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Editorial on the Research Topic

Advanced deep learning approaches for medical neuroimaging data

with limitation

This Research Topic collects the latest works focusing on approaches and analysis for

medical neuroimaging data with limitations. With the increasing development of deep

learning and artificial intelligence, it also attracts attention from researchers in medical

and clinical fields (Shen et al., 2017). Adopting deep learning technology in processing

medical images and signals and benefiting from the powerful feature extraction ability of

convolutional neural networks, deep learning-based artificial medicine has achieved great

success in the past few years (Litjens et al., 2017).

However, owing to the difference between natural and medical images, in other words,

some specific characteristics of medical images, adopting deep learning to process medical

images directly may face numerous problems. Particularly, medical imaging, including

neuroimaging data, may acquire data with few annotations, low signal-to-noise ratio, or

small experimental samples, resulting in serious performance degradation during data

processing (Tajbakhsh et al., 2020). Hence, how to solve these issues and improve the data

analysis performance is still a challenge.

In recent years, some works have emerged toward these issues in medical neuroimaging

data, such as semi-supervised learning (Wang et al., 2020), weakly supervised learning

(Zhang et al., 2023), unsupervised learning (Zhao et al., 2019), transfer learning (Raghu

et al., 2019), and so on. In this Research Topic, there are also some feasible ways for medical

neuroimaging data with limitations.

In the first article of this Research Topic (Ma et al.), a Soft-DTW-based single-

subject short-distance event-related potential averaging method is introduced for the low

signal-to-noise ratio and feature extraction issues of N400 data. Specifically, N400 data

is a time-domain EEG feature, which is thought to reflect the information processing

ways of human brains. Leveraging the benefits of the differentiable and efficient Soft-

DTW loss function, this work also involves performing partial Soft-DTW averaging

within a single-subject range, effectively exploiting the advantages of the DTW distance.
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Furthermore, a Transformer-based recognition model

incorporating location coding and a self-attention mechanism

for contextual information is also presented. Finally, Softmax is

selected as the classifier. Numerous experiments on the N400

public dataset demonstrate the performance of the proposed model

and averaging method. These results validate the capabilities of the

proposed approach in effectively handling ERP data and improving

classification accuracy.

In the second article of this Research Topic (Wang et al.),

some machine learning methods are adopted for forecasting

stroke recurrence within 1 year in patients who have experienced

acute ischemic stroke (AIS). Recurrent strokes contribute to

approximately 25–30% of all preventable strokes, making the

development of an accurate predictive tool crucial for identifying

high-risk patients and implementing timely preventive measures.

Univariate and multivariate logistic regression (LR) analyses are

employed to identify potential risk factors associated with stroke

recurrence. The dataset is randomly split into a training and

a test set with a 7:3 ratio. Subsequently, six machine learning

models are established, including random forest (RF), Naive Bayes

model (NBC), decision tree (DT), extreme gradient boosting

(XGB), gradient boosting machine (GBM), and LR. To determine

the model with the most robust prediction performance, 10-fold

cross-validation, receiver operating characteristic (ROC) curves,

and SHapley Additive exPlanations (SHAP) are utilized. Finally,

a user-friendly web calculator is built for better visualization

and interpretation.

In the third article of this Research Topic (Liu et al.),

federated learning (FL) is adopted for multiple sclerosis (MS) lesion

segmentation. Specifically, FL aims to be widely applied in the

medical image analysis field, which could learn from multi-site

clients and keep the privacy of local sites. FL has shown promising

applications in various domains, but its potential in neuroimage

analysis tasks, like lesion segmentation in MS, is yet to be fully

optimized. The challenges arise from the variability in lesion

characteristics caused by using different scanners and acquisition

parameters across multiple data sources. In this work, learnable

weights are allocated according to the performance of each

site. Furthermore, a weighted segmentation loss function is also

introduced based on the lesion volume of each site. Two datasets,

including one public and one clinical dataset, are adopted to verify

the segmentation performance of the proposed framework.

In the fourth article of this Research Topic (Hu et al.),

the authors focus on medical prediction from missing data.

Unlike natural image datasets, missing data is a general issue

in the medical image field. In the current research, the

uncertainty associated with imputation can lead the model to

overfit the observed data distribution, subsequently impacting

its generalization performance negatively. While R-Drop is a

potent regularization method for training deep neural networks, it

cannot distinguish between positive and negative samples, thereby

hindering the model’s capacity to learn robust representations. In

this work, a modified R-Drop method with negative regularization

is proposed to boost the generalization and performance of medical

image processing. The modified framework introduces a deliberate

inconsistency between the output distributions of positive and

negative samples. Notably, it also introduces a max-minus negative

sampling technique that enhances model diversity by subtracting

the mini-batch values from the maximum in-batch values to create

negative samples. Three real-world medical prediction datasets,

including both missing and complete data, are involved in the

experimental parts.

Concerning the above papers in this Research Topic,

they provide some novel ideas and approaches for medical

neuroimaging data with limitations. We hope that the readers can

be inspired by these state-of-the-art works and introduce more

effective and powerful ways in neuroscience.
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