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Alzheimer’s disease (AD) is a neurodegenerative disorder that causes memory

degradation and cognitive function impairment in elderly people. The irreversible

and devastating cognitive decline brings large burdens on patients and society. So

far, there is no e�ective treatment that can cure AD, but the process of early-stage

AD can slow down. Early and accurate detection is critical for treatment. In recent

years, deep-learning-based approaches have achieved great success in Alzheimer’s

disease diagnosis. The main objective of this paper is to review some popular

conventional machine learning methods used for the classification and prediction of

AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper

include support vector machine (SVM), random forest (RF), convolutional neural

network (CNN), autoencoder, deep learning, and transformer. This paper also reviews

pervasively used feature extractors and di�erent types of input forms of convolutional

neural network. At last, this review discusses challenges such as class imbalance and

data leakage. It also discusses the trade-o�s and suggestions about pre-processing

techniques, deep learning, conventional machine learning methods, new techniques,

and input type selection.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease with insidious onset and progressive

development. Clinically, AD is characterized by memory disorder, aphasia, apraxia, agnosia,

visual skill damage, and general dementia with personality and behavior changes. However, the

cause of the disease remains unknown. Currently, there is no accurate diagnosis and validated

disease-modifying treatment. In addition, since AD symptoms are sudden and severe memory

loss, there is a high cost of caring for the patients. The high increase in public health needs

enormous numbers of budget. The socio-economic prices of AD are far more significant than

expected. As a result, AD brings a massive burden on the patient’s family and society. According

to a recent report by Nichols et al. (2022), globally, the number of patients with dementia is 57.4

million in 2019, and the number may increase to around 152.8 million in 2050. So the accurate
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diagnosis of AD is critical for the patients and society. In general, AD

has three stages: normal control (NC), mild cognitive impairement

(MCI), and Alzheimer’s disease (AD). In particular, MCI is the

early stage of AD, which is defined as the intermedia state between

AD and normal control. The mark of MCI is loss of memory

and poor memory. While some MCI patients proceed to AD,

some remain MCI. Early diagnosis is crucial in effective clinical

intervention and alleviating disease progression (Livingston et al.,

2020). AD/MCI diagnosis is one of the most significant and

challenging tasks in AD assessment. The accurate classification of

AD/MCI determines the follow-up treatment. What’s more, proper

treatment during MCI can reduce or slow down the development

to AD. So, prediction of conversion from MCI to AD is even more

valuable than classification between NC and AD or MCI patients.

However, the traditional AD diagnosis methods considerably rely on

clinical experts’ experience and human efforts. As the development

of computer-aided diagnosis, computer softwares can provide

automatic classification and prediction of AD. For the reasons

mentioned above, computer-aided diagnosis of AD is necessary and

significant.

Artificial intelligence has been thriving in recent years, and

researchers and engineers conducted extensive research on AD-

related areas. According to the methods utilized, these researches are

in two categories: convention machine learning and deep learning.

Convention machine learning methods contain support vector

machine (SVM), random forest, linear regression, naïve Bayesian,

artificial neural networks, etc. Deep learning methods include

convolutional neural networks, recursive neural networks, etc.

Many biomarkers, such as genetic, biological, and neuroimaging

techniques, including Magnetic Resonance Imaging (MRI),

fluorodeoxyglucose positron emission tomography (FDG-PET)

imaging, amyloid PET, and diffusion tensor imaging (DTI), are

used for AD diagnosis. The MRI image is one of the most widely

used for the early detection and classification of AD. Since MRI

provides high-resolution images of brain anatomical structures,

researchers can retrieve rich information from MRI images. MRI

shows the shrinkage of brain tissue, particularly the hippocampus,

which confirms the structural change in the brain. Moreover, MRI

can be used to predict if a patient with MCI will eventually develop

Alzheimer’s disease since MRI can detect brain abnormalities

associated with MCI. In recent years, public open-access databases

supplied MRI images of AD biomarkers, and the datasets were

maintained by updating and adding new data. Considerable

researchers have conducted their work to analyze AD employing

MRI-based biomarkers. In this article, we mainly focus on MRI-

based applications. Some researchers used MRI together with PET,

so we also introduced PET. MRI and PET data as the 3D image

which reveals structural brain atrophy are two of the most frequently

used modalities in deep learning areas. MRI uses magnetic resonance

phenomena to extract electromagnetic signals from the human body

and reconstruct a 3D representation of human information. MRI

can be done without injecting radioactive isotopes, which makes

MRI safer. PET uses short-lived radionuclides to generate images of

the target. The PET scanner can detect areas of high radionuclides

concentration within the body. Both MRI and PET are non-invasive

neuroimaging modalities. The other two most widely used medical

tests that evaluate AD levels are the Mini-Mental State Examination

(MMSE) and the Clinical Dementia Rating (CDR). Taking the results

of MMSE and CDR as the ground truth labels may be incorrect. Still,

the results of MMSE and CDR remain valuable references due to the

limited biomarkers available.

Multi-modality studies utilize more than one modality of

each subject, while single-modality studies use only one modality.

Using multi-modality is that features extracted from different

modalities could contain complementary information. MRI, FDG-

PET, Cerebrospinal Fluid (CSF), MMSE, and Alzheimer’s Disease

Assessment Scale-Cognitive Subscale (ADAS-Cog) are often-used

modalities.

Detecting AD remains a challenging task in computer vision areas

for a few reasons. The image dataset is not large enough compared

with other image classification datasets like ImageNet. The medical

images acquired are usually of low quality, with relatively coarse

noise segmentation results. Compared with images in other areas,

the complexity of medical images is high. Images are acquired from

different devices with various strengths, leading to more effort spent

in pre-processing. The distinction between NC and MCI, MCI, and

AD are not apparent in computer vision.

The public open-access databases have extensively helped AD-

related research in artificial intelligence (A.I.). In recent years,

this field has attracted the attention of a considerable number of

researchers, and the number of related papers published each year

is also boosting rapidly. Therefore, there is a need to analyze and

summarize related documents so that researchers can more easily

understand the development status of associated fields. We aim to

help relevant researchers quickly understand the research status and

future trends in related fields. The objectives of this study are to

explore the associated datasets, pre-processing techniques, popular

conventional machine learning methods, including SVM and RF, and

Deep learning methods, including CNN, autoencoders, transformer,

and transfer learning. So we examined recent works, compared the

trade-off, summarized the current trend, and provided a future guide

on computer-aided AD diagnosis using MRI images in the A.I. area.

This review mainly focuses on the highly cited studies that adopted

the most widely used techniques.

As shown in Figure 1, we will organize our paper as below: In

the Introduction Section, we will have a brief introduction to the

background knowledge. In the Materials Section, we will introduce

the public datasets that are often used in related areas. In theMethods

Section, we will explore our search strategy, the pre-processing

techniques, conventional machine learning like Support-vector

machine (SVM) and Random forest (RF), convolutional neural

network (CNN), autoencoders, transformer, and transfer learning

methods. In the Challenges and discussion Section, we will discuss the

current challenges like class imbalance, data leakage, and trade-offs

when designing a proper model with our recommendations.

2. Materials

2.1. Datasets

In recent years, many research centers accumulated plentiful

medical and image data and published the data to the public. Public

data plays a significant role for researchers in research and developing

AI on AD. The online datasets make biomarker information like

neuroimagingmodalities, genetic and blood information, and clinical

and cognitive assessments. Most pervasively used datasets include

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al.,
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FIGURE 1

Mind map of this paper.

2008), Australian Imaging, Biomarker, & Lifestyle Flagship Study

of Aging (AIBL) (Ellis et al., 2009), Open Access Series of Imaging

Studies (OASIS) (Marcus et al., 2007, 2010; LaMontagne et al., 2019),

and Minimal Interval Resonance Imaging in Alzheimer’s Disease

(MIRIAD) (Malone et al., 2013).

ADNI is notable for being a longitudinal and multicenter

study. It is the most common dataset. The objective of ADNI is

to investigate if the combination of MRI, PET, other biological

markers, and clinical and neuropsychological assessment could

measure the progression of MCI and early AD. ADNI-1, ADNI-

GO, ADNI-2, and ADNI-3. The following collections are the

supplement and improvements of previous ones. From patients,

ADNI researchers collect several data types, including clinical,

genetic, MRI, PET images, and biospecimen. ADNI-1 contains 200

NC, 400 MCI, and 200 AD. ADNI-GO adds 200 MCI on ADNI-

1. ADNI-2 extends ADNI-1 and ADNI-GO with 150 NC, 100

early MCI, 150 late MCI, and 150 AD. ADNI-3 expands existing

ADNI-1, ADNI-GO, and ADNI-2, adding 133 NC, 151 MCI, and

87 AD.

AIBL collects imaging and medical data from 211 individuals

with AD, 133 individuals with MCI, and 768 healthy individuals

without cognitive impairment.

OASIS aims to share neuroimaging brain data sets with

researchers in related areas. OASIS has three releases: OASIS-1

contains 434 MRI scans from 416 subjects. OASIS-2 contains 373

MRI scans from 150 subjects. OASIS-3 contains 2,168 MRIs and

1,608 PET scans from 1,098 subjects.

The MIRIAD dataset contains 708 MRI scans from 46 AD

patients and 23 NC volunteers.

Moreover, some studies use the datasets above along with their

own datasets. For instance, Basaia et al. (2019) collected 3D T1-

weighted images from 124 patients with probable AD, 50 patients

with MCI, and 55 healthy controls. They named their dataset as

“Milan” dataset. Suk et al. (2016b) used images from ADNI-2 and

their in-house dataset with 37 participants of 12 MCI subjects and 25

NC subjects.

3. Methods

This section reviews a few classical conventional machine

learning and deep learning methods. Firstly, we introduce the search

strategy for our review. Secondly, we will examine two traditional

machine learning methods: Support-vector machine and random

forest. Thirdly, we will review the convolutional neural network,

including popular CNN backbones and different input types of CNN.

Fourthly, we will discuss autoencoders in AD detection. Fifthly,

we talk about transformer. At last, we will briefly introduce the

application of transfer learning.
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3.1. Search strategy

This paper is conducted by following the PRISMA 2020

guidelines (Page et al., 2021).

3.1.1. Databases and keywords of search
We searched Scopus, one of the largest abstract and citation

databases of peer-reviewed literature: scientific journals, books,

and conference proceedings. We selected research papers regarding

Alzheimer’s disease diagnosis using AI techniques from 2013 to 2022.

Scopus searches within the article title, abstract, and keywords. The

papers will not be selected if the search documents only appear in the

text or figure caption.

3.1.1.1. Inclusion keyword groups

Inclusion Keyword group 1: “Alzheimer’s disease” OR “AD” OR

“dementia” OR “mild cognitive impairment” OR “MCI.”

Inclusion Keyword group 2: “Artificial intelligence” OR “AI”

OR “machine learning” OR “deep learning” OR “computer-assisted

diagnosis” OR “computer assisted diagnosis” OR “CAD” OR “Neural

network” OR “convolutional neural network” OR “CNN” OR

“recurrent neural network” OR “RNN” OR “random forest” OR

“support vector machine” OR “SVM.”

Inclusion Keyword group 3: “Magnetic Resonance Imaging” OR

“MRI” OR “Structural Magnetic Resonance Imaging” OR “sMRI” OR

“Functional Magnetic Resonance Imaging” OR “fMRI.”

3.1.1.2. Exclusion keyword groups

Exclusion Keyword group 1: “Schizophrenia” OR “depression”

OR “major depressive disorder.”

Exclusion Keyword group 2: “Computed tomography” OR “CT”

OR “Positron Emission Tomography” OR “PET” OR “amyloid-β .”

Exclusion Keyword group 3: “REVIEW.”

Initially, the search result contained 2,561 documents in total.

Then we filtered the document type as article (1,712 documents)

and source type as “journal” (1,705 documents). At last, we gave

up those documents written in languages other than English (1,678

documents).

3.1.1.3. Exclusion criteria

1. The initial search result is further filtered according to the

following exclusion criteria.

2. Studies only focus on preprocessing, brain extraction, or other

similar feature selection.

3. Studies using other biomarkers only other than MRI images (e.g.,

CT, PET, amyloid-β , genetic, etc.)

4. Studies focus on brain aging or other types of brain disease.

5. Conference Paper, conference review, book chapter, editorial,

review, note, letter, or data paper.

6. Conference proceeding, book series, book, or trade journal.

7. Articles are written in languages other than English.

The criteria above generated a collection of 31 articles in total for

in-depth reviewing as shown in Figure 2.

FIGURE 2

Paper search flowchart.

3.2. Pre-processing

The size of the training set highly impacts classification

performance. In all datasets introduced above, the numbers of

image scans retrieved from AD and MCI subjects are limited. In

most studies, pre-processing must be done before manipulating

the data. Pre-processing is a set of image processing tasks

performed on the acquired image scans. Some MRI software

packages like FreeSurfer (Fischl, 2012), Computational Anatomy

Toolbox (CAT12), FMRIB Software Library (FSL) (Jenkinson et al.,

2012), Statistical Parametric Mapping (SPM), ANTS (Avants et al.,

2009), etc., provide well-encapsulated pre-processing algorithms.

Pervasively used pre-processing techniques include registration,

normalization, smoothing, segmentation, skull-stripping, noise

removal, temporal filtering, covariates removal, etc. This review will

introduce intensity normalization, registration, skull-stripping, tissue

segmentation, and class balancing.

3.2.1. Intensity normalization
Intensity normalization, known as field correction or intensity

inhomogeneity correction, refers to rescaling the intensities of

each pixel to a normalized intensity. In the process of MR image

acquisition, various scanners or parameters will scan distinct subjects

or the same subject at different times, which may cause significant

intensity changes. Large intensity changes will significantly affect

the performance of subsequent pre-processing like registration

and segmentation.

3.2.2. Registration
Registration is a method to spatially align image scans to

ensure the correspondence of anatomy across modalities, individuals,

and studies. Registration is also used in multi-modality tasks

for co-registration. The most commonly used templates are MIN

305, Collin27, and MNI152. Liu et al. (2016) reported a higher

performance adopting multiple templates over a single template.

They utilized multiple templates for feature extraction, selected the

most representative features of each template, trained multiple SVM

classifiers, and ensemble the results of all classifiers to generate the
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result. However, multiple templates lead to high computational costs,

especially in image registration.

3.2.3. Skull-stripping
Skull-stripping or brain extraction means removing the non-

brain tissues like skull, fat, eyes, etc., and remaining gray matter

(GM), white matter (WM), Cerebrospinal fluid (CSF), etc. in the

brain scan.

3.2.4. Tissue segmentation
Tissue segmentation means partitioning the image scan into

segments corresponding to various tissues. The volume of tissues is

a measurement often used after tissue segmentation. GM probability

maps are a popular input form in classification tasks. Usually, Pre-

processing techniques like intensity normalization and registration

need to be done.

3.2.5. Data augmentation
Data augmentation is a way to solve the limitation on the number

of subjects in a dataset. It is a technique to enlarge the dataset without

collecting new data by generating new data samples from the existing

data. Data augmentation techniques have been used, including

cropping, reflection, random translation, gamma correction, scaling,

random rotation, elastic transform, vertical flip, horizontal flip, and

different types of blurring. Moreover, new synthesis techniques like

autoencoders and generative adversarial networks are also used

in data augmentation. However, synthesis techniques need more

proof of the effectiveness of the generated images in AD-related

classification and prediction tasks.

3.3. Conventional machine learning

Support-vector machines (SVMs) are supervised learning

methods in conventional machine learning and are often used

to solve classification and regression problems. SVMs map the

input to points in multidimensional space to maximize the margin

between hyperplanes of different data types. A kernel function,

for example, Gaussian or polynomial function, maps the current

multidimensional space into a higher-dimensional space. SVMs can

be used alone and work with other methods for both conventional

machine learning and deep learning methods. Since SVMs can

achieve a relatively good performance and the principles of SVMs

work are clear and understandable, SVMs are extensively applied

in industrial and scientific areas. Suk et al. (2016a) used a linear

SVM classifier, and Suk and Shen (2013) and Suk et al. (2015) used

multi-kernel SVMs to classifier integrated features frommulti-modal

inputs. Shi et al. (2018) proposed a model that takes stacked deep

polynomial networks (DPN) as the feature extractor and a linear

kernel SVM as the classifier. Suk et al. (2014) used a linear SVM for

the hierarchical classifiers to work with feature representations found

by Deep Boltzmann Machine (DBM).

The multi-kernel SVMs provide more flexibility than the single

kernel SVM. Although multi-kernel SVM has shown excellent

performance in many tasks, efficiency is the most significant

bottleneck for developing multi-kernel SVM. The computational

complexity and difficulty of multi-kernel SVMs are much more

significant than single kernel SVM. In terms of space, the multi-

kernel SVM algorithms need to calculate the kernel combination

coefficients corresponding to each kernel matrix, so multi-kernel

matrices must participate in the operation. In other words, multi-

kernel matrices need to be stored in memory simultaneously. If

the number of samples is too large, the dimension of the kernel

matrix will be huge. If the number of kernels is also too large, it

will undoubtedly occupy colossal memory space. In terms of time,

training of multi-kernel SVM is time-consuming. The high time and

space complexity are one of the main reasons the multi-kernel SVM

algorithms cannot be widely used. Suk and Shen (2013) and Suk et al.

(2015) used multi-kernel SVM classifiers in the model to deal with

the feature vectors extracted from Stacked AEs. Khedher et al. (2015)

reported an accuracy of 88.49%, specificity of 91.27%, and sensitivity

of 85.11% using partial least squares and PCA as feature extractors

and linear and RBF kernel SVM as classifiers.

Random forest (RF) is an ensemble algorithm. Each decision

tree is a classifier. Multiple decision tree classifiers form the random

forest. Individual decision trees are trained in parallel. Random

forest integrates all classification voting results and assigns the

category with the most votes as the final output. Random forest is

a flexible and practical method. It works well on a large dataset.

It can handle thousands of input variables without dimension

reduction. It estimates the significance of different variables in

a task. Calculating many trees and integrating their outputs can

consume many computing resources. Moradi et al. (2015) proposed

a novel biomarker-based diagnosis in classifying different stages

of MCI by utilizing a low-density separation classifier and a

random forest classifier. Lebedev et al. (2014) tested random forest

on ADNI and AddNeuroMed datasets using MRI images and a

combination of morphometric measurements with ApoE-genotype

and demographics (age, sex, and education) MRI images. Bi et al.

(2020) aimed to overcome the minor sample issue and proposed

a clustering evolutionary random forest architecture to deal with

multimodal data from ADNI to detect abnormality in the brain and

pathogenic genes.

3.4. Convolutional neural network

Deep learning is a subset of machine learning techniques in

which the learning process is performed through a hierarchical and

deep structure. Deep learning techniques have received significant

attention in the last few years and have been used widely in different

brain studies. One of the most successful deep learning methods is

the convolutional neural network.

Convolutional Neural Networks (CNN) are artificial neural

networks that use convolution operations to filter the input data

and extract useful features. Research on CNN has emerged and

thrived swiftly. CNN has attracted widespread attention from

researchers and achieved state-of-the-art results on various tasks

in detection, classification, and segmentation problems in different

domains, including medical imaging, natural language processing,

etc. The tremendous success CNN achieved in the classification

and segmentation of realistic images has promoted the development

and application of CNN in the medical area. In recent years, CNN

has performed well in organ segmentation and disease detection
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tasks. The classic CNN structure consists of a series of convolutional

layers, pooling layers, activation layers, and fully connected layers.

A SoftMax function is applied to classify the input image with

probabilistic values between zero and one.

The convolutional layer contains concepts of local receptive

fields, shared weights, filters, stride, and padding. A filter contains

unknown parameters that will be learned during training. The

convolution is the process by which a filter slides across the whole

image from top-left to bottom-right and convolves with the input

image to calculate the weighted sum. The stride refers to the step

size that a filter moves in per slice. However, the edges’ pixels will

never be in the center of a filter, and a filter cannot extend beyond the

edge region. After each convolution between the input and the filter,

only part of the pixels is detected at the edge, and information at the

image boundary is lost. Padding is designed to overcome this issue.

Padding means filling in some values along the input boundaries to

increase the input size. Usually, the values filled are zeros. Padding is

needed when it is necessary to keep the dimensions constant before

and after convolution to avoid information loss. The size of the

filters determines the receptive field in the convolutional layers. The

convolutional layers are excellent feature extractors for images since

images contain massive spatial redundancy, and convolutional layers

solve this characteristic of images with shared weights. After reducing

spatial redundancy, the feature vector that the convolution layers

output stands for the image’s content.

The pooling layer is the dimension reduction operation on the

feature maps. It helps reduce the number of parameters to train and

accelerates the training process. The most widely used pooling layers

are max pooling, average pooling, and global pooling. Max pooling

outputs the maximum value within the region of the feature map

covered by the filter. Average pooling calculates the average value of

the elements presented within the feature map region covered by the

filter. Global pooling reduces each channel in the input to a single

value.

The activation layer provides a non-linear mapping to the output

of the convolutional layer. The calculations in a convolutional layer

are linear. The non-linearity provided by activation layers enhanced

the reasoning ability of the network. The most pervasively used

activation functions include ReLU, Sigmoid, Tanh, etc.

The fully connected layer takes the feature extractor’s inputs and

predicts the correct label with probabilities.

CNN can be used as the feature extractor and classifier or only

feature extractor. Some researchers use CNN to extract features and

adopt the conventional machine learning method for classification.

Suk et al. (2017) utilized CNN to take the target-level representations

generated from the sparse regression for clinical decision making.

Feng et al. (2020) applied 3D CNN with MRI to execute AD

classification using MRI images. They replaced SoftMax with an

SVM as the classifier, and this 3D-CNN-SVM model achieved

better classification performance than 2D-CNN and 3D-CNN. With

the thriving of CNN in computer vision, researchers contribute

several CNN backbones that achieve state-of-the-art performance in

many tasks.

When comparing conventional machine learning and deep

learning methods in AD-related areas, we can conclude that: in

general, deep learning methods achieve better performance than

conventional machine learning methods. The proper size of the

training samples should be no <1,000. A dataset containing over

five thousand samples can be considered sufficient to train a

deep learning model that achieves high accuracy (Zhao et al.,

2021).

3.4.1. CNN backbones
CNN backbones refer to the feature extracting networks or

feature extractors. In this section, we will introduce classic CNN

backbones that are pervasively used in AD diagnosis tasks.

3.4.1.1. LeNet

LeCun et al. (1998) proposes LeNet, the first work that uses

CNN in a character recognition task. The basic concepts of

convolutional, pooling, and fully connected layers are introduced

in one architecture. It also introduces the idea of local receptive

fields within CNN. These concepts are the fundamentals of the other

deep learning module. Yang and Liu (2020) propose their model

with LeNet-5 to do classification and prediction. They take PET

images of 350 subjects who are MCI from ADNI. The model achieves

sensitivity and specificity of 91.02 and 77.63% inMCI transformation

prediction.

3.4.1.2. AlexNet

A significant architecture after LeNet (Krizhevsky et al., 2017)

proposed AlexNet. A Rectified Linear Unit (RELU) was used as the

activation function. Besides, the author introduced a way to train the

networks using multiple GPUs.

3.4.1.3. VGG

Simonyan and Zisserman (2015) proposed VGG. A stack of 3

× 3 convolution filters was used to replace large convolution filters

like 5 × 5, 7 × 7, 9 × 9, or 11 × 11 convolution filters. A stack of

small convolution filters for a given receptive is better than one large

convolution filter. The use of small filters results in fewer parameters

and deeper networks which will help train a more complex model

in a shorter time. Jain et al. (2019) utilized the transfer learning

approach to build the AD classification model. The feature extractor

in this work was VGG16 which was pre-trained on ImageNet. They

converted 3DMRI images to 2D slices, selected the most informative

32 slices in pre-processing, and then fed the slices into VGG16,

followed by fully connected layers. Although their dataset had MRI

images of 150 subjects fromADNI, themodel achieved an accuracy of

99.14, 99.30, and 99.22% for AD vs. CN, AD vs. MCI, andMCI vs. CN

classifications. Even though the classification accuracy was high for all

binary tasks, the generality of the proposedmodel was highly doubted

since the dataset was too small. Lim et al. (2022) tested a CNN, VGG-

16, and ResNet-50 as the feature extractor to distinguish NC, AD,

and MCI using MRI images. They trained the CNN from scratch and

pre-trained VGG-16 and ResNet-50 on the ImageNet database. VGG

achieved the best performance with an accuracy of 83.90%, precision

of 82.49%, recall of 83.90%, and F1-score of 83.19%.

3.4.1.4. GoogLeNet

Szegedy et al. (2015), Szegedy et al. (2016), and Szegedy et al.

(2017) contributed several versions of the Inception structure and

introduced a series of new ideas, including the Inception module

and batch normalization. Instead of choosing whether we should

use 3 × 3, 5 × 5, or 7 × 7 filters manually, the inception structure

automaticallymakes the network learn how to find a proper structure.

Batch normalization introduced in inception v2 reduces internal

covariate shift, which is generated after convolution operations. The
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consistency of statistical characteristics of data is maintained during

training. Inception v3 further replaces the large convolution kernel

with the small convolution kernel. A convolution kernel of n × n is

cracked into a stack or parallel form of 1 × n and 1 × n convolution

kernel. General network design principles suggested in inception v3

are slowly reducing the information’s dimension to the desired extent.

Ding et al. (2019) used Inception v3 pre-trained on ImageNet as

their deep learning backbone. They collect 2,109 PET images of 1,002

patients from ADNI as their dataset.

3.4.1.5. ResNet

He et al. (2016) proposed the deep residual neural networks

(ResNet) to deal with problems of vanishing and exploding gradients.

Before ResNet came into being, a network could not be designed

as deep since the gradient vanishes quickly as the network goes

deeper. The network can extract more complex feature patterns

when increasing the number of network layers. Theoretically, when

a model becomes deeper, better results should be obtained. However,

the network accuracy becomes saturated or even decreases as the

network depth increases. ResNet solves this issue by adding shortcut

connections that skip one or more layers. The accumulation layer

only does the identity mapping when the residual is zero. At least

the network performance will not decline. The residual will not be

zero, enabling the accumulation layer to learn new features based on

the input features. Usually, the residual will be relatively small, so the

model is easy to train. Abrol et al. (2020) applied a 3D ResNet in

their network for classification and prediction. They took 3D gray

matter images as the input to train the model for MCI detection

first, then utilized transfer learning to transfer the trained model

to the domain of NC and AD classification. Korolev et al. (2017)

adopted a 3D ResNet and a CNN network similar to VGG to extract

features necessary for 3D image classification using brain MRIs. Both

networks worked well to classify AD and NC but failed to separate

AD andNC fromMCI. Islam and Zhang (2018) tested an architecture

that ensembled Inception v4 and ResNet to identify different stages of

AD and achieved an accuracy of 93.18% on OASIS.

3.4.1.6. DenseNet

Huang et al. (2017) proposed DenseNet to make full use of

features from all layers. Two main approaches to improving neural

effects are going deeper and becoming more expansive. On the

contrary, DenseNet connects all layers directly. In other words, the

input for each layer is derived from the output for all previous

layers. By doing so, DenseNetmitigates vanishing gradient andmakes

the best use of features to improve the effect. At the same time,

the number of parameters is reduced to some extent. Wang et al.

(2019) proposed their model in which every classifier takes the 3D

DenseNet as the backbone, followed by fully connected layers and

a softmax function. Each 3D DenseNet is initialized and trained

separately. A voting system is adopted to integrate the probabilistic

scores generated from independent classifiers. The model is trained

on images of 833 subjects in the ADNI dataset. Liu et al. (2020)

integrated the multi-task deep CNN and DenseNet models for

hippocampal segmentation and AD classification. In detail, the

multi-task deep CNN extracted the features for segmentation and

classification, and a 3D DenseNet learned the features for disease

classification. At last, the model integrated the features learned from

the multi-task CNN and DenseNet models to make the classification.

Wang S. et al. (2018) ensembled 3D-DenseNets for AD and MCI

diagnosis. They adopted DenseNet due to the issue of limited data

and trained a few 3D-DenseNets with varying hyperparameters. The

final result is generated with the weighted sum of each base 3D-

DenseNets, and the model achieved an accuracy of 97.19%. Zhang

et al. (2021) also proposed their network using 3DDenseNet. Usually,

training a deep learning model like DenseNet with such a small

dataset usually results in a high risk of overfitting. The voting strategy

help compensates for this fault. However, training multiple deep

learning models from scratch is time-consuming and inefficient.

Transfer learning may be a good choice.

3.4.2. Input types management
CNN is a powerful tool that can process features in different

sizes and dimensions. Based on four different input types, four main

categories of methods are pervasively used in CNNs: 2D slice-based,

3D patch-based, 3D region-of-interest-based (ROI-Based), and 3D

subject-level. Table 1 presents comparisons among recent works.

3.4.2.1. 2D slice

2D slice-based approaches extract 2D slices from a 3D image

to reduce the number of hyper-parameters. The hypothesis here is

useful features for classification or prediction tasks can be extracted

from 2D slices. A common way to extract 2D slices from a 3D image

is to project the whole brain scan to the sagittal, coronal, and axial

planes. Sometimes the sagittal, coronal, and axial planes are also

called the median, frontal, and horizontal planes. The center part of

the brain is usually more informative than the parts on the edges.

The information entropy of the images in the center part is larger

than the rest. As a result, not all slices will be used during training.

Slices of sagittal, coronal, and axial views contain complementary

information. Some studies integrate features extracted from sagittal,

coronal, and axial views. It is easy to obtain large numbers of samples

when using 2D slices. A deep learning model with 2D CNN usually

contains fewer parameters and needs a shorter training time than

a 3D model. The disadvantage of slice-based approaches is that 2D

slices of a brain image lose the spatial information between each

other since each 2D slice is processed independently. Sarraf et al.

(2017), Wang S. H. et al. (2018), and Jain et al. (2019) adopted 2D

MRI slices as the input type in their proposed model. Sarraf et al.

(2017) used LeNet-5 as the CNN backbone and reported an accuracy

of 96.86% for the classification of AD ad NC. Wang S. H. et al.

(2018) trained their own 2D CNN from scratch. Jain et al. (2019)

used 2D MRI slices as the input type in the model they presented.

They adopted the VGG-16 pre-trained on ImageNet as the feature

extractor. Lin et al. (2018) investigated to use CNN with PCA and

Lasso to predict MCI-to-AD conversion. They trained the CNN as

the feature extractor to input 2.5D patches, adopted PCA and Lasso

to reduce the dimensions, and selected the most informative features.

At last, fed the features to an extreme learning machine to make the

classification. Furthermore, they tested the features generated from

FreeSurfer together with the CNN-based features, and it turned out

that using both features can generate better performance than using

solely CNN-based or FreeSurfer-based features.

3.4.2.2. 3D patch

3D patch-based approaches are like 2D slide-based methods,

but instead of sampling the projections of particular planes cutting,

the 3D brain scan into a set of 3D patches with stride as a
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TABLE 1 Comparison among papers with high citations in AD diagnosis.

References Scan type Dataset Subjects Participants Accuracy Technical details Pre-processing

Suk and Shen (2013) MRI+ PET ADNI 202 HC: 52,

AD: 51,

MCI: 99

98.8% Stacked AEs+ a multi-kernel SVM Anterior commissure-posterior commissure correction,

skull-stripping, cerebellum removal, and tissue segmented

Liu et al. (2014) MRI+ PET ADNI 311 HC: 77,

AD: 65,

pMCI: 67,

sMCI: 102

91.4% Stacked sparse AEs+ a softmax layer Non-linear registration and tissue segmentation

Lebedev et al. (2014) MRI ADNI

AddNeuroMed

896 HC: 225,

MCI: 165,

AD: 185

HC: 100,

AD: 107,

MCI: 114

Overall

Accuracy

ADNI: 86.6%

AddNeuroMed:

86.25%

RF FreeSurfer segmentation and cortical reconstruction

Suk et al. (2014) MRI+ PET ADNI 398 HC: 101,

AD: 93,

MCI: 204

95.35% DBM+ a linear kernel SVM Anterior Commissure (AC)-Posterior Commissure (PC)

correction, skull-stripping, cerebellum removal, and tissue

segmented

Payan and Montana

(2015)

MRI ADNI 2,264 HC: 755,

AD: 755,

MCI: 755

95.39% Sparse AEs and 3D CNN+ FC Normalization

Suk et al. (2015) MRI+ PET ADNI 202 HC: 52,

AD: 51,

pMCI: 43,

sMCI: 56

89.13% Stacked AEs+ a multi-kernel SVM Anterior commissure (AC)-posterior commissure (PC)

correction, skull-stripping, and cerebellum removal.

Moradi et al. (2015) MRI ADNI 825 HC: 231,

MCI: 394,

AD: 200

75% LDS+ RF Intensity correction, spacial normalization, and tissue

segmentation

Khedher et al. (2015) MRI ADNI 818 HC: 229,

AD: 188,

MCI: 401

88.49% Partial least squares+ PCA+ SVM Spatial Normalization and segmentation(GM, WM, CSF)

Li et al. (2015) MRI+ PET+ CSF

+MMSE+ ADAS-Cog

ADNI 202 HC: 52,

AD: 51,

MCI: 99

91.4% PCA features stacked RBMs+ a linear

kernel SVM

Anterior commissure-posterior commissure correction,

skull stripping, cerebellum removal, and spatially

normalization

Suk et al. (2016a) MRI ADNI-2

In-house

dataset

100 HC: 31,

MCI: 31

HC: 25,

MCI: 13

72.58%

81.08%

Deep Auto-Encoder Realignment and normalization

Hosseini-Asl et al. (2016a) MRI ADNI,

CADDementia

310+ 30=

240

HC: 70,

AD: 70,

MCI: 70

30 subject

AD vs. MCI vs.

NC: 94.6%

AD+MCI vs.

NC: 95.7%

AD vs. NC:

99.3%

AD vs. MCI:

100%

MCI vs. NC:

94.2%

A 3D CNN pre-trained with stacked 3D

convolutional AEs

Normalizing, skull stripping, and intensity normalization
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TABLE 1 (Continued)

References Scan type Dataset Subjects Participants Accuracy Technical details Pre-processing

Hosseini-Asl et al. (2016b) MRI ADNI,

CADDementia

310+ 30=

240

HC: 70,

AD: 70,

MCI: 70

30 subject

AD vs. MCI vs.

NC: 89.1%

AD+MCI vs.

NC: 90.3%

AD vs. NC:

97.6%

AD vs. MCI:

95%

MCI vs. NC:

90.8%

A 3D CNN pre-trained with stacked 3D

convolutional AEs

Normalizing, skull stripping, and intensity normalization

Liu et al. (2016) MRI ADNI 459 HC: 128,

AD: 97,

sMCI: 117,

pMCI: 117

93.06% Ensemble SVMs Non-parametric non-uniform bias correction, skull

stripping, cerebellum removal, tissue segmentation, and

affine alignment

Suk et al. (2017) MRI ADNI 805 HC: 226,

AD: 186,

pMCI: 167,

sMCI: 226

AD vs. NC:

90.28%

MCI vs. NC:

74.20%

pMCI vs.

sMCI: 73.28%

Sparse regression+ CNN Anterior Commissure (AC)-Posterior Commissure (PC)

correction, skull-stripping, and cerebellum removal

Korolev et al. (2017) MRI ADNI 231 HC: 61,

AD: 50,

sMCI: 77,

pMCI: 43

88% 3D CNN based on ResNet and VGGNet+ Alignment and skull stripping

Sarraf et al. (2017) MRI ADNI 144 + 302 =

446

HC: 92+ 91,

AD: 52+ 211

100% GoogLeNet and LeNet-5+ Skull stripping, tissue segmentation, registration, and

smoothing

Islam and Zhang (2018) MRI OASIS 416 416 93.18% 2 CNNs, Inception v4,ResNet Data augmentation

Lin et al. (2018) MRI ADNI 818 HC: 229,

AD: 188,

MCI: 401

79.90% PCA+ Lasso+ CNN Skull-stripping, deformation registration, and intensity

normalization

Wang S. H. et al. (2018) MRI OASIS, local 196 HC: 98,

AD: 28

AD: 70

97.65% A 2D CNN Brain extraction, spatial normalization, normalization,

smoothing, and histogram stretching

Shi et al. (2018) MRI+ PET ADNI 202 HC: 52,

AD: 51,

sMCI:

56,breakpMCI:

43

97.13% Stacked DPN

+a linear kernel SVM

Anterior commissure (AC)-posterior commissure (PC)

correction, intensity inhomogeneity, skull-stripping,

cerebellum removal, tissue segmentation, registration
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TABLE 1 (Continued)

References Scan type Dataset Subjects Participants Accuracy Technical details Pre-processing

Basaia et al. (2019) MRI ADNI 1,2,GO

+Milan

dataset

1,385 In total

HC: 407, AD:

418, c-MCI:

280, sMCI: 280

ADNI

HC: 352,

AD: 294,

MCI: 763

Milan

HC: 55,

AD: 124,

MCI: 50

AD vs. HC:

99% on ADNI

98% on ADNI

+ Milan

cMCI vs.

sMCI: 75% on

both datasets

CNN Spatial Normalization and tissue segmentation,

Wang et al. (2019) MRI ADNI 833 HC: 315,

AD: 221,

MCI: 297

97.52% Esemble 3D-CNN Grad-warping, intensity correction, skull stripping, and

alignment

Khan et al. (2019) MRI ADNI 150 HC: 50,

AD: 50,

MCI: 50

99.20% VGG Employ image entropy to select the most informative slices

Jain et al. (2019) MRI ADNI 150 HC: 50,

AD: 50,

MCI: 50

95.73% VGG-16 pre-trained on ImageNet

+ 2D CNN

+ FC

Motion Correction, non-uniform intensity normalization,

Talairach transform computation, intensity normalization,

and skull stripping

Liu et al. (2020) MRI ADNI 449 HC: 119,

AD: 97,

MCI: 233

AD vs. NC:

88.9%

MCI vs. NC:

76.2%

3D DenseNet Hippocampus segmentation and affine registration Tissue

segmentation and

non-linear registration

Lian et al. (2020) MRI ADNI-1

ADNI-2

951 HC: 229,

AD: 199,

sMCI: 226,

pMCI: 167

HC: 200,

AD: 159,

sMCI: 239,

pMCI: 38

AD vs. NC:

90.3%

pMCI vs.

sMCI: 80.9%

FCN Anterior commissure (AC)-posterior, commissure (PC)

correction, intensity correction, skull stripping, cerebellum

removing, and affine registration

Abrol et al. (2020) MRI ADNI 828 HC: 237

AD: 157

sMCI: 245

pMCI: 189

83.01% CNN

+3D ResNet

Tissue segmentation, normalization, and smoothing

Feng et al. (2020) MRI ADNI 489 HC: 179,

AD: 153,

MCI: 157

NC: 93.71%

MCI: 96.82%

AD: 96.73%

3D CNN

+SVM

Spatial normalization, skull stripping, tissue segmentation,

affine transition, and registration
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hyperparameter. The sample size is larger after cutting. The 3D

patch-based methods compensate for the loss of spatial information

compared with 2D slice-based methods, but patches are often used

independently during training. 3D patch-based methods need low

memory when a model uses the same network for each patch. If

training an independent network for each patch separately and then

using an assemble architecture to integrate the results from previous

independent networks, the complexity of the whole network will

be high. Challenges in the 3D patch-based method are to choose

the informative patches from the brain scan and select the most

discriminative features. Qiu et al. (2020) and Zhang et al. (2021)

adopted 3D patches as the input type.

3.4.2.3. 3D ROI

3D ROI-based methods pay attention to specific regions which

have been proved to be related to AD clinically. Images of ROI

represent the 3D image of a segmented brain region. The selected

regions, for example, gray matter volume, hippocampal volume,

cortical thickness, etc., are usually informative. Using an ROI-based

method will not lead to overfitting easily. The model interpretability

is excellent since a human can see the contribution of each region

in the model. The shortage of ROI-based methods is the prerequisite

knowledge of the regions to select in AD. Liu et al. (2014) took the

3D ROI-based input and extracted features in Stacked sparse AEs. Li

et al. (2015) adopted 3D ROI-based input in their model and used an

SVM classifier.

3.4.2.4. 3D subject

3D subject-based methods take a 3D brain scan as a whole,

so complete integration of spatial information is preserved. Since

a patient only provides one sample at a time, the sample size is

too few compared with the number of subjects in popular datasets.

Consequently, the risk of overfitting is high when using 3D subject-

basedmethods.MRI scans are globally similar. Minor changes are not

easily recognized in MRIs.

3.5. Autoencoder

An autoencoder (AE) is an artificial neural network in which

the input and learning objectives are almost the same. Autoencoders

aim to learn hidden representations of the input in an unsupervised

manner. An autoencoder consists of an encoder and a decoder.

Given input space and feature space, an autoencoder solves the

mapping between the input and output to ensure the reconstruction

error of the input feature is minimized. In other words, the latent

layer feature, the encoded feature generated by the encoder, can be

regarded as a representation of the input data.

The representational ability of an AE is limited. Stacked AEs

are a combination of a series of AEs stacked together. In Stacked

AEs, the output of hidden units of an AE is used as the input of

another AE in the deeper layer. As the stacked AEs become deeper,

the representational power increases. Stacked AEs can also be used

in transfer learning. Stacked AEs as self-supervised learning can

effectively extract the latent representation of input data. So stacked

AEs can be used as a feature extractor. Train the AE with the

training set, then replace the decoder with a classifier for classification

purposes. The latent representation extracted in the AE can be used

in pre-training. In tasks lacking datasets like AD classification and

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1038636
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2023.1038636

prediction, stacked AEs are pervasively used. Suk and Shen (2013),

Suk et al. (2015), and Suk et al. (2016a) proposed networks used

stacked AEs as feature extractors. SVM is used as the classifier to

process the features to make the classification. Hosseini-Asl et al.

(2016a,b) used a 3D CNN pre-trained with stacked 3D convolutional

AEs in their work. Payan and Montana (2015) adopted sparse AEs

and CNN and compared the classification accuracy of 2D and 3D

approaches. The 3D approach provided a boost in performance

compared to the 2D method.

3.6. Transformer

The utilization of state-of-the-art models of other computer

vision tasks significantly improves the performance of AD

classification and prediction. Integrating the latest model into

AD-related studies is always a good idea. The next possible candidate

to improve AD performance may be the attention mechanism.

The attention mechanism proposed by Vaswani et al. (2017) was

initially designed to solve Natural Language Processing (NLP)

problems. Although the nature of the transformer is nothing but a

weighted sum, the performance of the transformer is unbelievable

and fabulous in a wide range of areas.

The vision transformer (Vit) proposed by Dosovitskiy et al.

(2020) ditches the CNN structure and utilizes a pure transformer. As

a new type of feature extractor, Vit focuses on patch-level attention

instead of focusing on pixel-level attention. Vit achieves better

performance than CNN in the various task in computer vision. If

Vit is successfully used in AD diagnosis, the interpretability of the

model will be increased since Vit depicts the importance of each area.

The shortage of Vit is the dimension of the input feature is too large

as most AD-related tasks use 3D images. Using Vit to handle such

input with such a large dimension is unrealistic. Since 3D images

contain much more spatial redundancy than 2D images and texts, it

is necessary to reduce the duplication before processing.

With the great success of masked language models like

Bidirectional Encoder Representations from Transformers (BERT)

(Devlin et al., 2019) for pre-training in NLP, a new transfer learning

method may also help improve performance. Masked Autoencoder

(MAE), proposed by He et al. (2021), explains the natural difference

between language and vision. Language is concrete and has high

sematic information density, while vision is a continuous signal that

contains duplication in space. Masked parts are more likely to be

recovered in a vision task. An original image can be reconstructed

based on the given partial observation information.

3.7. Transfer learning

Humans can utilize existing knowledge of one area to accelerate

solving problems in another area. In many studies, researchers

train their deep learning models from scratch. However, it is often

inefficient since the training process is time-consuming, and a dataset

of adequate size up to millions of images is required. Because of

the high cost of learning directly from scratch, researchers expect

to use existing knowledge to assist in learning new knowledge faster

and better. Transfer learning means transferring knowledge learned

from one domain to another. The source domain is defined as the

domain that contains existing knowledge, while the target domain

is the one to which the current knowledge is transferred. Since

the most pervasively used backbone networks like LeNet, AlexNet,

VGGNet, ResNet, DenseNet, and GoogLeNet are all trained on

ImageNet, ImageNet has become the most common source dataset

for transfer learning (Ardalan and Subbian, 2022). Researchers use

transfer learning to pre-train their deep learning algorithms to solve

the problem of scarcity of data samples.

Fine-tuning means applying a pre-trained model and using the

weights of the pre-trained model to initialize the new model that

will train. Fine-tuning helps to save a lot of time for training since a

model does not need to train from scratch. Researchers can choose to

freeze, fine-tune, and randomly initialize parts of the pre-train model.

According to Ardalan and Subbian (2022), most researchers prefer to

fine-tune convolution and fully connected layers.

The prediction for MCI conversion is more challenging than

the classification between AD and HC because the brain structural

changes of MCI may be very subtle. However, since the classification

task between AD and HC is highly correlated with the task of

MCI prediction, researchers often transfer the weights learned from

the AD classification to initialize the parameters of the network

for MCI classification. Khan et al. (2019) attempted to solve the

need of large dataset issue with transfer learning. Their transfer

learning strategy they deployed was to fine tune with layer-wise

tuning which meant only a predefined group of layers were trained

while other layers stayed frozen. Liu et al. (2021) adopted the

AlexNet and GooLeNet as the base for transfer learning with an

accuracy of 91.4 and 93.02%, respectively. The GoogLeNet achieved

a slightly higher performance since it contains deeper layers and

more convolutions than AlexNet. Odusami et al. (2021) utilized a

transfer learning method for Alzheimer’s detection. They utilized a

pre-trained ResNet18 network as the source domain and unfroze

all the layers to update the parameters of the network. Basaia et al.

(2019) implemented transfer learning in the way that the weights of

the CNN used to classify ADNI AD vs. HC were transferred to the

other CNNs and used as pre-trained initial weights. Lian et al. (2020)

transferred the weights learned from the AD vs. HC classification

task to the MCI classification task. Hosseini-Asl et al. (2016a) pre-

trained a 3D convolutional autoencoder in the source domain (CAD-

Dementia) and fine-tuned in the target domain (ADNI). Li et al.

(2015) pre-trained with RBM in an unsupervised manner. Similarly,

Payan and Montana (2015) pre-trained convolutional layers with a

sparse autoencoder and used the layers to initialize CNN.

4. Challenges and discussion

This article still contains some limitations. The papers we

reviewed are mostly papers with high citations per year, which

is not fair for newly published ones. The document and source

types are strictly limited to “article” and “journal.” Furthermore,

we only reviewed articles written in English. We mainly reviewed

papers on Alzheimer’s disease diagnosis using MRI as the data

type. Neuroimaging of other forms, genetic, biological, voice-based,

text-based, etc., may be reviewed in separate papers. The multi-

modality models that can fuse information from different modalities

usually outperform the models with only one modality since various

modalities may contain complementary information.
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Artificial intelligence, especially conventional machine learning

and deep learning methods, is thriving in AD-related tasks. However,

there are still some challenges. The datasets in the AD area are still

small compared with datasets in computer vision tasks because of

the privacy of medical data. Given the complexity of AD-related

tasks, a large-scale dataset is a must for a researcher to develop more

effective and powerful models. Currently, researchers mainly focus

more on AD, MCI, and NC classification than prediction. The early

detection of AD remains a challenging issue. Performance between

each proposed model is hard to compare due to using different

numbers of samples, modalities, pre-processing techniques, feature

extractors, classifiers, etc.

4.1. Class imbalance

Class imbalance is a common issue in datasets. Usually, images

in some classes may be far more than those in others in a dataset.

Increasing the number of images that is fewer than other classes or

reducing the number of images that is more than other classes are

two methods to solve the imbalanced data issue. Synthetic Minority

Oversampling Technique (SMOTE) technique is used to address the

class imbalance problem in the dataset is by randomly duplicating

the minority class of images in the dataset to minimize the overfitting

problem (Chawla et al., 2002). Murugan et al. (2021) adopted SMOTE

to overcome the class imbalance issue in their work and reported

a training and validation accuracy of 99 and 94% compared with

96 and 78% when not implementing SMOTE. Data augmentation

is one way to handle imbalanced data by enlarging the number of

samples in the rare class. Reducing the number of images from the

over-sampled class makes the dataset smaller. Afzal et al. (2019)

adopted data augmentation to address the class imbalance concern

in AD detection using 3D MRI images from OASIS and achieved

high performance for Alzheimer’s disease diagnosis. However, using

a balanced dataset can improve the performance even if the dataset

becomes smaller due to dataset balancing (Farooq et al., 2017). A

balanced dataset is preferable. Another way of solving imbalanced

class issues is by reconstructing medical images. Hu et al. (2020)

proposed a Generative Adversarial Network (GAN) to reconstruct

neuroimages. They used the new reconstructed images to augment

the imbalanced dataset. They trained two 3D densely convolutional

connected networks with the raw dataset and the fresh balanced

and tested the performance of these two networks. The neuroimages

generated from the GAN helped improve classification accuracy from

67 to 74%.

4.2. Data leakage

Data leakage refers to the use of testing data during training (Wen

et al., 2020). Four main reasons that lead to data leakage are: incorrect

data split, late split, improper transfer learning, and no independent

test set. The late split occurs using data augmentation techniques

before splitting the dataset into training, test, and validation sets.

As a result, the images generated from the same source can be

split into different datasets, leading to a biased evaluation. Incorrect

data split means images of a subject at multiple time points are

split into different training, test, and validation sets. Incorrect data

split may occur when using 2D slices and 3D patches as deep

learning input. The proper split should happen at the subject level.

Prejudice transfer learning happens if the source and destination

domain of transfer learning overlap. Different source and destination

datasets are excellent ways to avoid prejudice transfer learning. No

independent validation set exists in research in which the dataset

is split into only training and test set. The test set should only be

used for evaluation and never use the test set for hyperparameter

optimization. A separate validation set that does not overlap with the

test set can be used to optimize the hyperparameter of the model.

4.3. Trade-o� discussion

In the reviewed articles of this paper, most authors utilized pre-

processing techniques. Even though deep learning requires less pre-

processing of data, for instance, Islam and Zhang (2018) and Khan

et al. (2019) utilized no pre-processing techniques in their CNN

networks; we still suggest pre-processing according to the standard

pipeline before using the raw data, especially when adopting the

conventional machine learning method. A recommend standard pre-

processing pipeline includes: intensity correction, skull-stripping,

registration, normalization, and tissue segmentation.

In the reviewed papers, SVM is the most pervasively utilized.

However, the trend in recent years is that CNN will surge in

popularity. Deep learning approaches achieved better performance in

diagnostic tasks than conventional methods. A significant drawback

of deep learning is it lacks interpretability and transparency. The deep

learning models are in a black box state, and the internal operating

mechanism is challenging to comprehend. Moreover, compared to

conventional machine learning, deep learning techniques usually

requires higher-performance graphics processing units, an enormous

amount of storage, and more time to train.

Most of the research is conducted using one dataset. However,

some researchers use more than one dataset for specific purposes.

For instance, Liu et al. (2018) and Poloni and Ferrari (2022) used

multiple datasets to enlarge the number of subjects. A few researchers

use multiply datasets for different stages. Qiu et al. (2020) proposed a

network to take ADNI as the training dataset and AIBL, FHS, and

NACC as the testing dataset. Basaia et al. (2019) tested CNN on

two datasets, ADNI and ADNI + Milan, and achieved an accuracy

of 99% on ADNI and 98% ADNI + Milan in the classification of

AD and HC, and an accuracy of 75% in detection cMCI and sMCI

on both datasets. Lian et al. (2020) automated the identification

of discriminative local patches and regions, then fused the features

learned for classification by a hierarchical fully convolutional network

on ADNI-1 and ADNI-2 and achieved an accuracy of 90.3% for AD

vs. NC and 89.9% for pMCI vs. sMCI in the classification tasks.

Cutting the 3D image from various perspectives can generate

2D slices. 2D slice-based is a cheap method since the 2D image is

much easier to process than 3D. In addition, slicing helps enlarge

the sample size of the dataset. Usually, the 2D slices in the center

with larger entropy will be selected, so the input dimension is

further reduced. However, when using the slices of one 3D image

independently, the interrelationship informationmay be lost through

slicing. We recommend that researchers who do not have hardware

support concentrate on designing a small architecture to try 2D

slice-based data as the input form. Like the 2D slice-based methods,

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1038636
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2023.1038636

3D patch-based methods provide a large dataset. The 3D patch

compromises the 2D slice and the 3D subject image. However, the

network should have to train a classifier for a patch. As a result,

there will be too many classifiers to train. Extracting discriminative

features and selecting the most informative ones from all the 3D

patches is tough. Although the ROIs are usually informative, only

one or a few regions will be considered in a model. However, AD

often covers multiple brain regions. For researchers who comprehend

how to define and use Region-of-Interests 3D ROI-based method

may be a suitable solution with adequate interpretability. Subject-

level methods contain only one sample per patient, so subject-level

methods usually contain too few samples for a complicated task like

AD detection.

There is no fixed answer to determining a suitable backbone

or an input form. In general, larger and more complex models

have a greater chance of yielding higher performance. According to

Elharrouss et al. (2022), the complexity of DenseNet-121 and ResNet-

101 is 0.525 a and 7.6 Giga Floating Point Operations Per Second

(GFLOPs). The complexity of AlexNet is over ten times higher than

ResNet-101. However, their top-1 error rates are 25.02% and 19.87%,

which means fourteen times the complexity in exchange for a 5.15%

reduction in the top-1 error rate.

Compared with CNN, one of the most significant advantages

of the autoencoders is that it is an unsupervised learning method,

and CNN must utilize marked data to work. However, autoencoders

learn to capture as much information as possible, but the captured

information may not be relevant to the specific task. If the

information most pertinent to an issue makes up only a tiny

part of the input, the autoencoders may lose much of it. Vision

transformers outperform CNNs in some image classification tasks.

However, Vision transformers need costly pre-training on large

datasets. Researchers must choose the most suitable model based

on their hardware conditions and specific application requirements,

balancing performance and complexity.
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