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The current semantic segmentation algorithms suffer from encoding feature 
distortion and small object feature loss. Context information exchange can 
effectively address the feature distortion problem, but it has the issue of fixed 
spatial range. Maintaining the input feature resolution can reduce the loss of 
small object information but would slow down the network’s operation speed. 
To tackle these problems, we  propose a lightweight semantic segmentation 
network with configurable context and small object attention (CCSONet). 
CCSONet includes a long-short distance configurable context feature 
enhancement module (LSCFEM) and a small object attention decoding module 
(SOADM). The LSCFEM differs from the regular context exchange module by 
configuring long and short-range relevant features for the current feature, 
providing a broader and more flexible spatial range. The SOADM enhances 
the features of small objects by establishing correlations among objects of 
the same category, avoiding the introduction of redundancy issues caused 
by high-resolution features. On the Cityscapes and Camvid datasets, our 
network achieves the accuracy of 76.9 mIoU and 73.1 mIoU, respectively, while 
maintaining speeds of 87 FPS and 138 FPS. It outperforms other lightweight 
semantic segmentation algorithms in terms of accuracy.
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1. Introduction

Semantic segmentation is a fundamental yet crucial task in computer vision, aiming to 
assign a category label to each pixel. This technology has diverse applications, spanning areas 
such as autonomous driving (Xiao et al., 2023; Yao et al., 2023), remote sensing (Jin et al., 2023; 
Li et  al., 2023), scene analysis (Chen et  al., 2022; Sheng et  al., 2022), and more. With the 
assistance of deep convolutional neural networks (CNNs) 7–9, semantic segmentation has made 
significant progress. However, applying semantic segmentation algorithms still needs to solve 
numerous challenges. Addressing these issues has become a primary research direction, 
especially regarding overcoming feature distortion and small object feature loss during network 
lightweight implementation.

Feature distortion may result in information distortion between the encoded feature 
representation and the original data, making it challenging for the model to recover the original 
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data from the features accurately. This can lead to poor performance in 
reconstruction tasks or other tasks relying on encoded features. 
Numerous neural networks have been proposed to address feature 
distortion, including Unet (Ronneberger et al., 2015), ResNet (He et al., 
2016), and DenseNet (Huang et al., 2017), which introduce skip, residual, 
and dense connections to alleviate the feature distortion problem. The 
most effective approach currently is context feature fusion (Chen et al., 
2020; Shang et  al., 2020; Fan et  al., 2021). However, typical context 
information exchange can only capture predefined fixed spatial range 
context information and cannot achieve flexible and targeted context 
information exchange. This paper proposes a long-short distance 
configurable context feature enhancement module (LSCFEM), which 
uses configurable context information to enhance features and assign 
different relevant regions to each pixel. In order to further improve the 
network speed, we classify and fuse the relevant areas according to the 
distance from the current features to achieve targeted feature 
enhancement. The main difference between our designed contextual 
enhancement module and the above comparison modules is the 
introduction of learnable feature-related regions, allowing customized 
enhancement features to be configured for each pixel.

Semantic segmentation of small targets (Kampffmeyer et al., 2016; 
Yang et al., 2020; Ma et al., 2021) in images has always been a research 
hotspot in semantic neural networks. Small objects typically have 
fewer pixels in the image, making them susceptible to being obscured 
by the background or similar categories, causing difficulty in feature 
discrimination and learning. Standard improvement methods include 
high-resolution input (Xu et al., 2020), multiscale processing (Lin 
et al., 2018), data augmentation (Ma et al., 2019), and postprocessing 
techniques (Cheng and Liu, 2020). However, these techniques 
introduce a significant computational burden, making them 
impractical for lightweight networks. This paper proposes a small 
object attention decoding module (SOADM) to achieve high-
resolution and large-object-guided small object feature recovery by 
learning the correlation between objects of the same category since 
objects share feature similarities. This module uses the features of the 
low-level semantic stage of the same object to enhance the high-level 
semantic stage and reduce the loss of small object features.

Combining the above design solutions, we designed a lightweight 
semantic segmentation network (CCSONet) with configurable context 
and small object attention. The network includes a ResNet backbone, 
a Long-short distance Configurable Contextual Feature Enhancement 
Module (LSCFEM), and a small object attention decoding module 
(SOADM). In order to achieve a lightweight network, we adopt the 
ResNet backbone for feature encoding. Our CCSONet achieves an 
accuracy of 76.9 mIoU and 73.1 mIoU on the Cityscapes and Camvid 
datasets while speed with 87 FPS and 138 FPS, respectively, making it 
the best lightweight semantic segmentation algorithm currently 
available in terms of accuracy.

The contributions of this study are as follows:

 1. We propose a lightweight semantic segmentation network with 
configurable context and small object attention (CCSONet) for 
efficient and high-performance semantic segmentation. It 
achieves the accuracy of 76.9 mIoU and 73.1 mIoU on the 
Cityscapes and Camvid datasets, respectively, with speeds of 87 
FPS and 138 FPS. It currently outperforms other lightweight 
semantic segmentation algorithms in terms of accuracy;

 2. The long-short distance configurable context feature 
enhancement module (LSCFEM) enhances the current 

position’s feature by learning the relevant regions for each pixel. 
To improve the module’s performance, we adopt a multistage 
fusion strategy for long and short-range relevant regions, 
making the context feature fusion more flexible and adaptable, 
thereby addressing the feature distortion issue during the 
encoding process;

 3. The small object attention decoding module (SOADM) follows 
the principle of similarity among same-category object features 
and uses high-resolution features to guide the restoration of 
small object features. Experimental results demonstrate that 
this module effectively reduces the feature loss of small objects 
and improves the network’s segmentation accuracy.

2. Related work

2.1. Semantic segmentation

Semantic segmentation has become a widely recognized focal 
point in the academic and industrial sectors, representing a crucial 
topic in computer vision. The first semantic segmentation method 
based on deep convolutional neural networks (CNN) is FCN (Long 
et  al., 2015), which has demonstrated outstanding segmentation 
performance, paving the way for practical applications. In recent 
years, the field of semantic segmentation has benefited from the 
application of advanced techniques such as encoder-decoder 
architectures (Chen et  al., 2014, 2017, 2018), recurrent neural 
networks (Byeon et  al., 2015; Liang et  al., 2015), and multiscale 
learning (Chen et  al., 2020; Fan et  al., 2021) driving its rapid 
development and bringing new advancements to the field of computer 
vision (Chen et al., 2016; Liu et al., 2018; Zhang et al., 2019).

Despite the remarkable progress in semantic segmentation, many 
methods still need help to meet the demands of lightweight processing. 
In recent years, some researchers have proposed a series of new 
approaches (He et al., 2021; Sang et al., 2022), which adopt the design 
principles of network lightweight, aiming to bridge the gap between 
performance and efficiency. The emergence of these lightweight 
methods has provided robust solutions for lightweight semantic 
segmentation, further driving the advancements in this field. PSPNet 
utilizes pyramid pooling to capture multiscale information by pooling 
and upsampling feature maps of different resolutions to obtain global 
and local semantic information. BiSeNet decomposes the 
segmentation task into two subtasks: a fast path and a detailed path. 
The fast path processes low-resolution feature maps, while the detailed 
path handles high-resolution feature maps. Finally, the results of both 
paths are merged to obtain the final segmentation result. ENet is a 
lightweight network designed specifically for real-time semantic 
segmentation tasks. It significantly reduces computation and 
parameter quantity through carefully designed bottleneck modules 
and shuffle layers. FastSCNN adopts a lightweight segmentation head 
and specially designed contextual modules, enabling high-speed 
inference while maintaining relatively high segmentation accuracy.

2.2. Contextual feature fusion

Aims to enhance the representation and performance of the 
model by fusing information from different levels, modes, or sources. 
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This fusion can be performed at different stages or levels, from shallow 
to deep features or input to output layers, to adapt to various tasks and 
data. Mechanisms like pyramid pooling [PSPNet (Zhao et al., 2017)] 
or dilated convolutions [DeepLab (Chen et al., 2018)] can capture 
multiscale contextual information, helping better understand objects 
in an image. SENet (Hu et al., 2018) introduces SE modules through 
attention mechanisms to adaptively adjust the weights of each channel, 
enabling context feature fusion of feature channels. DANet (Fu et al., 
2019) incorporates bidirectional attention mechanisms, including 
spatial and channel attention, to fuse multiscale and cross-channel 
contextual information, thereby improving semantic segmentation 
performance. CBAM (Woo et al., 2018) combines spatial and channel 
attention mechanisms, introducing attention modules in each 
convolution block to adaptively adjust and fuse feature maps. All these 
methods propagate context information among pixels within a fixed 
range. This paper allows multi-region information fusion among 
pixels throughout the entire image. We achieve contextual feature 
fusion by flexibly configuring paths between pixels to exchange 
context information.

2.3. Small object segmentation

Due to convolution and pooling processes, information about 
small and fine objects is lost as the network deepens. Several specific 
methods have been proposed (Liu et al., 2016; Li et al., 2017; Meng 
et al., 2017; Guo et al., 2018; Yang et al., 2018) to address information 
loss in small object segmentation. The first approach involves 
enlarging the input image to enhance the resolution of small objects 
or generate high-resolution feature maps (Liu et al., 2016; Meng et al., 
2017). However, this method, which relies on data augmentation or 
increasing feature dimensions, often significantly increases training 
and testing time. The second approach is to develop new variants, such 
as residual connections (Ronneberger et al., 2015), spatial pyramids 
(Chen et al., 2017, 2018), and factorized convolutions (Yu and Koltun, 
2015), to leverage multiscale feature layers and improve the 
recognition of objects of different sizes. Although these spatial 
pyramid structures and factorized convolutions help alleviate this 
issue, the information in small objects still needs to be  improved, 
making it challenging to use them effectively. The final approach is to 
utilize postprocessing techniques to enhance the segmentation of 
small objects, such as postprocessing with Markov Random Fields and 
Conditional Random Fields (Chen et  al., 2018). However, since 
postprocessing is an independent component of the segmentation 
model (Guo et al., 2018), this paper proposes a small object attention 
decoding module (SOADM), which can significantly improve the 
segmentation of small objects with minimal additional computational 
cost while possessing strong theoretical interpretability.

3. Method

3.1. The framework

The introduction of neural networks has driven the rapid 
development of semantic segmentation, and many efficient semantic 
segmentation networks have been widely applied in practical 

engineering. Despite continuous updates in semantic segmentation 
algorithms, there are still many challenges, particularly in encoding, 
where feature distortion and small object information loss are 
particularly prominent. Researchers have proposed various solutions 
to address the feature distortion issue, with the most effective approach 
being context information exchange. Common context information 
exchange methods can only capture context information within 
predesigned spatial ranges. We  propose a long-short distance 
configurable context feature enhancement module (LSCFEM) to 
achieve better context information exchange. The issue of small object 
information loss mainly arises from the reduction of feature resolution 
caused by convolution and pooling operations, leading to the loss of 
small object information. Common solutions involve increasing the 
resolution of small objects by upscaling the input image or generating 
high-resolution feature maps. However, this strategy can significantly 
slow down the network’s inference speed, contradicting the lightweight 
semantic segmentation design principle. To address the above issues, 
we propose a small object attention decoding module (SOADM), 
which enhances the feature information of small objects by learning 
the correlation between large and small objects.

Based on the above problem analysis and solution strategies, 
we  present a lightweight semantic segmentation network with 
configurable context and small object attention (CCSONet). As shown 
in Figure 1, the framework mainly consists of three modules: the 
backbone network, the LSCFEM, and the SOADM. We  choose 
ResNet18 as the backbone network to generate hierarchical features 
in five stages for efficient real-time processing. We select the last three 
stages’ features and input them into LSCFEM for long-short distance 
context feature enhancement. The LSCFEM module consists of region 
segmentation, short-distance correlation feature enhancement, and 
long-distance correlation feature enhancement, aggregating region 
information from different stages to enhance target features. Finally, 
through the small object attention decoding module (SOADM), 
we model the correlation between classes and increase the capacity of 
small object features.

3.2. The backbone network

In order to strike a balance between performance and efficiency, 
we chose ResNet18 (He et al., 2016) as the backbone network for 
extracting features. LEDNet (Wang et  al., 2019), a lightweight 
backbone network, significantly reduces computational costs while 
maintaining accuracy through innovative operations such as pointwise 
group convolutions and channel shuffling. Although the 
computational cost of ResNet18 might be higher than that of LEDNet, 
the efficient memory access employed by ResNet18 and the lack of 
fundamental convolutional acceleration in LEDNet make their 
inference speeds comparable. Moreover, due to ResNet18’s greater 
parameter count, it possesses superior generalization capability 
compared to LEDNet. Therefore, ResNet18 is chosen for deployment 
as the backbone network. ResNet18 generates features across five 
stages, corresponding to original input resolutions of 1/2, 1/4, 1/8, 
1/16, and 1/32. Among these features, only the ones from the third 
stage (1/8), fourth stage (1/16), and fifth stage (1/32) are utilized as 
inputs for the LSCFEM. The SOADM requires both the original input 
image and the final output features of the encoding portion.
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3.3. The long-short distance configurable 
context feature enhancement module 
(LSCFEM)

In the process of coding, the appearance and features of the 
encoded object can easily result in distortions. Contextual information 
exchange is currently the best solution. Each pixel needs to be assigned 
to a specific semantic category in semantic segmentation tasks. Pixels 
in an image are often influenced by their surrounding pixels, and 
semantic category correlation exists among them. Therefore, 
leveraging the semantic information around pixels enables a more 
precise determination of the semantic category for each pixel. Various 
neural network components have been proposed to aggregate relevant 
pixels and construct contextual information. Some representative 
models include the Spatial Pyramid Pooling (SPP) models (Zhao et al., 
2017; Yuan et al., 2018), deformable models (Dai et al., 2017; Deng 
et al., 2019), and attention models (Hu et al., 2018; Woo et al., 2018; 
Fu et  al., 2019). However, the structures of existing models are 
predesigned and can only capture category-relevant context within a 
fixed spatial range.

To achieve a more effective context exchange, we propose the long-
short distance configurable context feature enhancement module 
(LSCFEM), a versatile context enhancement model capable of 
capturing and disseminating context from near and far distances. 
Previous models did not differentiate between relevant areas based on 
distance, resulting in feature redundancy during pixel encoding. The 
LSCFEM constructs near-distance and far-distance relevant features 
based on the proximity of the target pixel to its associated areas. This 
module starts by aggregating features from the near-distance region, 
enhancing the target pixel using the correlated features from the nearby 
context. The far-distance relevant region features and the near-distance 
relevant region features exhibit distinct characteristics. For instance, 
the near-distance relevant region might encompass the object the target 
pixel belongs to, while the far-distance relevant region could contain 
objects related to the target object. As such, there is a clear distinction 
between their features. Therefore, a secondary enhancement and fusion 
process is performed specifically for the far-distance relevant region 
features. This module is divided into three main stages: region 

segmentation, near-distance correlation enhancement, and far-distance 
correlation enhancement. It enhances target features by aggregating 
information from different stages, as illustrated in Figure 2. In the 
phase of region segmentation (as shown in Figure 2A), the feature map 
is subjected to the boundary box regression module (BBRM) module 
for relevant boundary extraction. Based on the distance from the 
current source pixel, the bounding boxes are categorized into near and 
far-distance bounding boxes. In this stage, relevant near-distance and 
far-distance regions specific to each pixel are cropped, providing a 
relevant feature flow to enhance the features of the current pixel. In the 
near-distance correlation feature enhancement phase (as depicted in 
Figure 2B), the features of the source pixel are effectively merged and 
enhanced through the feature extraction from the near-distance 
relevant regions. Unlike earlier attention models (Liu et al., 2016; Yuan 
et al., 2018; Xu et al., 2020), where connections between pairs of pixels 
differ, the feature extraction and merging of the near-distance relevant 
regions conserve computational resources and simultaneously focus on 
the crucial context of the nearby relevant regions related to the source 
pixel. In the far-distance correlation feature enhancement phase (as 
illustrated in Figure  2C), the far-distance relevant regions are 
highlighted to expand the relevant context area intentionally. Once 
again, the features of the far-distance regions are injected into the target 
pixel, generating the enhanced feature for the target pixel. The specific 
operations for each stage are as follows.

3.3.1. Region segmentation
In object detection tasks, it is common to localize objects within 

images. Bounding box regression is a crucial step in object detection, 
used to predict the position and size of objects. In this paper, 
we employ bounding box regression to locate the relevant region for 
the current pixel. Figure 2A shows the region segmentation module, 
which includes the boundary box regression module (BBRM, 
Figure  3A) and the long and short region classification function 
[LSRCF, As shown in Equations (2) and (3)].

BBRM performs bounding box regression through 1 1×  
convolution and fully connected layers. 1 1×  convolution reduces the 
parameters that need to be learned and increases the depth of the 
boundary regression model while fully connected layers map feature 

FIGURE 1

The framework of lightweight semantic segmentation network with configurable context and small object attention (CCSONet) consists of three major 
components: the Resnet backbone, long-short distance configurable context feature enhancement module (LSCFEM) and small object attention 
decoding module (SOADM).
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vectors to predicted bounding box space. Finally, a series of shape 
adjustment operations are applied to produce a final output tensor of 
shape [N, n, 2], where N represents the input batch size, n represents 
the number of bounding boxes, and the last dimension represents the 
center of the bounding box, shape is x yc c,[ ]. The bounding box 
regression process unfolds as follows:

 B Fc Conv F= ( )( )×1 1  (1)

Where Fc represents a fully connected layer, Conv1 1×  stands for a 
1 1×  convolution, F  denotes the input feature vector, B is the center 
point of the bounding box with a shape of N n× × 2. It’s worth noting 
that we normalize all center points and map them onto the current 
feature map.

Through extensive research, it has been found that the relevant 
regions for feature enhancement are usually located around the 
current pixel. However, related area features on the same object will 

FIGURE 2

The framework of long-short distance configurable context feature enhancement module (LSCFEM) consists of three major components: (A) region 
segmentation, (B) near-distance correlation feature enhancement, and (C) far-distance correlation feature enhancement. BBRM: bounding box 
regression module, FE: feature extraction module, and FA: feature aggregation.

FIGURE 3

(A) bounding box regression module (BBRM), (B) feature extraction module (FE), and (C) feature aggregation (FA).
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have little enhancement effect on the current features. The purpose 
of introducing related areas is to ensure that while the pixel enhances 
the current pixel, other related objects can also contribute to 
enhancing the current pixel. For example, if the recognized object is 
a car, the most relevant objects will be roads and other cars, and 
we can use the characteristics of roads and cars of the same type to 
enhance the current car. Combining autocorrelation and long-range 
correlation can result in clearer object boundaries. To this end, 
we need to classify the relevant areas of the current pixel and fully 
consider the enhancement of features by long and short-distance 
related areas. In order to classify the relevant regions of interest into 
short and long distances, we  designed a long and short region 
classification function (LSRCF). The specific operations of the 
function are as follows:

 L x x y yi ci ci= −( ) + −( )2 2
 (2)

 
x y

R if L M L
R if L M Lci ci
S i

L i
,( )∈

≤ ( )
> ( )





  
(3)

Where x yci ci,( ) represents the center coordinates of the region of 
interest, x y,( ) signifies the coordinates of the current encoded pixel, L 
stands for the collection of distances between the source pixel and all 
relevant regions, RS  and RL denote the near-distance and far-distance 
relevant regions of the current pixel respectively, and ( )M ⋅  represents 
the median function.

3.3.2. Near-distance correlation feature 
enhancement

Figure  2B is the structural diagram of the feature extraction 
module for short-range related areas. This module mainly includes 
1 × 1 convolution (Conv), feature extraction module (FE) and feature 
aggregation module (FA). 1 × 1 convolution is further extracting 
features from the current feature map to obtain deep features. The FE 
module combines the feature map and the short-range related area to 
generate the short-range related area features. FA fuses the close-range 
correlation region features and the deep close-range correlation region 
features to generate the final close-range correlation region 
enhancement features. Finally, the enhanced and original features are 
summed to obtain the short-range enhanced feature. The operation 
process of this module is as follows:

 ( ),l r SR F F R=  (4)

 F Conv FS = ( )×1 1  (5)

 ( ),h r S SR F F R=  (6)

 ( ),l hf A R R f=′ +′ ′  (7)

Where F  represents the input feature map, Conv1 1×  denotes a 
1 1×  convolution, ( )rF ⋅  signifies the feature extraction operation 

for the relevant area of interest, ( )A ⋅  stands for the module 
responsible for fusing different hierarchical area features, ′f  is the 
feature of the current pixel, ′′f  represents the neardistance 
correlation feature, FS stands for deep-level feature, RS  denotes the 
neardistance relevant region of the current pixel, and Rl  and Rh 
represent the neardistance shallow and deep hierarchical relevant 
area features, respectively.

The main components of this module are the Feature Extraction 
(FE) module, as shown in Figure 3B, and the Feature Aggregation (FA) 
module, as illustrated in Figure 3C. The operational flow of the Feature 
Extraction module (FE) is outlined below:

Firstly, the near-distance relevant areas are extracted from the 
input feature map F . The process is as follows:

 ( ),R SF ROI F R=  (8)

ROI  represents the region segmentation operation, RS  is the 
collection of center points for the relevant areas, and FR is the feature 
map of the relevant areas. Subsequently, FR undergoes global average 
pooling, computed as follows:

 F Avg FX R= ( ) (9)

Where FX  is the feature vector of all relevant areas. Finally, a fully 
connected operation is employed to generate the ultimate region 
feature vector, with the following calculation:

 f =FC Resize FR( ( ))  (10)

Where f  is the fused feature of all relevant area features, FC is the 
fully connected operation, and Resize ∗( ) represents feature 
reorganization, resulting in a shape of N c× ×[ ]1 , where N  is the 
number of input feature maps, and c is the number of channels in the 
feature map.

The operational flow of the Feature Aggregation module (FA) is 
as follows:

Firstly, low-level region features are encoded through convolution, 
computed as follows:

 F Conv Fl1 1 1= ( )×  (11)

Where Fl  stands for the lowlevel region feature, and Fl  is the 
intermediate operational feature. Next, the intermediate feature F1 
undergoes global pooling and a 1 1×  convolution operation 
respectively, as follows:

 F Avg F2 1= ( ) (12)

 F Conv F3 1 1 1= ( )×  (13)

( )Avg ⋅  represents global average pooling. Lastly, F2 and F3 are 
elementwise multiplied to generate the final low-level region feature, 
computed as follows:
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 F F F4 2 3= ∗  (14)

Where ∗ signifies elementwise multiplication. The ultimate output 
of the Feature Extraction module is obtained through elementwise 
summation of F4 and Fh, as follows:

 f F Fa h= +4  (15)

Where fa is the final output of the Feature Aggregation module, 
Fh  represents highlevel region feature, and + denotes 
elementwise addition.

3.3.3. Far-distance correlation feature 
enhancement

The operational flow of this module is depicted in 
Figure 2C. Firstly, convolution is applied to the current feature map to 
obtain deep-level features at the current position. The deep-level 
feature map is then subject to feature extraction within the areas of 
interest, yielding far-distance region features. These far-distance 
features are then merged with the near-distance features. Finally, the 
fused far-distance features are summed with the near-distance 
enhanced features, resulting in the output of the ultimate enhanced 
feature vector. It is important to note that the output feature is the 
enhanced feature vector of the current pixel. The operational flow of 
this module is as follows:

First, feature extraction is performed on the current feature map 
to obtain deep-level feature FS1:

 F Conv FS1 1 1= ( )×  (16)

Subsequently, based on the center points of the far-distance 
relevant areas, the deep-level feature is extracted, resulting in 
far-distance deep-level relevant area feature Fh:

 ( )1,h S LF ROI F R=  (17)

Fh  is then processed through the feature extraction operation 
( )rF ⋅  for the relevant areas, generating deeplevel relevant area 

feature fs:

 f F Fs r h= ( ) (18)

Finally, the far-distance relevant area feature fs  and the 
neardistance relevant area feature fl  are input into the feature area 
fusion module, resulting in the fusion vector fr  for near and 
far distances:

 ( ),r s lf A f f=  (19)

The final enhanced vector output ′′′f  is obtained by elementwise 
summation of the near-distance enhanced vector and the fusion 
vector for far and near distances:

 ′′′ ′′= +f f fr (20)

Where F  represents the input feature map, Conv1 1×  is a 1 1×  
convolution, ( )rF ⋅  signifies the feature extraction operation for the 
relevant area of interest, and ( )A ⋅  stands for the module responsible 
for fusing different hierarchical area features.

3.4. The small object attention decoding 
module

The Fully Convolutional Neural Network (Long et  al., 2015) 
(FCN) was first introduced for end-to-end image segmentation, 
leading to significant advancements in semantic segmentation 
methods. Although FCN-based semantic segmentation has shown 
remarkable improvements in segmenting small objects and fine details 
(Kampffmeyer et al., 2016; Ma et al., 2019; Yang et al., 2020; Ma et al., 
2021), challenges persist in segmenting small targets due to the loss of 
information during convolution and pooling processes. This is 
because the high-level representations generated through convolutions 
and pooling reduce the resolution, resulting in the loss of intricate 
details of small objects. Recovering detailed information about small 
targets from coarse feature maps is challenging for segmentation 
models. However, accurately segmenting small objects is crucial in 
various applications. For instance, in autonomous driving, accurately 
segmenting and identifying small cars and pedestrians at a distance is 
of paramount importance. Several methods for segmenting small 
objects have been proposed. The common strategy is to increase the 
resolution of small objects by enlarging the input image or generating 
high-resolution feature maps. Data augmentation or increasing feature 
dimensions can improve model performance but increase training and 
testing time. Another promising approach is to develop various 
network variants, such as skip connections, feature pyramids, and 
dilated convolutions, to enhance lower-level features. However, this 
multiscale strategy has certain limitations, as it cannot guarantee 
feature alignment, and the interpretational power needs improvement, 
especially for semantic segmentation. Postprocessing techniques like 
Markov Random Fields and Conditional Random Fields51 can 
enhance small object segmentation. However, it is important to note 
that postprocessing is independent of model training, and the network 
cannot adjust weights based on postprocessing output. Therefore, a 
comprehensive consideration of these factors is necessary to explore 
more effective methods for improving the precision of small 
object segmentation.

We designed the small object attention decoding module 
(SOADM) to solve the above problems. Its main goal is to use the 
characteristics of large objects to guide the recovery and recognition 
of small object characteristics and solve the problem of small object 
loss. Its operation does not rely on methods such as increasing the 
dataset size, enlarging the image/feature dimensions, or modifying the 
network architecture. We observe that objects of the same category 
often have similar imaging characteristics. We propose exploiting the 
relationships between small and large objects within the same category 
to compensate for the feature propagation loss. However, directly 
calculating the similarity of input images is challenging due to the 
significant size differences between different objects. Therefore, 
we propose quantifying this relationship by delving into the feature 
space. We perform relevant feature extraction on the output of the 
encoding part and the original image. This step is performed to align 
the dimensions of small objects in imaging space with the dimensions 
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of large objects in encoded feature space. Subsequently, we utilize 
small objects in the original image and large objects in the feature map 
to derive relationships between objects of different sizes within the 
same category. This is achieved by computing a cross-correlation 
matrix between intermediate feature patches and image patches, 
representing the similarity of objects within the same category. Finally, 
the final decoding features are obtained by adding the relevant features 
to the upsampled encoding output features.

Unlike previous lightweight networks that lack decoders or use 
simple pyramid decoders, our designed SOADM decoder focuses 
more on decoding small objects. The pyramid decoder mainly decodes 
the output of the encoder to deepen the network and improve overall 
accuracy. However, this approach does not significantly improve the 
accuracy because much small object information has been lost from 
the high-level semantic features obtained through multiple 
downsampling steps. Naturally, decoding features without small object 
information cannot perform small object segmentation. Our designed 
small object attention decoding module (SOADM) combines deep 
semantics with shallow details. It utilizes the relationship features 
between shallow small and deep large objects to guide the 
reconstruction of small object features within high-level features. Our 
decoding module is highly sensitive to small objects and outperforms 
similar small object attention modules in performance while requiring 
less computation. It is specifically designed as a decoding module for 
lightweight semantic segmentation networks. The structure of 
SOADM is shown in Figure  4. The specific operation process is 
as follows:

Step  1: Feature extraction is conducted on the original image 
using 7 7×  convolution and 1 1×  convolution, resulting in channels of 
64 and 1, F RH W

1
1∈ × ×  respectively. The specific process is as follows:

 F Conv Conv I1 1 1 7 7= ( )( )× ×  (21)

Step 2: The output feature Fout  from the encoding part is processed 
by two 1 1×  convolutions to convert the channel number to the number 
of segmentation categories and to perform secondary feature 
decoding. The workflow is as follows:

 F Conv Fo out1 1 1= ( )×  (22)

 F Conv Fo o2 1 1 1= ( )×  (23)

where F Ro
H W Ni i c1∈
× × , F Ro

H W Ni i c2 ∈
× × , Nc represents the 

predicted number of classes, and each channel contains information 
about a single category.

Step 3: We segment F1, Fo1, and Fo2 into fixedsize patches. The 
procedure is as follows:

 ( )1 1,P F D= Τ  (24)

 ( )1 1,o oP F D= Τ  (25)

 ( )2 2,o oP F D= Τ  (26)

where Τ represents image segmentation, segmenting F1, Fo1, and 

Fo2 into HW
D

D2
2× , H W
D

D Ni i
c2

2× × , and H W
D

D Ni i
c2

2× × . Each block 

has a resolution of D D× . Notably, when segmenting Fo1 and Fo2, 
we perform channelwise feature segmentation and then concatenate 
the results of all channels.

Step 4: Dot product operations are performed on the blocks of 
each category in P1 and Po1 to enhance the correlation between each 
patch of the original image and each category in Fout . The operation 
is as follows:

 1 1 1oA P P= ⊗  (27)

where A R
HW
D

HW
D

Ni i
c

1
2 2∈
×

 represents the correlation between each 
patch of the original image and each category.

Step 5: The associated features obtained above are correlated with 
the deep features of Fout  to restore the features to the initial resolution 
of H W× . The operation is as follows:

 2 1 2oA A P= ⊗  (28)

 A T A= ( )−1
2  (29)

where A R
HW
D

D Nc

2
2

2

∈
× ×

，A RH W Nc∈ × × .

FIGURE 4

The framework of small object attention decoding module (SOADM). Patch: feature map seg-mentation operation, Up: upsampling operation.
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Step  6: Finally, the Fo2 features are upsampled to match the 
resolution of H W× . The enhanced feature A is summed elementwise 
with the upsampled feature Fu to produce the network’s final decoding 
feature out. The procedure is as follows:

 F U Fu o= ( )2  (30)

 Out A Fu= +  (31)

where F Out Ru
H W Nc, ∈ × × . Equation (31) adds upsampled 

features Fu and enhanced features A one by one to reduce the problem 
of feature offset caused by feature upsampling and improves the 
recognition accuracy of the network.

3.5. The loss function

In order to address the issue of imbalanced class distribution in 
natural images, we have employed the Online Hard Example Mining 
technique and a weighted loss method46 to enhance the learning 
effectiveness of our model further. In our approach, the loss function 
utilizes cross-entropy error to compute the class for each pixel. During 
the loss calculation, we sort the pixels based on the cross-entropy loss 
and then backpropagate errors from the top N positions in the ranking. 
It is important to note that, for efficient training, we consider only the 
top 50% of the total pixel count, denoted as E, for loss calculation. 
Additionally, we introduce a weighted strategy for handling pixel loss, 
assigning weights based on the pixel proportion of each category. This 
weighted loss emphasizes handling small objects, thus avoiding the 
problem of classifier overfitting caused by imbalanced data distribution. 
We represent the weight vector as w RK∈ , where it is calculated on the 
dataset and K  represents the number of classes. Specifically, the 
definition of the weighted cross-entropy loss is as follows:

 
[ ]

1

1 logi i

E
y y

i Ni i
i

l y h t h
N

ω
=

 = − ⋅∏ < ⋅ ∑
 

(32)

Where ( )i
i

yy
ih H i=   represents the difference between the 

predicted posterior probability of pixel i H W∈ ×( )  and its 
corresponding target class label yi.

4. Experiments

4.1. Datasets and performance metrics

We detailedly evaluated our CCSONet on two well-known city 
street datasets. Firstly, the CamVid (Brostow et  al., 2009) dataset 
consists of 367 training images, 100 validation images, and 233 testing 
images, covering 11 different categories. It is worth noting that, 
according to the object size definition (Ronneberger et  al., 2015), 
we classify identifiers pedestrians, lampposts, and bicycles as small 
objects. In contrast, the other seven object categories are classified as 
large objects. This subdivision helps better consider the characteristics 
of different object sizes.

Another dataset we  used is Cityscapes (Cordts et  al., 2016). 
Cityscapes includes 5,000 annotated images, with 2,975 for training, 

500 for validation, and 1,525 for testing. It is important to emphasize 
that in this paper, we only considered fine-grained annotations for 
training to ensure high-quality learning of the model. The Cityscapes 
dataset covers a total of 19 semantic classes. Similarly, based on object 
size classification, we defined categories such as lampposts, traffic 
lights, traffic signs, pedestrians, cyclists, motorcycles, and bicycles as 
small object categories. In contrast, the other 12 object categories are 
designated as large object categories.

To measure the performance of our method, we  adopted the 
category Intersection over Union (IoU) and mean Intersection over 
Union (mIoU) as the evaluation metrics for segmentation performance.

4.2. Implementation details

Our study employed a training approach from scratch for the 
segmentation tasks on the CamVid and Cityscapes datasets without 
utilizing ImageNet pre-trained backbone networks, as indicated in the 
reference. Throughout the experimentation, we meticulously adhered 
to the model configuration as outlined in the original text. Our 
experiments did not involve using any roughly annotated images or 
additional data.

The model training was conducted using the PyTorch framework, 
employing a minibatch stochastic gradient descent (SGD) 
optimization algorithm with a momentum of 0.9 and weight decay of 
5e-4, coupled with an adaptive learning rate strategy. The batch sizes 
were 16 for CamVid and 8 for Cityscapes datasets. To augment the 
data, we applied techniques such as random horizontal flips (with a 
probability of 0.6), random cropping, and random scaling (within the 
range [0.75, 2.0]). For CamVid, the cropped resolution was set to 
480 640× , while for Cityscapes, the cropped resolution was 640 800× .

During the model training process, we performed 200 epochs of 
training on the CamVid dataset and 500 epochs on the Cityscapes 
dataset. The initial learning rate was set to 10e3, which was reduced 
by 10 after the 200th, 300th, and 400th epochs on the Cityscapes 
dataset and after the 100th and 150th epochs on the CamVid dataset.

4.3. Comparison with state-of-the-art 
algorithms

In order to evaluate the performance of our proposed method, 
we conducted a comparison with state-of-the-art approaches. In this 
section, we directly extracted their results from the original papers 
for comparison.

4.3.1. Experiments on the Cityscapes dataset
On the Cityscapes dataset, we  present the performance 

comparison between CCSONet and the state-of-the-art methods in 
Table 1. All these results are obtained using a single model on single-
scale images. The symbol “–” indicates that the corresponding results 
were not provided by that method. In these comparisons, “R18” 
represents ResNet18, while “BiSeNet1 (Yu et al., 2018)” and “BiSeNet2 
(Yu et al., 2021)” are two configurations with different network scales. 
According to the setup, DFANet (Li et al., 2019) has two versions, 
“Mode A” and “Mode B,” featuring distinct background 
channel settings.

From Table 1, it can be observed that our proposed CCSONet 
excels in real-time segmentation networks. Regarding effectiveness 
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and efficiency, CCSONet outperforms the current best real-time 
methods. Real-time methods like ENet (Paszke et  al., 2016) and 
DFANet (Li et al., 2019) achieve high speeds in real-time scenarios, 
and their mIoU is only around 50–70%. While DFANet’s Mode A 
performs better, it is slower due to having more channels. ENet 
achieves a frame rate exceeding 130 FPS, but the accuracy is only 57 
mIoU. SwiftNet (Wang et al., 2021), based on the encoder-decoder 
structure, has a larger model size and relatively higher computational 
costs. On the other hand, ShelfNet (Zhuang et al., 2019) improves 
performance through a lightweight decoder. The most competitive 
method is MGSeg (He et al., 2021), achieving 76.4 mIoU at a speed of 
84 FPS, but it still lags behind CCSONet. Although most recent real-
time methods use feature aggregation to enhance performance, 
CCSONet’s focus on small objects and context feature enhancement 
strategies yields even better results in performance improvement.

4.3.2. Experiments on the CamVid dataset
To verify the generalization performance, we  conducted 

experiments on the CamVid dataset, and the results are listed in 
Table 2. The input size for CCSONet was set to 720 960× . Overall, 
CamVid’s performance is slightly lower than that of Cityscapes, likely 
due to the higher image resolution in Cityscapes, making it more 
effective but less efficient. On the CamVid dataset, our proposed 
CCSONet stands out with a result of 73.1 mIoU and a speed of 138 
FPS. Besides HRNetV2 (W48) (Wang et  al., 2020) and 
DeepLabV3Plus + SDCNetAug (Zhu et  al., 2019), CCSONet’s 
performance surpasses most methods. However, these two models are 
larger in scale and slower in speed. Although the efficiency of HRNetV2 
(W48) was not reported in the original paper, its computational 
complexity exceeds 1200 GFlops, similar to DeepLabV3, making it less 
efficient. Compared to the real-time models BiSeNet and DFANet, 
CCSONet has advantages in both accuracy and speed. Compared to 
MGSeg, CCSONet improves the accuracy by 0.4 mIoU, indicating its 
potential for widespread application in various scenarios.

4.4. Efficiency evaluation

The efficiency is a key factor in real-time semantic segmentation 
of the field. In previous studies, efficiency evaluation often depended 
on different hardware configurations, which could lead to unfair 
comparisons. We conducted re-experiments on the same hardware 
platform to ensure a fair comparison and employed official open-
source code. In cases where official code was unavailable, 
we implemented nonofficial code and reported efficiency results in the 
paper, but these are for reference only. The accuracy is directly cited 
from the original paper, denoted by “#” in the table. We performed 
performance comparisons on the same hardware platform, and the 
results are summarized in Table 3. During inference, we set the batch 
size to 1. The reported efficiency (average FPS) is based on 1000 
forward passes to maintain stability. Here, “X39,” “R18,” and “FCH70,” 
respectively, represent the use of Xception39, ResNet18, and 
FCHarDNet as backbone networks.

Table 3 shows that DFANet exhibits poorer accuracy performance, 
mainly due to its rapid downsampling and late-stage attention 
strategies. Other real-time methods perform at around 75 mIoU and 
40 FPS. DFANet and BiSeNet leverage private deep learning 
frameworks and optimize for deep convolutions on the hardware 
platform, achieving faster speeds. However, the nonofficial PyTorch 

code implementation only achieves around 30% of their originally 
reported speeds, highlighting the need for caution when using 
nonofficial code. Recent work such as MGSeg demonstrates superior 
performance. Our proposed CCSONet outperforms existing real-time 
methods, particularly showing slight improvement at the 768 1536×  
input resolution. When increasing the input size to 1024 2048× , 
CCSONet achieves significant improvements, with accuracy 
increasing by over 2 mIoU. This indicates CCSONet’s excellent 
adaptability to large-resolution inputs, potentially enhancing the 
performance of real-time semantic segmentation tasks.

We further investigated the impact of segmentation model input 
size. Four input sizes were tested: 256 512 512 1024 768 1536× × ×, , , 
and 1024 2048× . Comparison results between SwiftNet, ShelfNet, and 
CCSONet are illustrated in Figure 5. Larger sizes lead to slower speeds 
but better performance. However, when the input size exceeds 
768 × 1536, the improvement becomes marginal. This is because other 
real-time models mostly rely on low-resolution feature maps, 
significantly losing small spatial details. Our designed network focuses 
more on small objects, making the performance drop less pronounced. 
Overall, CCSONet achieves better performance at resolutions 
from 512 1024×  to 1024 2048× . Using smaller input sizes can improve 
speed. At an input resolution of 512 1024× , MGSeg achieves 73.9 
mIoU and 160 FPS. Importantly, CCSONet is based on the widely 

TABLE 1 Comparison with real-time state methods on Cityscapes.

Model GFLOPs Params FPS mIoU

Enet (Paszke et al., 2016) 3.8 0.4 135.4 57.0

ICNet (Zhao et al., 2018) 28.3 26.5 30.3 69.5

BiSeNet1 (Yu et al., 2018) 14.8 5.8 105 68.5

BiSeNet2 (Yu et al., 2021) 55.3 49.0 45.7 74.7

DFANet A (Li et al., 2019) 3.4 7.8 100 71.3

DFANet B 2.1 4.8 120 67.1

ShelfNet (Zhuang et al., 2019) – 14.8 59 74.8

SwiftNet (Wang et al., 2021) 114.0 12.9 34 75.1

FCHarDNet (Chao et al., 2019) 35.0 4.1 53 75.9

MGSeg (He et al., 2021) 54.3 13.3 84 76.4

CCSONet (R18, 768) 58.7 12.7 87 76.9

CCSONet (R18, 1024) 104.3 12.7 51 78.3

TABLE 2 Comparison with real-time state methods on Camvid.

Model Time 
(ms)

FPS mIoU

ENet – – 51.3

ICNet 36.0 28 67.1

BiSeNet1 – – 65.6

BiSeNet2 – – 68.7

DFANet A 8.3 120 64.7

DFANet B 6.3 160 59.3

FCHarDNet 6.7 149 67.7

MGSeg 7.9 127 72.7

HRNetV2 (Wang et al., 2020) – – 78.5

DeepLabV3Plus + SDCNetAug (Zhu et al., 2019) – – 81.7

CCSONet 7.2 138 73.1
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used ResNet18 backbone network and implemented using PyTorch 
without any low-level optimizations.

We employ the concept of Memory Access Cost (MAC) to assess 
the memory utilization of the model. Specifically, MAC refers to the 
total memory accessed by the model’s weights and feature maps on the 
GPU. The significance of this metric is self-evident, as high memory 
access directly impacts the utilization of computational resources and 
the practical usability of the model. To gain a better understanding of 
MAC, let us take a look at its calculation formula:

 
MAC hw c c c c

gin out
in out= +( ) +

 
(33)

Where h and w are the height and width, cin and cout are the input 
channels and output channels, and g represents the groups in the 
convolution layer. It is evident from Table 3 that memory access cost 
(MAC) is a key factor in accelerating the model. Despite SwiftNet and 
BiSeNet having similar FLOPs, but SwiftNet is faster compared to 
BiSeNet. This is because during the feature aggregation process, 
SwiftNet generates less feature maps than BiSeNet. At a similar MAC 
level, FCHarDNet’s FLOPs cost is significantly reduced compared to 
SwiftNet, but it only improves by 25. For lightweight networks, MAC 
is more important to the final inference speed than FLOPs. The 
proposed CCSONet requires only 1.27GMAC and 58.7GFLOPs, 
enabling it to achieve a speed of over 80 FPS.

4.5. Ablation experiments

4.5.1. Contribution of individual components
Firstly, we conducted experiments to validate the contributions of 

LSCFEM and SOADM, as shown in Table 4. Without LSCFEM and 
SOADM, the performance of ResNet18 is notably poor, achieving only 
around 67 mIoU. Due to the smaller scale of ResNet18, segmentation 
utilizes only 1/32 of the features, resulting in a significant loss of details. 
When employing LSCFEM, performance improves, indicating the 
effectiveness of LSCFEM. The combination of LSCFEM and SOADM 
further enhances performance. The contribution of SOADM is 
particularly significant, facilitating the segmentation of small objects 
while maintaining similar efficiency. An improvement of 1.4 mIoU is 
achieved with high-resolution inputs, owing to the larger resolution 
providing more accurate details in multiscale features, enriching the 
final results.

4.5.2. Effectiveness of LSCFEM

4.5.2.1. Region relevance visualization
Figure 6 displays the evolution of four related regions of the same 

pixel during the learning process. We selected two short-range related 
regions and two long-range related regions. The first column (Figure 6A) 
illustrates the state of these regions during random initialization. From 
the second column to the last column (Figures 6B–D), we used three 

TABLE 3 Efficiency and accuracy comparison on Cityscapes.

Methods Backbone Input GFlops Params (M) MAC (G) FPS mIoU

DFANet# X39 1024 × 1024 3.4 7.8 0.98 33 71.3

BiSeNet# R18 1024 × 2048 119 13.4 3.92 27 74.7

ShelfNet R18 1024 × 2048 – 14.8 2.34 37 74.8

SwiftNet R18 1024 × 2048 104 11.8 1.96 40 75.5

FCHarDNet FCH70 1024 × 2048 35.4 4.1 3.60 53 75.9

MGSeg R18 1024 × 2048 96.5 13.3 2.54 50 77.8

CCSONet R18 768 × 1536 58.7 12.7 1.27 87 76.9

CCSONet R18 1024 × 2048 104.3 12.7 2.46 51 78.3

FIGURE 5

Effect of the speed given by different input resolutions on Cityscapes.
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networks trained with 10 K, 30 K, and 50 K mini-batches, respectively, to 
compute the related regions for the selected pixel.

The short-range and long-range related regions cover local and longer-
range content, demonstrating that the related regions capture context from 
different scales. In the top and bottom rows of Figure 6, we compared two 

images with similar scenes, demonstrating the similarity in the distribution 
of related regions for the same category. For instance, the closely related 
vehicle regions include the vehicle and the road near its edge, while the 
distantly related regions encompass other vehicles.

In the early stages of network training, the positions of the short-
range and long-range related regions are distributed across the entire 
image, showing limited correlation. As the network training 
stabilizes, the short-range and long-range related regions in similar 
scenes gradually align with objects that share semantic and spatial 
relationships, forming a coherent context. These observations reveal 
the evolving process of the model’s understanding of images and 
feature learning during the training process.

4.5.2.2. Number of related regions
In Figure  7A, we  evaluate segmentation accuracy on the 

Cityscapes validation set using different numbers of related regions 

FIGURE 6

The evolution of related regions of the same pixel during the learning process.

FIGURE 7

(A) The relationship between the number of relevant regions and the accuracy, (B) The relationship between the number of relevant regions and the 
speed, (C) The relationship between the size of the relevant region and the accuracy.

TABLE 4 Effect of individual component of CCSONet.

ResNet18 768 × 1536 1024 × 2048

FPS mIoU FPS mIoU

√ 110 67.1 68 69.0

√ √ 103 75.1 62 76.1

√ √ √ 87 76.9 51 78.3
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(T ∈{ }1 2 4 6 8 10 12, , , , , , ), with other region hyperparameters set to 
default values and an input resolution of 768 1536× . T =1 indicates 
no configurable regions are used.

When T =1, without the context enhancement provided by 
LSCFEM, the network only achieves 67.1 mIoU. As the number of 
related regions increases, segmentation performance significantly 
improves. For example, at T = 4, the network achieves an accuracy of 
76.9 mIoU, highlighting the effectiveness of LSCFEM. However, 
we  observe that with even more regions, such as T = 8 10, , the 
network’s performance does not improve further. This is due to 
increased complexity from additional regions, making it harder to 
train the CCSONet network with limited data. It’s important that more 
regions also require more computational costs, such as GPU memory, 
model parameter count, and FLOPS. Figure 7B shows the relationship 
between network running speed and related region settings; as the 
number of related regions increases, network speed decreases. In this 
study, T = 4 strikes the best balance between performance and 
efficiency for CCSONet.

4.5.2.3. Size of related regions
In Figure 7C, we conducted segmentation experiments using 

different region sizes (including 1 1 3 3 5 5 7 7 9 9 11 11× × × × × ×, , , , , , 
and 13 13× ), with an input resolution of 768 1536× . The results 
suggest that larger regions with richer contextual information may 
lead to higher mIoU. However, if the region size becomes too large, 
the configurable regions in LSCFEM can overlap and capture 
irrelevant image content, resulting in negligible improvement in 
segmentation accuracy but increased computational costs. In our 
experiments, the size of configurable regions did not affect GPU 
memory requirements, as related region pooling and upsampling 
operations generate feature maps of the same size, making little 
difference in GPU memory usage.

4.5.3. Effectiveness of SOADM

4.5.3.1. Enhancing small object detection
To demonstrate the effectiveness of the proposed SOADM, 

we evaluate the module using four widely used segmentation networks 
and the CCSONet itself. These four networks can be categorized as 
follows: (1) LinkNet, a model based on a fully convolutional encoder-
decoder architecture; (2) Unet, which utilizes skip connections to fuse 
low-level and high-level features; (3) PSPNet, a model based on 
pyramid pooling and dilated convolutions; and (4) PAN, which 
incorporates attention mechanisms. This experiment aims to validate 
the SOADM module’s assistance in small object segmentation and 
show its generalization capability in other types of semantic 
segmentation networks.

Table 5 presents the evaluation results on the CamVid dataset. 
We define symbols, pedestrians, poles, and bicycles as small objects 
and the rest as large objects. Applying the SOADM module to the 
baseline segmentation networks significantly improves the accuracy 
scores for small objects compared to models without 
SOADM. Combining the SOADM module with Unet, PAN, LinkNet, 
PSPNet, and CCSONet segmentation networks improves 
segmentation accuracy for the small object category. Table  5 also 
shows that applying SOADM to Unet, PAN, LinkNet, PSPNet, and 
CCSONet slightly improves the large object segmentation, but the 
improvement could be more pronounced. T
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4.5.3.2. Visualization and understanding of SOADM
To visually demonstrate the effectiveness of the proposed 

SOADM, Figure 8 shows representative segmentation results using 
CCSONet with and without SOADM on the Cityscapes test set. These 
figures illustrate that SOADM-based methods can achieve higher 
accuracy for small object classes such as cars, utility poles, and 
symbols. The small targets are too small in the segmentation result 
image, making it impossible to compare clearly. We enlarge the small 
targets in the segmentation result and connect the corresponding 
enlarged images with red lines. For a clear comparison, we put the 
magnified images of small targets at the same location in the same row. 
The comparison results in columns 3 and 4 of Figure 8 clearly show 
that the SOADM module network can segment pedestrians, vehicles, 
and symbols in the distance. These cases show that our SOADM can 
improve the network’s segmentation accuracy for small targets. The 
main mechanism of this module is to learn the correlation between 
the target object and related objects and use the characteristics of 
related objects to complete the missing characteristics of small target 
objects. Figure 8 further illustrates that SOADM can better complete 
the missing information of small objects and generate more accurate 
segmentation results.

4.5.3.3. Performance based on pixel size groups
The evaluated models above classified object sizes based on object 

categories into small/large groups. However, objects belonging to large 
object categories (such as cars) may appear as small objects at a 
distance and vice versa. In this section, we  redefined small/large 
objects based on pixel sizes and conducted evaluations accordingly. 
We  performed pixel size statistics for each object category in the 
Camvid dataset, defining objects with sizes smaller than 32 32×  pixels 
as small targets, those larger than 96 96×  pixels as large targets, and 
the rest as medium targets. According to these results, the “small 
group” includes symbols, utility poles, pedestrians, cyclists, and fences; 
the “medium group” comprises sidewalks, trees, and cars; the “large 
group” consists of sky, buildings, and roads.

Table 6 presents the quantitative results of the Camvid dataset. 
Models based on SOADM outperform the baseline method in 

segmenting small objects. For instance, when combined with 
SOADM, Unet, PAN, LinkNet, PSPNet, and CCSONet, achieve 
improvements of 4.2, 4.2, 3.8, and 4.5% in small object semantic 
segmentation. Similar results are shown in Tables 5, 6. Regardless of 
the definition criteria based on small/large objects or pixel sizes, 
SOADM significantly enhances the performance of the baseline model 
on small objects. Small or large objects grouped by category or pixel 
size exhibit similar object distributions. The definition of small objects 
based on object pixels is consistent with the definition based on object 
categories, wherein most symbols, utility poles, pedestrians, and 
cyclists are objects with relatively small pixel dimensions.

4.6. Case study

Figure  9 presents the results of four segmentation methods: 
BiSeNet, SwiftNet, MGSeg, and CCSONet. The first column of these 
images displays the original images, while the second column shows 

FIGURE 8

Visualization results of SOADM. From left to right are: original image, label, CCSONet without SOADM, detail comparison figure and CCSONet with 
SOADM.

TABLE 6 The comparison results of small / non-small object grouped by 
pixel size on Camvid.

Model Object size

Small Medium Large

Unet 15.7 35.7 84.6

Unet+SOADM 19.9 37.8 86.4

PAN 13.9 34.1 84.2

PAN+SOADM 18.1 38.0 85.9

LinkNet 15.1 34.9 84.8

LinkNet+SOADM 18.9 37.7 85.6

PSPNet 14.7 30.1 81.0

PSPNet+SOADM 19.2 33.1 81.7

CCSONet 18.6 33.2 81.3

CCSONet+SOADN 22.7 36.3 84.8
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the ground truth label information. Overall, these methods can 
relatively accurately identify the outlines of the street scene images. 
However, there are still some details that are challenging to classify 
accurately. For example, utility poles are mistakenly identified as walls 
or trees in the segmentation by BiSeNet and SwiftNet.

In contrast, our proposed CCSONet can recognize boundary 
details and control segmentation granularity, successfully classifying 
these intricate details. Additionally, compared to the MGSeg 
method, CCSONet performs more accurately in boundary 
segmentation of objects such as bicycles and pedestrians. This result 
further underscores the superiority of CCSONet in image 
segmentation tasks.

5. Conclusion

This paper proposes a lightweight semantic segmentation 
network, the Configurable Context and Small Object Attention 
Network (CCSONet), which explores the potential correlations 
between small and large objects while studying the effects of long and 
short-range contextual information on feature enhancement. 
We  design the long-short distance configurable context feature 
enhancement module (LSCFEM) to address feature distortion during 
the encoding process and introduce the small object attention 
decoding module (SOADM) to enhance the segmentation accuracy 
of small objects. We extensively analyze and quantitatively experiment 
on the standard datasets Cityscapes and CamVid, providing strong 
validation for the effectiveness of our proposed CCSONet. Our 
approach significantly outperforms existing state-of-the-art methods, 
introducing new directions and possibilities for advancing the field of 
image segmentation. In future research, we  will explore weakly 
supervised solutions, which will further improve segmentation 
accuracy, particularly in boundary segmentation. Additionally, we will 
focus on detail encoding methods for low-resolution feature maps, 
enhancing the robustness and applicability of our method across 
various practical scenarios.
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