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The excellent performance of deep neural networks on image classification tasks

depends on a large-scale high-quality dataset. However, the datasets collected

from the real world are typically biased in their distribution, which will lead to a

sharp decline in model performance, mainly because an imbalanced distribution

results in the prior shift and covariate shift. Recent studies have typically used

a two-stage learning method consisting of two rebalancing strategies to solve

these problems, but the combination of partial rebalancing strategies will damage

the representational ability of the networks. In addition, the two-stage learning

method is of little help in addressing the problem of covariate shift. To solve

the above two issues, we first propose a sample logit-aware reweighting method

called (SLA), which can not only repair the weights of majority class hard samples

and minority class samples but will also integrate with logit adjustment to form a

stable two-stage learning strategy. Second, to solve the covariate shift problem,

inspired by ensemble learning, we propose a multi-domain expert specialization

model, which can achieve a more comprehensive decision by averaging expert

classification results frommultiple di�erent domains. Finally, we combine SLA and

logit adjustment into a two-stage learning method and apply our model to the

CIFAR-LT and ImageNet-LT datasets. Comparedwith themost advancedmethods,

our experimental results show excellent performance.
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imbalance, prior shift, covariate shift, reweighting, logit adjustment

1 Introduction

Benefiting from the development of computing resources in recent years, deep neural

networks (DNNs) have been widely used in image classification (He et al., 2016), image

segmentation (Zhou et al., 2019), object detection (Tian et al., 2019), etc. These successful

application cases usually require large-scale high-quality labeled data, such as ImageNet

(Russakovsky et al., 2015) and COCO (Lin et al., 2014), in which the sample distribution in

the training and test dataset is almost consistent. However, training datasets collected from

the real world generally have a biased distribution, i.e., the number of samples of each class

varies greatly. Models trained by biased datasets will not only cause minority class samples to

be misidentified as majority class samples but also confuse minority class samples with hard

samples from the majority class, eventually leading to a sharp drop in network performance.

The prior shift and covariate shift resulting from an imbalanced distribution are the

primary causes of the decline in network performance. Prior shift refers to the phenomenon
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that the label distribution of one class in the training dataset

and test dataset is inconsistent. Covariate shift mainly refers to

the phenomenon that the data distribution of one class in the

training dataset and test dataset is inconsistent. These shifts make

the network parameters overfit to some majority class samples,

resulting in the model’s overconfidence in these examples and poor

performance on the test dataset. For a long time, many studies

have concentrated on developing rebalancing strategies to alleviate

this overfitting, such as reweighting for the loss function (Ren

et al., 2018; Cui et al., 2019), resampling for the training sample

(Pouyanfar et al., 2018; Zhou et al., 2020), and logit adjustment for

output logit (Menon et al., 2021; Xu et al., 2021). These strategies

provide some good ideas for solving the problems caused by

the imbalanced distribution. However, although reweighting and

resampling can address class imbalance issues to some extent, the

direct application of these methods will damage the deep feature

representation ability of the network, making it difficult for the

network parameters to reach their theoretical optimal solution

(Zhou et al., 2020).

Adopting a two-stage learning strategy, typically using two

separate rebalancing strategies in two training stages to decouple

network feature representation learning and classifier learning,

is a common way to overcome the issues mentioned above.

However, some rebalancing strategies are incompatible, e.g.,

using resampling in the first stage and reweighting in the

second stage. Reweighting promotes classifier learning, which

encourages the classifier’s decision boundary to move in the

direction of classifying the minority classes as correctly as

possible. Resampling ensures that the label distribution of the

mini-batches sampled from the training dataset is consistent

with the label distribution of the test dataset. Owing to the

undersampling of the majority class samples and the oversampling

of the minority class samples, some samples are not involved in

the training process, resulting in a negative impact on feature

representation learning. It is difficult to use the reweighting

method to optimize the classifier when the separability of the

feature is weak (Zhou et al., 2020). Based on the above analysis,

we propose to use data augmentation instead of resampling

in the first stage to maximize the representation ability of the

network.

Our goal in this work is to design an efficient and useful

two-stage learning method using currently available rebalancing

strategies. Owing to the conflict between reweighting and

resampling, we investigate the effects of the combination of

logit adjustment and reweighting on DNNs. We discover that

the network performance will be degraded when combining the

existing classic reweighting methods with logit adjustment. This is

because both logit adjustment and reweighting try to give minority

class samplesmore attention while giving themajority class samples

less attention, ultimately making the performance of the majority

class drastically deteriorate. Additionally, because the confidence of

majority class hard samples andminority class samples is extremely

similar, the sample confidence-based reweighting method [such as

focal loss (Lin et al., 2017)] will unfairly assign weights to these

samples, which will increase the expected calibration error of the

network (Guo et al., 2017). To this end, we propose a logit-aware

reweighting method (called SLA) that could use the sample with

the largest logit of each class as the benchmark sample to assign

appropriate weights to the remaining samples (Figure 1).

Furthermore, two-stage learning methods are ineffective at

dealing with the covariate shift problem, which is an unavoidable

but easily neglected issue in imbalanced image classification.

It is hard to ensure that the distribution of the training and

test dataset is entirely consistent. The minority class may have

dramatically different numbers on the training and test datasets

when the distribution of the training dataset is imbalanced,

which exacerbates the inconsistency between the training data

distribution and testing data distribution. In this situation, it is

difficult to train a model with good generalizability using just a two-

stage learning method. Inspired by ensemble learning, we propose

a multi-domain expert specialization model to enhance the feature

extract ability in a specific data distribution. In particular, in the

first training stage, three different levels of data augmentation were

employed to specialize the original data distribution into three

distinct data distributions. Additionally, mixup was used to blend

the original smaller feature distribution space into a larger feature

space, thereby enhancing the model’s feature extraction ability. At

the same time, the model also includes a two-stage training loss

strategy, which can promote the classifier to learn a more reliable

decision boundary. Under the guidance of the two-stage learning

method, our proposed model demonstrated excellent performance

on existing imbalanced datasets.

In summary, our main contributions are as follows:

(1) For two-stage learning methods, we indicate that the

combination of existing reweighting methods and logit

adjustment will lead to performance degradation for the

majority class or cause significant calibration errors.

(2) We propose a new reweighting method that can repair the

weight of the majority of hard samples and minority samples

calculated by the sample confidence-based reweighting method

without significantly reducing the majority accuracy.

(3) We propose a new ensemble learning framework that provides

three deep specialized feature extractors for three different

levels of data augmentation, which can significantly improve

the representation ability of the network. Under the guidance of

our proposed two-stage training loss strategy, it can significantly

increase classification accuracy and reduce expected calibration

error.

2 Related Work

2.1 Reweighting

The reweighting method assigns weights to each class or

sample to alleviate the model performance degradation caused by

imbalanced data. A weighting function that maps the loss function

(or gradient) to each sample can be used to determine the weight.

Through artificial prior knowledge or a simple neural network, the

weighting function could be easily estimated.

Initially, Huang et al. (2016, 2019) used the reciprocal of class

frequency as a weighting factor applied to class loss (Wang et al.,

2017). Subsequently, Lin et al. (2017) extended the class frequency

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1296897
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fncom.2023.1296897

FIGURE 1

In the process of reweighting based on probability, some hard samples from the majority class will have similar weights to the samples from the

minority class. As shown in the curve on the right of the above figure, our method can e�ectively focus on the hard sample of each class, and the

loss of our proposed method rapidly decays in the low probability areas.

from a fixed prior to an adjustable parameter version. Khan et al.

(2019) further extended the weighting method from the class level

to the instance level (Cui et al., 2019). Although this approach is

effective, the complex parameter adjustment rules are tedious and

not universal. In addition, hard samples from the majority class

are frequently weighted improperly because they share a lot of

similarities with minority class samples in terms of loss values. To

solve this problem, Ren et al. (2018) and Shu et al. (2019) proposed a

robust weighted function mapping from samples to instance losses

based on the meta-learner. However, it is difficult to estimate the

parameters of the weighting network in the meta-learning method.

The meta-learning method requires nested training, which costs

a lot of time. Also, meta learners need a meta dataset that is

close to the distribution of test dataset (Finn et al., 2017; Shu

et al., 2019; Jamal et al., 2020; Li et al., 2021). Zhang and Pfister

(2021) adjusted the process of meta-learning, which greatly reduced

the training cost of meta-learning and alleviated the excessive

dependence on metadata distribution. Although meta-learning is

currently the best reweighting method for specific datasets, its

demanding prerequisites and high training cost precluded us from

using it to search for a weighting function.

2.2 Logit adjustment

The idea of logit adjustment was expressed earlier as margin

loss. The essence of margin loss is to apply margin to logits of a

specific class to obtain a greater classification interval (Liu et al.,

2016, 2017; Wang et al., 2018). To address the imbalance image

classification task, LDAM (Cao et al., 2019), EQL (Tan et al., 2020),

and BALMS (Ren et al., 2020) suggest that minority classes need

a large margin while majority classes need a small margin, and

the margin is determined by an optimal trade-off boundary (Cao

et al., 2019) or by using a meta learner (Jamal et al., 2020; Ren

et al., 2020). Menon et al. (2021) summarizes the previous margin-

basedmethod and proposes the concept of logit adjustment. To find

a suitable logit adjustment method more effectively and quickly,

adding label distribution as prior information to the logit has

become a stable improvement method (Hong et al., 2021; Menon

et al., 2021; Xu et al., 2021; Aimar et al., 2022).

2.3 Two-stage learning

The two-stage training method usually defers the use of the

rebalancing strategy, such as reweighting or resampling, to the

second stage (Hong et al., 2021). By using a smaller learning rate,

the classifier of the model can obtain a better decision boundary

on the feature extracted by the feature extractor. Although the

two-stage learning method can achieve decoupling training and

improve the generalization performance of the model, combining

two conflicting rebalancing strategies will lead to a decrease in

model performance (Zhou et al., 2020). Therefore, it is important

to carefully select and evaluate different rebalancing strategies to

ensure that they are compatible with each other and can lead

to improved overall performance. In this study, we found that

the combination of logit adjustment and the existing reweighting

method causes conflicts, making it difficult for the model to

converge to the optimal solution. Based on the above findings, we

propose a new reweighting method to address this issue.

3 Analysis

For a multi-class classification task, we assume a dataset with

N samples, in which X = {x1, x2, ..., xN} denotes the samples

and Y = {y1, y2, ..., yN} denotes the labels. The dataset can be

defined as D = {(xi, yi), 1 ≤ i ≤ N}, where xi denotes the i-

th sample and yi ∈ {0, 1}
c is a c dimension vector. Our goal is

to train a network that can minimize the misclassification error,

i.e., min
∑N

i=1 P(yi 6= argmax pyi (xi)), where pyi (xi) represents the

probability of xi belonging to class yi. In general, we use the softmax

cross-entropy (CE) to represent this error,

ℓ(yi, f (xi)) = − log
exp(fyi (xi))∑c
j=1 exp(fyj (xi))

(1)

where fyi (xi) and fyj (xi) represent the output logit of xj belonging to

classes yi and yj. For the class imbalance problem, the direct use of

the CE loss function may lead to the bias toward majority classes

during the training process and neglect the learning of minority

classes, resulting in some minority class samples being mistakenly

classified as themajority classes during the testing phase. To address
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TABLE 1 Top-1 accuracy (%) and ECE (%) from the di�erent combinations

of logit adjustment and di�erent reweighting methods.

Method Many Medium Few All

LA 64.9 50.3 29.5 49.5/3.8

LA + RW 30.8 39.5 23.7 31.8/36.9

LA + CB 44.8 44.1 42.0 43.8/4.4

LA + FL 62.5 49.9 32.8 49.5/3.2

We used the mixup α = 0.4 on the CIFAR-100-LT dataset (ρ = 100).

this issue, most reweighting methods usually apply a learnable or

pre-designed weighting factor w to modulate the CE loss function,

which can improve the contribution of minority classes to the

average loss and make network learning more focused on minority

classes. The reweighting loss function can be expressed by the

following equation,

ℓ(yi, f (xi)) = −wi log
exp(fyi (xi))∑c
j=1 exp(fyj (xi))

(2)

However, it is challenging to derive an explicit reweighting

function without prior knowledge. In most reweighting methods,

the weighting factor is naturally defined as a small weight for the

majority class and a large weight for the minority class. Although

this logical viewpoint is empirically correct, it does not consider the

imbalanced distribution within the class; the samples of the same

class can also be divided into the common sample and rare sample.

3.1 Compensation training classifier

From the perspective of data distribution, we can rapidly

identify why the model trained from the training dataset often

performs poorly in the test phase in imbalance image classification

tasks. The training and test objectives can be expressed by the

following probability,

P
s(y|x) ∝

P
s(x, y)

Ps(x)
∝ P

s(x|y)Ps(y) (3)

P
t(y|x) ∝

P
t(x, y)

Pt(x)
∝ P

t(x|y)Pt(y) (4)

where s represents the source domain (training dataset) and t

represents the target domain (test dataset). According to Equations

(3) and (4), we can further express it as a form of measuring the

difference between the training and testing object (Jamal et al.,

2020),

P
s(y|x) = P

t(y|x)
P
s(x|y)Ps(y)

Pt(x|y)Pt(y)
(5)

P
s(x|y)⊖ P

t(x|y)︸ ︷︷ ︸
Covariate shift

and P
t(y)⊖ P

s(y)︸ ︷︷ ︸
Prior shift

(6)

Covariate shift is a common issue in deep learning tasks that

refers to the situation in which the input data or feature distribution

differs between the training dataset and test dataset, leading to a

poor generalization performance of the trained model on the test

dataset. The network will inevitably suffer from this damage during

training. For the imbalance image classification task, this damage

will become more serious (Jamal et al., 2020). Prior shift refers

to a common problem that arises when there is some difference

in the label distribution between the training and test datasets.

Specifically, it is caused by the difference in the distribution of

the number of samples per class between the training and test

datasets (Menon et al., 2021). This makes the algorithm learn a

biased representation, resulting in decreased performance when

applied in the test phase. Owing to the difficulty in estimating

covariate shift, we will discuss strategies for mitigating this problem

in Section 4.2, but temporarily ignore its impact here. In previous

training processes, the softmax classifier was typically used for both

training and testing. However, as indicated by Equation (6), two

shifts between the training and test objectives exist. To address

these problems, we can adjust the training loss as follows:

ℓ(yi, f (xi)) = − log
exp(fyi (xi)+ logµi)∑c
j=1 exp(fyj (xi)+ logµj)

(7)

where µi =
P
train(yi)
Ptest(yi)

, µ is a factor to measure the label distribution

difference between the training and test datasets. Furthermore,

Equation (7) can be expressed as follows:

ℓ(yi, f (xi)) = − log


1+

∑

j6=i

µj

µi
exp(fyj (xi)− fyi (xi))


 (8)

If yi represents the majority classes and µj < µi, the loss value

calculated based on Equation (8) will decrease compared with CE.

This will make the network tend to learn from minority classes

during parameter updates, reducing the attention to majority

classes, thereby improving the performance of the network. For

convenience, we will use logit adjustment (LA) to represent the

above training losses.

3.2 Mixed reweighting and LA

Compensating the output logit can effectively alleviate the

learning bias caused by imbalanced data distribution. To further

improve the effectiveness of boundary correction, we combine

reweighting with LA into a new paradigm and explore effective

combination strategies. Specifically, we conduct experiments using

ResNet-32 trained on the CIFAR-100-LT dataset with different

combinations of reweighting and LA. The reweighting methods,

which include reweight (RW) (Wang et al., 2017), class-balanced

loss (CB) (Cui et al., 2019), and focal loss (FL) (Lin et al., 2017),

were introduced in the 180th epoch (out of a total of 200 epochs)

for ResNet-32.

Table 1 presents the results obtained from the aforementioned

settings. We can infer that (1) the combination of existing

reweighting methods and LA will lead to a decline in overall

accuracy, especially in the majority classes. This indicates that there

is a conflict between the existing reweighting and LA, and there is

an overlap between providing large margins and large weights for
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the minority classes, which ultimately leads to a significant decline

in the performance of the majority classes. (2) Although focal loss

canmaintain the accuracy of the majority classes to a certain extent,

it is expected that the calibration error is still large. This is because

focal loss assigns similar weights to the hard samples frommajority

classes and the samples from minority classes.

4 Method

4.1 Sample logit-aware reweighting

The purpose of the two-stage training method is to focus on

obtaining a powerful feature extractor and classifier in the first stage

and reduce the difference between the sample confidence and the

overall class confidence in the second stage. From the perspective

of sample confidence, assigning higher weights to samples with

low confidence is an effective solution. However, when it comes

to hard samples in the majority classes, their confidence levels are

often indistinguishable from the samples in the minority classes. To

overcome this issue, we propose a sample logit-aware reweighting

method (called SLA in this study) that reduces the gap between the

single sample confidence and the overall class average confidence,

without significantly sacrificing accuracy. The sample confidence

can be calculated as follows:

pi =
exp(fyi (xi)+ logµi)∑c
j=1 exp(fyj (xi)+ logµj)

(9)

where pi represents the predicted probability that sample xi belongs

to the correct label after adjusting for the output logit. In addition,

based on the idea of SLA, to make the weighting factor wi pay more

attention to hard samples based on the probability reweighting

method, we use the sample with the maximum logit of each class

to guide the learning of the remaining samples. The sample weight

can be expressed as follows:

wi = (1− pi)
γ exp(fyi (x∗)− fyi (xi)) (10)

where x∗ is the sample with the largest logit in all training samples

belonging to yi, and γ is a weighted rate adjustment factor.

FIGURE 2

(A) The hard samples from the majority class and some samples

from the minority class are very close between the decision

boundary. (B) SLA can allow these samples to converge toward their

class center, thereby improving accuracy and reducing ECE.

Commonly, fyi (xi) = Wyizi, W is the weight matrix of the linear

layer and zi is the feature embedding of xi. To obtain more stable

sample weights, we calculate the cosine value by standardizingWyi

and zyi .

cosθ (yi) =
WT

yi

‖Wyi‖
·

zi

‖zi‖
(11)

Therefore, after transforming the logit into the corresponding

cosine representation (Figure 2), the final SLA reweighting formula

can be expressed as follows:

wi = (1− pi)
γ exp(τ cos θy∗ − τ cos θyi ) (12)

where θyi corresponds to the angle between zi and Wyi , θy∗
corresponds to the z∗ andWyi , and τ is a hyperparameter.

4.2 Multi-domain expert specialization
model

The main objective of the first stage of training in the two-

stage method is to enhance the feature extraction capability of

the network. However, it is challenging for a single-channel

feature extractor to learn robust parameters when the data

distribution is extremely imbalanced, particularly when complex

data augmentation techniques are applied. To address this problem,

we propose a multi-domain expert specialization model for

augmenting data across multiple domains (Algorithm 1).

4.2.1 Multiple data augment header with mixup
Before inputting data into the network, multiple data

augmentation techniques (including mixup) should be applied to

the data. The purpose of data augmentation is to expand the

domain boundary of the source domain data as much as possible

Input: Training data D = {(xi , yi)}
N
i=1, batch size n.

Output: Optimized network parameters θ.

1: Initialization for θ

2: while t <= MaxEpoch do

3: {(xi, yi)}
n
i=1 ← Sample a minibatch from D.

4: Getting {(x̃i , ỹi)} using Equation (14)

5: Getting each expert loss using Equation (16)

6: Calculate total loss using Equation (18)

7: if t == SwitchEpoch then

8: Create a list S to store cos θy∗ of each class.

9: end if

10: if t > SwitchEpoch then

11: Find the sample with the largest logit score

for each class and calculate cos θy∗ using Equation

(11)

12: Update the list St → St+1.

13: end if

14: Use SGD to update network parameters θ;

15: end while

Algorithm 1. The training process of our proposed method.
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FIGURE 3

An overview of our proposed two-stage learning method is as follows: in the first stage, we employ LA to train a robust feature extractor by learning

feature representations of each class on a larger feature space that is guided by the mixup technique. In the second stage, we introduce the SLA

reweighting method and remove augmentation and mixup to optimize the decision boundary of the classifier.

(Figure 3), thereby alleviating the severe covariate shift caused by

the imbalanced distribution.

Tk(xi) =

{
mixup(Augk(xi)) if 1-stage

Augk(xi) if 2-stage
(13)

where Tk represents the result of applying the k-th data

augmentation function (Aug) to input xi. To make better use of

data augmentation, we apply the mixup strategy based on the

augmented data during the first stage of training. By using mixup,

the resulting data can be represented as if it was sampled from a

new sampling space: Dl = {(x̃i, ỹi)}, 1 ≤ i ≤ N′. After combining

two augmented samples using mixup, the newly generated sample

{̃x, ỹ} can be expressed as follows:

x̃ = ǫT(xi)+ (1− ǫ)T(xj)

ỹ = ǫyi + (1− ǫ)yj
(14)

where ǫ ∼ Beta(α,α) with α ∈ (0, 1), which allows for flexible

adjustment of the mixing ratio during training. By introducing this

sampling procedure, the model can be trained on a new sample

space that comprises mixtures of the original augmented inputs,

allowing it to learn more robust representations and improve its

ability to generalize to new samples.

4.2.2 Early shared and deep special feature
extractor

During the feature extraction process in the early layers of

CNN, the network tends to learn low-level features such as points

and lines. As a result, we opt for utilizing the same early shared

feature extractor for different enhanced data during the first stage.

However, during deep feature extraction, the varying enhancement

of three levels of data augmentation requires specialized deep

feature extractors to extract professional features. To achieve this

goal, we employ three distinct deep feature extractors, with their

outputs expressed as

f k(xi) = ψθk (ϕθ (Tk(xi))) (15)

where k ∈ [1, 3], f k(xi) represents the output logit after xi passes

through the early shared feature extractor ϕθ and k-th deep special

feature extractor ψθk .

4.2.3 Two-stage training loss strategy
As analyzed in Section 3.1, the two-stage training method

requires training a better feature extractor in the first stage.

Therefore, we only compensate the classifier and do not use any

reweighting method during the first stage of training. Hence, the

model should use a reweighting method in the following training

process to optimize the decision boundary of the classifier to reduce

ECE.

Lk(yi, f
k(xi)) = −w

k
i log

exp(f kyi (xi)+ logµi)∑c
j=1 exp(f

k
yj
(xi)+ logµj)

(16)

Equation (16) represents the loss function Lk for the k-th expert,

and wk
i can be expressed in the following form:

wk
i =

{
1 if 1-stage

(1− pki )
γ exp(τ cos θy∗ − τ cos θyi ) if 2-stage

(17)

Here, γ and τ are hyperparameters, pki is the predicted

probability of the k-th expert of the sample xi belonging to its true

class after compensating the out logit, and f kyi (xi) is the output from

the k-th expert belongs to yi class from the k-th expert. Thus, the

final loss function can be expressed as the weighted sum of losses

obtained by three experts. We use ǫk to indicate the degree of

attention given to the k experts; increasing ǫk can make the model

more inclined to learn from expert k-th. To make the results of

other ensemble learning methods more comparable and ensure the

fairness of the comparison, we set ǫk to 1 in all the experiments
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conducted in this study. The final expression for the total loss

function is represented by Equation (18).

Ltotal = ǫ1L1 + ǫ2L2 + ǫ3L3 (18)

4.2.4 Test time prediction
Considering we used a loss function in the training stage that

was the weighted sum of individual losses from multiple experts,

we employ the weighted average logit output of three experts during

the test process as our final prediction to minimize empirical risk.

The probability that xi belongs to a certain class can be calculated

using the following formula:

p̂i = argmax{
1

3

3∑

k=1

ǫk
exp(f kyi (xi))∑c
j=1 exp(f

k
yj
(xj))

, i ∈ [1, c]} (19)

5 Experiments

5.1 Datasets

5.1.1 CIFAR-10-LT and CIFAR-100-LT
The CIFAR-10 and CIFAR-100 datasets are common image

classification datasets that contain 50,000 training images and

10,000 test images with 10 or 100 classes (Krizhevsky et al., 2009).

Following Cao et al. (2019), we create the long-tailed distribution

version by randomly removing training samples and keeping the

distribution of the test dataset balanced. We use the imbalance

ratio ρ to represent the imbalance degree of the dataset, where

ρ = Nmax/Nmin, Nmax(Nmin) is the number of the most (least)

frequent class. In this study, we used the imbalance ratio of 10, 50,

100, and 200 to carry out experiments.

5.1.2 ImageNet-LT
ImageNet (Russakovsky et al., 2015) is a large-scale dataset for

object classification. Based on this, Liu et al. (2019)made ImageNet-

LT by sampling a subset following the Pareto distribution with

power value α = 0.6 from ImageNet, which contains ∼115.8K

images with 1,000 classes. This choice is crucial because it controls

the proportion of frequent and infrequent categories in the long-

tailed distribution. In addition, the Pareto distribution has a

characteristic long tail, which is desirable as it can generate more

extreme long-tail datasets that are closer to real-world scenarios.

The number of samples for the most frequent class is 1,280 images,

whereas the number of samples for the least frequent class is only

five images, i.e., the imbalance ratio ρ = 256.

5.2 Evaluation protocol

5.2.1 Expected calibration error
The purpose ofmodel calibration is to ensure that the predictive

confidence of the model for one sample is consistent with the

true empirical risk probability. Therefore, we use the expected

calibration error (ECE) to measure the calibration degree of the

network. To compute ECE, we group all N predictions into B

interval bins of equal size. The ECE can be defined as:

ECE =

B∑

b=1

|Tb|

N
| acc(Tb)− conf (Tb) | (20)

where Tb is the set of samples with a network prediction belonging

to Bin-b, acc(·) is the accuracy of Tb, and conf (·) is the predicted

confidence of Tb.

5.3 Implementation details

For CIFAR-10-LT andCIFAR-100-LT datasets, we used ResNet-

32 as the benchmark network. We used three different levels of

data augmentation; the specific details are shown in Appendix.

Following most practices, we set the batch size as 128 and the

weight decay as 5e-4. We used the SGD optimizer, and the initial

learning rate was 0.1. For all experiments on the main result, the

hyperparameter α was set to 0.2, and τ was set to 1. For a fair

comparison, we trained 200 and 400 epochs, respectively, based on

the above settings. During the training of 200 epochs, the learning

rate was decreased by a factor 10 at epochs 160 and 180. During the

training of 400 epochs, the learning rate was decreased by a factor

10 at epochs 320 and 360. The 1/2 stage switching time was set to

epochs 160 and 320.

For ImageNet-LT, we adopted ResNet-50 and ResNetx-50 as the

benchmark networks. As with CIFAR-LT, three different levels of

data augmentation were employed. The batch size was set to 128

for ResNet-50 and 64 for ResNetx-50 with the weight decay as 5e-

4. We used the SGD optimizer, and the initial learning rate was

set at 0.025. We used a cosine annealing learning rate schedule.

For all experiments on the main result, the parameter α was set

to 0.1, and τ was set to 1. During the training of 180 epochs, the

learning rate changed periodically according to the law of the cosine

annealing learning rate schedule. The 1/2 stage switching time was

set to epoch 160.

5.4 Main results

5.4.1 Result for CIFAR-LT
Table 2 presents a comparison of the results obtained by our

proposed method and other various methods on CIFAR-LT. All

experiments trained for 200 epochs. First, we observed that our

method outperformed existing methods across all class imbalance

ratios. Specifically, our proposed method achieved improvements

of 4.7, 4.3, 3.2, and 1.4% on CIFAR-10-LT, and 3.9, 4.2, 4.2, and

4.1% on CIFAR-100-LT for imbalance ratios of 200, 100, 50, and

10, respectively, when compared with the state-of-the-art method.

Second, it is worth noting that our method maintained a significant

performance gap compared with other methods regardless of the

class imbalance ratio, which demonstrates the effectiveness of our

method. Furthermore, we observed that, compared with existing

multi-expert methods, the accuracy gap between our proposed

method and theirs gradually decreased with a decrease in the

imbalance ratio. This phenomenon can be explained by the fact that

when the imbalance ratio is small, data from the minority classes
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TABLE 2 Test accuracy (%) on CIFAR-100-LT for various methods with di�erent imbalance ratios ρ.

Method Dataset CIFAR-10-LT CIFAR-100-LT

Backbone ResNet-32 ResNet-32

Imbalance ratio 200 100 50 10 200 100 50 10

CE 65.7 70.4 74.8 83.4 38.3 38.2 43.9 56.9

CB-Focal (Cao et al., 2019) – 74.6 79.2 86.8 – 39.6 45.2 58.0

MW-NET (Shu et al., 2019) – 75.2 80.0 87.8 – 42.1 46.7 58.4

LDAM + DRW (Cao et al., 2019) – 77.0 81.2 88.2 – 42.0 46.6 58.7

BBN (Zhou et al., 2020) – 79.8 82.4 88.1 – 42.5 47.2 59.4

LA (Menon et al., 2021) – 79.9 83.4 89.3 – 43.9 49.8 59.8

Mixup (Zhang et al., 2018) – 73.3 77.6 87.2 – 39.6 45.1 58.4

Remix + DRW (Chou et al., 2020) – 79.8 – 89.1 – 46.8 – 61.3

MiSLAS (Zhong et al., 2021) – 82.1 85.7 90.0 – 47.0 52.3 63.2

RIDE (Zhang et al., 2018) 77.9 81.5 83.4 85.9 44.8 48.5 51.0 57.8

ACE (Cai et al., 2021) – 81.2 84.3 – – 49.4 50.7 –

SADE (Zhang et al., 2022) 78.6 82.4 85.6 90.5 46.2 50.4 54.2 63.8

Ours 83.3 86.7 88.9 91.9 50.1 54.6 58.4 67.9

All experiments used ResNet-32 as the backbone and trained for 200 epochs.

FIGURE 4

Test accuracy (%) and ECE (%) of di�erent methods trained for 200 epochs on CIFAR-100-LT (ρ = 100), including the contrastive learning method

PaCo and the ensemble learning methods RIDE, SADE, and ours.

already cover a large data distribution space in the training dataset,

thus weakening the effect of data augmentation on alleviating

covariate shift caused by an imbalanced distribution. At the same

time, we compared the SLA of different methods and the results

showed that our proposed method achieved lowest SLA in addition

to achieving considerable accuracy (Figure 4).

At the same time, we performed long-term training for 400

epochs on CIFAR-100-LT (ρ = 100), and the corresponding

results are presented in Table 3. Compared with those in Table 2,

our proposed method demonstrated continued improvement in

accuracy beyond 200 epochs. This is attributed to the inclusion of

multiple data augmentation headers in our network architecture,

which significantly enhances the representation ability of the

network’s feature extractor and mitigates the representation

difficulties introduced by covariate shift, leading to enhanced

overall accuracy. More importantly, the performance of our

proposed method in the few classes is far better than that of

other methods. This is because we have assigned a specialized

feature extractor for each level of data augmentation, which can

prevent the representation coupling caused by different levels of

data augmentation.

5.4.2 Result for ImageNet-LT
Tables 4, 5 present the comparison results between our

proposed method and existing methods on the long-tailed dataset

ImageNet-LT. Compared with the multi-expert model RIDE

(Wang et al., 2021) and SADE (Zhang et al., 2022), our method

introduces a multiple data augmentation header with mixup based

on the deep specialized feature extractor, leading to an improved

performance on minority classes by effectively maintaining the
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TABLE 3 Test accuracy (%) on CIFAR-100-LT (ρ = 100) for di�erent

methods.

Methods Many Medium Tail All ECE

BALMS (Ren et al.,

2020)

– – – 50.8 –

PaCo (Cui et al.,

2021)

62.9 53.5 35.6 51.7 9.3

BCL (Zhu et al.,

2022)

69.7 53.8 35.5 53.9 –

RIDE (Wang et al.,

2021)

66.8 53.6 23.5 49.6 34.8

SADE (Zhang et al.,

2022)

66.4 51.7 29.0 50.4 17.9

Ours 69.3 55.5 39.3 55.4 1.4

All experiments used ResNet-32 as the backbone and trained for 400 epochs.

TABLE 4 Test accuracy (%) on ImageNet-LT on ResNet-50 and

ResNetx-50 for various methods.

Backbone ResNet-50 ResNetx-50

CE 47.1 48.2

MiSLAS (Zhong et al., 2021) 52.7 –

UniMix (Xu et al., 2021) 48.4 –

PaCo (Cui et al., 2021) 57.0 58.2

BCL (Zhu et al., 2022) 56.0 57.1

LA (Menon et al., 2021) 51.2 –

RIDE (Wang et al., 2021) 54.9 56.4

ACE (Cai et al., 2021) 54.8 56.5

SADE (Zhang et al., 2022) – 58.8

Ours 57.8 59.9

model’s strong representation ability from the first stage to the

second stage via our proposed two-stage adjustment strategy. In

contrast to other methods based on contrastive learning, such

as PaCo (Cui et al., 2021) and BCL (Zhu et al., 2022), we all

use various data augmentation methods. However, our proposed

multi-channel deep feature extraction strategy can learn the

optimal representation of different degrees of data augmentation

to maximize their effectiveness. This is the main difference between

our approach and others. By exploiting the different levels of data

augmentation, we achieve better performance.

To further verify the effectiveness of our proposed reweighting

method, we report the test accuracy (%) and ECE (%) on

the combination of LA and different reweighting methods on

ImageNet-LT using ResNet-50. All experiments used the same

model structure and experimental settings as the multi-domain

expert specialization model we proposed. Table 6 presents the

results of our experiments, which demonstrate that our reweighting

method outperformed other reweighting techniques in the

minority classes, while only slightly compromising performance

in the majority classes. The results suggest that appropriate

reweighting methods can alleviate the overfitting of model

parameters to most classes caused by the long-tailed distribution.

TABLE 5 Test accuracy (%) on ImageNet-LT on ResNetx-50 for various

methods.

Methods Many Medium Few ALL

LADE (Hong et al., 2021) 65.1 48.9 33.4 53.0

BL Softmax (Ren et al., 2020) 65.8 53.2 34.1 55.4

PaCo (Cui et al., 2021) 64.4 55.7 33.7 56.0

BCL (Zhu et al., 2022) 67.9 54.2 36.6 57.1

RIDE (Wang et al., 2021) 68.0 52.9 35.1 56.3

SADE (Zhang et al., 2022) 67.0 56.4 42.6 58.7

Ours 67.1 54.7 56.5 59.9

TABLE 6 Test accuracy (%) and ECE (%) on ImageNet-LT on ResNet-50 for

di�erent reweighting methods.

Methods Many Medium Tail ALL ECE

LA + RW 69.3 54.1 32.7 53.4 5.2

LA + CB 35.2 44.1 51.5 43.1 6.6

LA + FL 60.7 53.9 42.8 53.1 3.8

LA + Ours 65.4 52.2 54.8 57.8 3.3

On the other hand, inappropriate reweighting methods will lead to

biased models or significant performance decreases in the majority

classes.

5.5 Feature distribution

To gain further insights into the effectiveness of our proposed

method, we visualized the extracted features using t-SNE. As

depicted in Figure 5, feature-1 and feature-2 correspond to the

features obtained after dimensionality reduction. We observed that

strong data augmentation could enhance feature separability but

at the expense of increasing intraclass distance. By leveraging the

domain expertise of three different experts and averaging their

augmented features, we were able to obtain distinctive features

that preserve intraclass similarity while improving interclass

discrimination. This allowed us to achieve a clear decision

boundary between different classes, even when using a simple linear

classifier.

5.6 Ablation study

5.6.1 The e�ect of di�erent mixup parameters α

To study the influence of the change of mixup parameters

(α) on our proposed method, we conducted a thorough ablation

experiment on CIFAR-LT with ρ = 100 to find out the optimal

parameter range. Figure 6 shows the result. We observed that (1)

when α is > 0.4, the accuracy of the tail class fluctuates greatly;

this phenomenon is obvious when the number of classes is small.

The main reason for this is that with the increase in α, the value

of u tends to be uniformly distributed due to the drastic change in

mixing degree between different epochs and the lack of tail class
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FIGURE 5

Feature distribution of the test set on CIFAR-100-LT (IR = 100). We demonstrate the distribution feature maps of t-SNE for some majority and

minority classes. (A–C) T-SNE on three experts performing di�erent data augmentations. (D) T-SNE on the mean of three experts.

FIGURE 6

Test accuracy (%) of a ResNet-32 trained on CIFAR10-LT and CIFAR-100-LT with ρ = 100. We used a di�erent mixup parameter, α, to conduct our

experiments. (Left) Accuracy on CIFAR-10-LT. (Middle) Accuracy on CIFAR-100-LT. (Right) ECE (%) on CIFAR-10-LT and CIFAR-100-LT.

data; this large randomness destroys the stability training of the tail

class. (2) With an increase in α, the ECE of the results shows an

increasing trend, which indicates that adjusting parameter α in our

proposed method plays a crucial role in reducing the ECE of the

model.

5.6.2 The e�ect of the di�erent hyperparameter τ

As reported in Table 7, we explored how hyperparameter τ

influences the model. We can easily find that when the imbalance

factor is fixed, the accuracy and ECEwill decrease as the τ increases.

Themain reason for this phenomenon is that increasing τ enhances
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TABLE 7 Ablation study of di�erent imbalance ratios and τ .

1/τ

Dataset Imbalance ratio 1 0.9 0.8 0.7 0.6 0.5

CIFAR-10-LT 200 83.3/1.4 83.2/1.3 83.6/1.2 83.3/1.2 83.2/0.9 83.0/0.8

100 86.7/1.9 86.5/1.8 86.4/1.2 86.3/1.7 86.0/1.2 86.0/1.3

50 88.9/2.4 88.3/1.9 88.6/2.5 88.4/2.0 88.8/2.2 88.5/2.0

10 91.9/2.0 91.7/1.8 91.7/1.9 91.9/1.8 92.2/2.0 91.5/1.7

CIFAR-100-LT 200 50.1/1.8 50.1/1.6 49.9/1.6 50.2/1.4 50.1/1.2 50.0/1.0

100 54.6/1.8 54.0/2.0 54.0/1.7 54.6/1.6 54.2/1.6 54.0/1.5

50 58.4/1.7 58.7/2.1 58.5/1.9 58.8/1.7 58.6/1.6 58.0/1.6

10 67.9/2.4 67.6/2.1 67.0/2.1 67.7/2.0 67.3/2.0 67.0/1.8

We chose several values from 1 to 0.5 for 1/τ to perform our ablation experiment.

TABLE 8 Ablation study of various combinations of the module to verify the e�ectiveness of di�erent modules.

Module CIFAR-10-LT CIFAR-100-LT

MU SLA TL 100 50 10 100 50 10

X 84.8/5.6 87.7/3.9 91.6/3.2 53.2/6.5 58.0/6.3 67.0/4.0

X X 84.7/5.4 88.2/3.4 91.5/2.8 54.1/4.0 59.2/3.0 67.3/2.8

X X 86.4/3.2 88.3/1.3 91.7/1.2 53.6/3.3 58.2/1.7 66.9/1.2

X X X 86.7/1.9 88.9/2.4 91.9/2.0 54.6/1.8 58.4/1.7 67.9/2.4

We conducted a thorough ablation experiment. MU, using mixup in the first stage of learning; SLA, using SLA in the second stage of learning; TL, using the two-stage learning method.

the effect of SLA, which changes the decision boundary while

reducing intraclass spacing. As the decision boundary no longer

tends to reduce overall empirical risk, this will reduce some of the

model’s performance.

5.6.3 The e�ect of di�erent modules
Table 8 present the results of our ablation investigation into

the use of mixup in the first stage (MU), reweighting in second-

stage learning (SLA), and two-stage learning (TL). As expected,

we observed a decrease in accuracy and an increase in ECE

for all datasets as the imbalance ratio increased. Combining

MU or SLA modules with TLs consistently led to improved

accuracy and reduced ECE. Notably, our proposed SLA method

demonstrated a more positive impact on TL than MU under multi-

data augmentations, thereby proving its effectiveness. Additionally,

when all three modules were combined, our proposed algorithm

maximized the model’s generation ability while maintaining low

ECE, despite not being optimal.

6 Conclusion

In this study, we addressed the problem of poor model

performance due to prior shift and covariate shift caused by

imbalanced distribution. To investigate the impact of logit

adjustment and reweighting on model performance, we employed

the two-stage learning method, which is currently a popular

research direction. Our analysis revealed that combining existing

reweighting methods and logit adjustment not only reduces

model performance but also increases ECE. Therefore, we

proposed a sample logit-aware reweighting method that assigns

more suitable weights to hard samples from majority classes

and samples from minority classes. Additionally, to tackle

the covariate shift problem, we introduced a multi-domain

expert specialization model designed to enhance the feature

extraction ability of the model. Through experiments conducted

on various datasets, we demonstrated the effectiveness of our

proposed method. Furthermore, ablation experiments reinforced

our findings and emphasized that our proposedmodel outperforms

current state-of-the-art methods. Overall, our study highlights the

necessity of addressing prior and covariate shift in imbalanced

datasets and provides an effective solution to improve model

performance.
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Appendix

Three di�erent image augmentations

CIFAR-LT: For small augmentation, we used random crop

(which randomly crops 32 × 32 pixels in the image) with a

padding of four pixels and a random horizontal flip. For medium

augmentation, we used RandomResizedCrop (the crop size of

which is the same as random crop) with scale (0, 2, 1), random

horizontal flip, and the same setting with SimCLR (Chen et al.,

2020), which includes random gray, random GaussianBlur, and

random ColorJitter. For strong augmentation, we used random

crop (which randomly crops 32 × 32 pixels in the image) with a

padding of four pixels, random horizontal flip, and CIFAR-Policy

(Cubuk et al., 2018).

ImageNet-LT: For small augmentation, we used

RandomResizedCrop (which randomly crop the image and

resized it to 224 × 224 pixels in the image), random horizontal

flip, and random ColorJitter. For medium augmentation,

we used RandomResizedCrop, random horizontal flip, and

the same setting with SimCLR (Chen et al., 2020). For

strong augmentation, we used RandomResizedCrop and

random horizontal flip with ImageNet-Policy (Cubuk et al.,

2018).
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