a social world?

As a starting point, we may include social motives in the
development of an artificial cognitive system. A motive defines
the goal of the system and determines its decision making. The
social motive guides the agent toward the research of comfort,
security and satisfaction from the interaction with others, guiding
to the exchanges of information and to the need of maintaining
the interaction over long periods of time (Vernon, 2014). This
approach is being explored in some cognitive architecture. For
instance, in the Clarion modularly structured cognitive architecture
(Sun, 2006) the motivational subsystem derives goals both from
physiological needs (such as need for food, need for water, need
to avoid danger, and need to avoid boredom) and so-called high-
level drives, such as desire for social approval, desire for following
social norms, desire for reciprocation, and desire for imitation of
other individuals. More recent attempts in robotics have looked
into social motivation where the need for social comfort drives the
action selection and adaptivity (Hiolle et al., 2014; Tanevska et al.,
2020; Mongile et al., 2022). Including social elements, e.g., social
norms, in the development of basic learning skills of an agent, is
another step in this direction such as considering social constructs
such as rivalry when learning to win a competitive game (Barros
et al., 2022) or ensuring legibility of the agent’s reinforcement
learning process for the human teacher (Matarese et al., 2021).

From the point of view of developmental cognition, we should
then emphasize the critical role of pedagogy that is supposed
to integrate subtle scaffolding, motivation, teaching, training and
information transmission for children of primary school age
(Csibra, 2010; Csibra and Gergely, 2011). In particular, this also
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FIGURE 4

Mutual understanding, supported by the exchange of verbal and non-verbal signals, and a reciprocal interaction with the caregiver, are at the basis
of children’s cognitive development. They might be as necessary for the development of Artificial Cognitive systems.

includes a combination of verbal and gestural/bodily linguistic
interactions between the teacher and the pupil, aimed at grabbing
and directing the attention of the pupils: for example, effective
gestural language refers to pointing, with the fingers and/or the eye,
and adopting facial expressions for expressing surprise, curiosity,
interest, fear etc.

Developing systems that can understand and properly express
such wide range of implicit cues (Figure 4) becomes then crucial
in facilitating the overall development of the skills of the cognitive
system, not only of its social competences (Sandini and Sciutti,
2018; Sciutti et al., 2018). Considering that in humans simpler
forms of sensorimotor communication might have scaffolded more
complex cognitive abilities, such as linguistic communication,
endowing robots with sensorimotor communication abilities might
aid in developing more advanced interaction capabilities Hence,
the need of developing systems that are sensitive to the subtle
variations of human movements of face, body and gaze (Palinko
et al., 2016; Vignolo et al., 2017; Cazzato et al., 2020; Barros and
Sciutti, 2022; Barros et al., 2022) and that can embed in their own
behavior the same subtle cues that make human action seamlessly
understandable to the human partner (Di Cesare et al., 2020;
Lastrico et al., 2023).

Moreover, such non-verbal linguistic interactions are strongly
bidirectional: from the child to the adult and vice versa. Thus,
if we aim at promoting the maturation of the cognitive abilities
of developing robots we should refer more to pedagogists rather
than to ICT experts.

At later stages of development, the role of social interaction
should focus on consolidating the tendency of the cognitive agent
to cooperate and integrate in a teamwork (Tomasello, 2009),
including the ability to represent the mental states (both of
oneself or partners) and communicate/talk with the partners about
knowledge, beliefs, desires, intentions, and so on. More generally,
the reliability of ACo robots in the social context is determined
by a shared value system that, to a great extent, can emerge from
structured social interaction, capable to transmit ethical norms
and cultural values (Boyd and Richerson, 1985; Tomasello, 1999).
Obviously, this is a highly sensitive issue that requires a great
care and responsibility. Moreover, language is certainly a crucial
tool in this process, both the inner speech for consolidating
and retrieving sensory-motor-cognitive capabilities and the open
speech for allowing cognitive agents to reason about cooperative
tasks and openly explore different alternatives. Moreover, here is a
possible link between ACo and AI in the sense of using LLMs as
well-developed working tools.

5 More on ACo vs. AI in relation with
cognitive neuroscience

After having explained in detail the main pillars of the
ACo framework, it is worth explaining the differences between
ACo and other attempts inspired by cognitive neuroscience and
somehow linked to AI. In particular, comments are provided
for clarifying why we believe that attempts to extend current
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AI in the sense of cognitive neuroscience miss crucial points.
Such attempts are motivated by a preliminary, fully acceptable
consideration, that current AI applications (shortly AIs) do not
meet social expectations in many cases: for example, when a
specific AI-based agent faces situations that their designers did
not anticipate the result is failure or, even worse, irrational and
unexplainable behaviors that evidentiate lack of understanding and
ineffective interaction/cooperation with people or other agents.
As regards the attempts to make AIs more compatible with
neuroscience we already mentioned the issue of Explainable AI
(XAI), namely the “explainability” problem of AI technologies, and
the proposed solution (Taylor and Taylor, 2021; Iglesias, 2022) to
import assessment methods developed in Psychology and Cognitive
Neuroscience: although this may be a useful method of analysis, it
is of no help from the “generative” point of view, i.e., for the design
of autonomous, prospective cognitive agents. Another stream of
neuro-inspired AI is Embodied AIs (Duan et al., 2022): please,
note the plural, with the implicit assumption that Intelligence or
Cognition is not the fundamental organizational principle from
which all the specific competences are derived and integrated
but is rather the result of the mere assembly of specific and
substantially independent AIs, like perceiving, skilled gesturing,
abstraction discovering, planning, modeling other agents, self
and social awareness, interacting, and communicating. Embodied
AI research diverges from conventional AI where learning is
orchestrated on collecting big data and using them separately for
different functions (perception, motor control, planning, etc.) with
a third-person (impersonal) view of the acquired knowledge. In
contrast, embodied AI is characterized by a first-person perspective
that aims at mimicking human behavior during the interaction with
the environment. However, this view of Embodied AI captures only
a marginal part of Embodied Neuroscience: for example, in the
radical formulation of the embodied brain (Kiverstein and Miller,
2015) it is suggested that cognitive neuroscience should look to an
ecological dynamical psychology where the functions associated to
brain regions are dynamically changed over time and are based on
the inseparability of cognitive and emotional processing; emotional
states should be best understood in terms of action readiness (both
overt and covert actions) in the context of the organism’s ongoing
skillful and prospective engagement with the environment. States
of action readiness involve the whole living body of the organism,
including a dynamic body schema, and are elicited by possibilities
for action in the environment (more generally affordances) that
matter to the organism. Thus, the egocentric characterization
of Embodied AI captures only a small part to the fundamental
properties of Embodied Cognition that allow a cognitive agent
to operate in a successful and autonomous way in a changing
and unpredictable environment: moreover, switching from a first-
person to a third-person perspective and back is one of the crucial
powerful cognitive features of prospection.

Let us consider another possible variation of neuro-inspired
AI, namely Developmental AIs (Stefik and Price, 2023) aimed
at bootstrapping a process that may evolve from simple innate
competences to intelligent, human-compatible AIs. The premise
of both Embodied AIs and Developmental AIs is that a better
approach for AIs to acquire what knowledge is needed for a given
task is by observing and probing the environment, interacting
with people and with socially developed information including
online media. Moreover, bootstrapping developmental AIs is about

creating socially aware human compatible AIs that learn from and
teach others. It is suggested an approach that follows a bio-inspired
trajectory for bootstrapping separately the different AIs: perceiving,
understanding and manipulating objects; multi-step actions and
abstraction discovery; curiosity and intrinsic motivation; imitation
learning; imagination and play; communication and language. The
bootstrapping approach tracks a competence trajectory where the
competences are developed in small steps in parallel by embodied
AIs. Although such items are certainly relevant in developmental
robotics, developmental AI ignores/under evaluates a key issue, i.e.,
the fact that development is a self-organizing process where the
different functions or AIs cannot be separated with the classical
“divide and conquer” strategy. Both the proposed Embodied
AIs and Developmental AIs implicitly assume a separation of
Bodyware and Cogniware where Cogniware consists of a collection
of software packages running on traditional von Neumann
computational architectures. The Artificial Cognition approach
supported in this work suggests a full integration of Bodyware
and Cogniware, with a deep compatibility between artificial and
human cognition that implicitly solves the explainability problem
providing a common interaction language. Moreover, ACo is
not the mere collection of Embodied AIs and Developmental
AIs but is brain-inspired to the extent that Embodied and
Developmental features are essential parts of its DNA. Thus, the
cognitive architecture embedded and embodied in the Cogniware
will provide a coherent baseline to facilitate convergent, cumulative
progress in the development of an operational model of cognition
and in parallel will facilitate experimental testing of core cognitive
abilities and their dynamic and synergistic interplay as the robot
interacts with its environment and other cognitive agents.

6 Conclusions

There is wide agreement that understanding the brain structure
and function is one of the most substantial and challenging frontier
scientific questions of the 21st century, as clearly expressed by
several world-wide proposals of “brain projects” in the last two
decades (Jones and Mendell, 1999; Markram, 2006; Kandel et al.,
2013; Okano et al., 2015; Poo et al., 2016; Ramos et al., 2019; Bjaalie
et al., 2020; Yuan et al., 2022). In most cases, such projects have
a double target: a medical target and a computational target. For
example, in (Yuan et al., 2022) it is stated that “the China Brain
Project is structured as “one body and two wings”, with the goal
of developing treatments for major brain disorders and promoting
the development of a new generation of artificial intelligence.”
While in the last two decades the research in the “first wing”
has produced a number of interesting and useful results, the
“second wing” is still far away from any preliminary conceptual
framework for a bio-inspired and neuro-driven approach to the
design of autonomous, cognitive, robotic agents: on one side,
the current wave of AI research and development is totally dis-
embodied and disconnected from any brain-like formulation and,
on the other, the brain projects mentioned above do not really
address the cognitive/computational issues in depth. For example,
the EU-funded Human Brain Project has ended without fulfilling
its promise to build an artificial simulation of the brain that
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could support the second “wing” of brain-related projects in a
significant way.

As we discussed in this paper, we are convinced that the future
generation of autonomous robotic agents supporting humans in
everyday activities should be strongly neuro-inspired, not in the
sense of exploiting the detailed simulation of the biophysics of
the adult human brain but of exploiting the processing structure
and functions supporting human ability to act prospectively and
interact with others on the basis of mutual understanding. In
relation with the general issues of the brain projects mentioned
above it is worth considering briefly the relationship between
the cognitive abilities of the human species and animals, with
particular reference to monkeys and chimpanzees. Although the
wide spread prejudice of human superiority, based on the contrast
between human rationality and animal instinctuality, research
into animal cognition (Gallistel, 1989; Laland and Seed, 2021)
has established striking similarities for all the typical cognitive
abilities, such as memory, problem solving, tool construction
and use, communication, and social interaction with proven
superiority in short-term memory in chimpanzees (Matsuzawa
et al., 2006). The difference is more in the degree of sophistication
and generalization, although there is still some debate on the ability
to implement mental time travel by animal species (Clayton et al.,
2003; Suddendorf and Corballis, 2007). Maybe, we may consider
cognitive robots as representative of an artificial humanoid species
to be epigenetically designed, grown up, trained, and educated in
such a way to be compatible with humans, human society, and
human cultural values.

The detailed simulation of the biophysics of the adult human
brain is certainly an interesting scientific endeavor, although it
might be close to impossible, with the investigating tools we have
today, but it is at the same time too much and too little for
figuring out a feasible approach for the design of autonomous
robotic agents that can be integrated usefully in the social and
industrial environment of the 21st century: for convenience we
may use the acronym COCOBOT, to refer to the dual requirements
of CO-operation (with humans) and COgnition (which includes
autonomous and prospection capabilities). Robots of this kind
do not need to be world masters of chess or go and are not
supposed to be fluent in any human language, although some
rudimentary logical capacity (for autonomy) and some linguistic
competence (for communication/interaction with human partners)
is necessary. As a matter of fact, COBOTs or Collaborative robots
are already in the market since more than a decade: they are
designed to work in the vicinity of human workers, allowing close
interaction with humans, without protective barriers, in a number
of typical industrial applications, with the strict requirements of
reactive-safety blocking the movements in case of unexpected
collisions. Existing COBOTS can be programmed for specific tasks
as pick&place, machine tool tending, packaging, assembly, surface
finish, welding, dispensing of sealants, etc. However, they are
designed to be efficient and not to be brain-inspired in any sense,
lacking any degree of cognitive capability. On the other hand, the
issue of safety is important and should be intrinsic also in the
design of COCOBOTS; if applied to interaction with non-expert
and/or fragile humans, safety can be achieved only in systems
with cognitive abilities based on prospection. Safety is not limited
to the Bodyware of COCOBOTS, involving a set of fast reactive

mechanisms but is supposed to refer to proactive behaviors, real
as well as mental, that identify the Cogniware of COCOBOTS.

In the previous sections of this paper we propose two pillars
for the design of such Cogniware: (1) it should be embodied
and (2) it should support adaptive behavior through dynamic
lifelong processes starting from the analogy with a developmental
process. This means, in particular, that Bodyware and Cogniware
should be designed as a unitary organism, not two independent
entities to be selected off the shelf and matched for any specific
application. In particular, the developmental pillar suggests that
a main challenge for the future research will be to identify
a minimal embryonic structure, from which it is possible to
bootstrap a developmental process of a prospection grounded
system capable of action execution and simulation. Since we are
still far away from any accepted and/or credible solution, it may
be inspiring to listen to an imaginative novelist (Calvino, 1988)
when he defines an “imagination machine” as follows: “. . .a kind
of electronic machine that keeps track of all possible combinations
and selects those that suit a particular purpose, or simply those
that are the most interesting or pleasing or amusing.” This simple
definition emphasizes the role of causality, purposiveness and
the existence of a value system. Calvino’s “electronic machine”
might be in the form of a minimalistic cognitive architecture
with the components needed for prospection to emerge and
that, in spite of its simplicity, could trigger complex behaviors.
However, starting from such initial implementation, the critical
issue remains how to outline the evolution process in a self-
organizing manner.

Moreover, it is worth stressing that the embodiment pillar refers
to both the Bodyware and Cogniware of such embryonic agents
stressing the importance of the relationship between structure and
function in the design of cogniware and the potentials offered by
neuromorphic hardware/wetware that, even if still does not exist,
is an active research area. For example, organic computers which,
unlike conventional digital computers using binary states, are based
on neural tissue (Vacher et al., 2008; Bray, 2009; Cai et al., 2023)
or polymeric material (Krauhausen et al., 2021; Sarkar et al., 2022)
capable of instantiating thousands of states and communicating
with each other in a self-organized way, constantly forming and
reforming new connections. In principle, such technologies might
provide substantially more energy-efficient computing and this
feature is in sharp contrast with the notorious energy voracity of
AI technologies. Moreover, for organic computing technologies
the classical distinction between hardware and software of the
von Neumann computing architecture is supposed to disappear
because the nature of computation is not Boolean algebra on
strings of bits but the dynamic modulation of connection and
disconnection of “organic neural assemblies” as an effect of the
interaction of the organic brain with the environment through an
organic body. This should evolve as a self-organizing process driven
by Hebbian learning, at the microscopic level, and reinforcement
learning, at the behavioral level. It is also expected that such
self-organizing process could lead to the formation of self-
organized maps (Kohonen, 1982) as well as topology representing
networks (Martinetz and Schulten, 1994) that might be the
building blocks for the maturation of the body schema throughout
development.

At the same time, the same organic technologies that are
being investigated for organic computing are also being considered
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for the development of neuromorphic sensors (Blaiszik et al.,
2010; Hassan et al., 2015; Richardson and Cheneler, 2019;
Krauhausen et al., 2021; Sarkar et al., 2022). Neuromorphic
actuators or artificial muscles are also being investigated using
a variety of technologies, such as semicrystalline polymer fibers,
ionic-polymer/metal composites, twisted nanofibers, conducting
polymers, etc., (Mirvakili and Hunter, 2018) and probably the
challenge is greater in this case than for neuromorphic sensors.
In summary, we suggested that COCOBOTs might be the target
for establishing Artificial Cognition as the crucial approach for
developing the Next-Generation of Autonomous Robotic Agents
rather than one of the many forms of Artificial Intelligence
applications. Furthermore, we suggest that the evolution of
COCOBOTs is a work in progress that requires a multidisciplinary
converging approach, both in the scientific and technological sense,
in order to establish Artificial Cognition as the crucial approach for
developing the Next-Generation of Autonomous Robotic Agents
that can fit the requirements of 5IR, namely “the harmonious
human–machine collaborations, with a specific focus on the well-
being of the multiple stakeholders” (Noble et al., 2022).
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