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In neural decoding, a behavioral variable is often generated by manual annotation

and the annotated labels could contain extensive label noise, leading to poor model

generalizability. Tackling the label noise problem in neural decoding can improve model

generalizability and robustness.We use a deep neural network based sample reweighting

method to tackle this problem. The proposed method reweights training samples by

using a small and clean validation dataset to guide learning. We evaluated the sample

reweightingmethod on simulated neural activity data and calcium imaging data of anterior

lateral motor cortex. For the simulated data, the proposed method can accurately predict

the behavioral variable even in the scenario that 36 percent of samples in the training

dataset are mislabeled. For the anterior lateral motor cortex study, the proposed method

can predict trial types with F1 score of around 0.85 even 48 percent of training samples

are mislabeled.

Keywords: neural decoding, noisy label, sample reweighting method, deep neural networks, anterior lateral motor

cortex

1. INTRODUCTION

Neural decoding (Lee et al., 2021) centers on predicting behavioral variables based on brain-
related features. That is, we aim to construct a predictive model f :X → Y based on a dataset
D, where X is a vector of brain-related features. In neural decoding, X can be obtained from
calcium imaging, electroencephalography, functional near-infrared spectroscopy or functional
magnetic resonance imaging. The behavioral variable Y can be a variable representing brain states,
a label for trials in trial-based analysis, or an annotation for a subject such as whether the subject
progresses to Alzheimer’s disease. Neural decoding enables precise neuromodulation. In precise
neuromodulation, a neural decoding algorithm predicts Y based on neural data streams in real-
time and neuromodulation parameters are tuned based on decoding results. Such closed-loop
neuromodulation system could be more effective than the open-loop system.

An important step in constructing neural decoding models is sample annotation in which a
label yi is assigned to sample xi. The quality of annotation has a dramatic impact on the model
generalizability which is assessed by applying the model to an independent test dataset. However,
the annotation process could be subjective and the label noise problem is sometimes inevitable.
The annotation quality varies across different annotators. In a study to assess the impact of noisy
labels (Zhang et al., 2021), a test error rate of 0.1 was achieved by applying the Inception model to
the CIFAR10 dataset, and the test error rate increased to 0.4 when 20% of labels were corrupted.

Deep neural networks (DNNs) have shown potentials to significantly improve decoding
performance (Horikawa and Kamitani, 2017; Wu et al., 2021). An ideal scenario to train a DNN
model is to obtain a large dataset with high-quality labels. This requires a lot of expensive expert
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efforts. A dataset with noisy labels is relatively easy to collect.
However, most existing neural decoding methods cannot handle
noisy labels. There is an urgent need to develop new deep
learning methods to address the noisy label problem to improve
prediction performances.

In this study, we have utilized a sample reweighting algorithm
to solve the noisy label problem in neural decoding. In our
neural decoding problem, we have three datasets: training,
validation, and test. The training dataset is massive but labels
(or annotations) are noisy. The validation dataset is small and
accurately labeled. The model’s performance is evaluated on
a noise-free test dataset. Our goal is to address the noisy
label problem in training data (noisy Y) to improve behavior
prediction performance by utilizing a small and accurately
labeled validation dataset. In the sample reweighting algorithm,
training sample weights are determined to minimize the
loss on the validation dataset. In practice, labeling massive
data accurately is expensive and time consuming. Our neural
decoding algorithm can greatly reduce the cost of this process.
To the best of our knowledge, this is the first study to utilize the
sample reweighting algorithm, a meta-learning method, to solve
neural decoding problem.

2. RELATED WORK

Noisy label problems are well studied in machine learning. DNN-
based methods have been proposed to solve the label noise
problems to enhance the algorithm robustness. Recent DNNs
research focusing on label noise problems can be categorized
into five classes (Hwanjun et al., 2022): robust architecture (Tong
et al., 2015; Jacob and Ben-Reuven, 2017; Yao et al., 2019), robust
regularization (Srivastava et al., 2014; Ioffe and Szegedy, 2015;
Shorten and Khoshgoftaar, 2019), robust loss function (Reed
et al., 2015; Zhang and Sabuncu, 2018; Lyu and Tsang, 2020), loss
adjustment (Reed et al., 2015; Patrini et al., 2017; Song et al., 2019)
and sample selection (Jiang et al., 2018; Wang et al., 2018). Each
category has its specific properties and shows some advantages
and disadvantages in handling label noise problems.

In this study, we choose loss adjustment to solve the label noise
problem and improve the behavior prediction performance. It
is possible to assign weights to training samples to minimize
the loss on a clean unbiased validation dataset to solve the
problem. The sample reweighting strategy has been well studied
inclduing boosting (Freund and Schapire, 1997), hard sample
mining (Malisiewicz et al., 2011), and focal loss (Lin et al., 2017).
Meta-learning has been applied to improve noise robustness
(Andrychowicz et al., 2016; Finn et al., 2017; Ren et al., 2018;
Shu et al., 2019; Wang et al., 2020). Meta-learning centers on
learning to learn better and is an active topic in machine learning.
Ren et al. have proposed a novel meta-learning algorithm (Ren
et al., 2018) that learns to assign weights to training samples based
on their gradient directions. This method improves the training
objective by a weighted loss rather than an average loss and is
an example of meta-learning. With meta-learning, the trained
network easily adapts to various types of data and label noise.
Though this method has been explored in recent meta-learning

research (Ravi and Larochelle, 2017; Ren et al., 2018), our study
is the first to apply sample reweighting meta-learning algorithm
to neural activity data.

3. METHODS

In this section, we describe the sample reweighting method and
a baseline method to solve the noisy label problem. The sample
reweighting algorithm used in this paper is DNN-based and
proposed in Ren et al. (2018). We apply it to neural decoding.
The training dataset is denoted as {(xi, yi), 1 ≤ i ≤ N}, where xi
denotes the ith sample, yi is the label corresponding to xi, andN is
the sample size of the training dataset. yi is noisy. The validation
dataset is relatively small but accurately labeled, which is denoted
as {(xυ

i , y
υ
i ), 1 ≤ i ≤ M}, where xυ

i denotes the ith sample, yυ
i

denotes the label corresponding to xυ
i , and M is the sample size

of the validation dataset. We use θ to denote the parameters of
neural network model.

3.1. Sample Reweighting Method
Our goal is to reweight training samples andminimize a weighted
loss

∑N
i=1 ωifi(θ). ω is calculated based on the validation

performance, i.e. ω∗ = argmin
ω, ω≥0

1
M

∑M
i=1 f

υ
i (θ

∗(ω)). For DNNs,

stochastic gradient descent (SGD) is used to optimize loss
function and the model parameters are adjusted according the
descent direction. SGD can be formulated as follows:

θt+1 = θt − α∇(
1

n

n∑

i=1

fi(θt)), (1)

where α is the step size. According to Koh and Liang (2017), we
consider perturbing the weight by ǫi for each training sample in
the mini-batch,

fi,ǫ(θ) = ǫifi(θ), (2)

θ̂t+1(ǫ) = θt − α∇

n∑

i=1

fi,ǫ(θ)

∣∣∣∣
θ=θt

, (3)

By minimizing the validation loss f υ locally at step t, we can
obtain an optimal ǫ∗ as follows:

ǫ∗t = argmin
ǫ

1

M

M∑

i=1

f υi (θt+1(ǫ)), (4)

Taking a single gradient descent step on a mini-batch of
validation dataset and rectify the output, we obtain the ω̃i,t , which
is calculated as follows:

µi,t = −η
∂ 1
m

∑m
j=1 f

υ
j (θt+1(ǫ))

∂ǫi,t

∣∣∣∣
ǫi,t=0

, (5)

ω̃i,t = max(µi,t , 0), (6)

Frontiers in Computational Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 913617

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Xu and Chen Meta-Learning for Neural Decoding

We normalize the weights of all samples so that their sum is one.
This is a hard constraint and can be seen as follows:

ωi,t =
ω̃i,t∑

ω̃j,t + δ(
∑

ω̃j,t)
, (7)

The normalization can prevent the degenerate case and cancel the
meta-learning rate parameter η (Ren et al., 2018). The process is
listed in Algorithm 1.

Algorithm 1 Sample Reweighting Algorithm

Require:

θ0,m, n, training data Ωf , validation data Ωg

Ensure:

θT

1: for t = 0...T-1 do

2: Sample a mini-batch from Ωf : {Xf , yf }

3: Sample a mini-batch from Ωg : {Xg , yg}

4: Train a model and predict: ŷf = Forward(Xf , yf , θt)

5: Calculate loss: lf =
∑n

i=1 ǫiC(yf ,i, ŷf ,i); (ǫ: to perturb the

weighting)

6: Update model parameters: θ̂t = θt - α∇θt ;

7: Predict samples in the validation dataset: ŷg =

Forward(Xg , yg , θ̂t)

8: Calculate validation loss: lg =
1
m

∑m
i=1 C(yg,i, ŷg,i)

9: Rectify weighting: ω̂ =max(-∇ǫ, 0)

10: Normalize weighting: ω =
ω̃i,t∑

ω̃j,t+δ(
∑

ω̃j,t)

11: Calculate weighted training loss: l̂f =
∑n

i=1 ωiC(yi, ŷf ,i)

12: Update model parameter: θt+1 =OptimizerStep(θt ,∇θt);

(∇θt = BackwardAD(l̂f , θt))

13: end for

The DNN for the sample reweighting method has an input
layer, two hidden layers and an output layer. Although a single
sufficiently large hidden layer is adequate to approximate most
functions, this design is inefficient compared to designs with
more layers. The two (ormore) hidden layers architecture is more
efficient (Reed and MarksII, 1999). There are some empirically-
derived rules to determine the number of nodes in each layer: the
number of hidden nodes should be 2/3 the size of the input layer,
plus the size of the output layer, and less than twice the size of the
input layer. In our study, the sizes of the input and output layers
for the simulated dataset were 80 and 2, respectively; and they
were 91 and 2 for the ALM dataset, respectively. Therefore, our
DNN had two hidden layers, and the two hidden layers contained
128 and 64 nodes, respectively. The activation functions in the
two hidden layers are the rectified linear unit (ReLU) functions.

TABLE 1 | The training dataset of the simulated data study.

Annotator Sample Sample size Sample size Portion Noise

Size (Label 0) (Label 1) Parameter(%) Level(%)

1 600 464 136 100 36.3

2 600 460 140 80 29.6

3 600 456 144 60 23.0

4 600 460 140 40 13.0

5 600 461 139 20 7.3

The loss function is the cross entropy loss, and the optimizer
is the Adam algorithm. For model learning, there exist some
parameters: learning rate, batch size and epoch size. The learning
rate and epoch size are tuned according to the weighted loss.
The batch size is set as the same as the sample size of validation
dataset because the sample reweighing method updates weights
by taking a single gradient descent step on a mini-batch of
validation dataset. Model convergence is determined according
to the weighted loss, when it decreases very slowly or becomes
flat.

3.2. Baseline Method
Two baseline methods are used for the comparison purpose.
Sample reweighting is not used in the baseline methods. In the
first baseline method (baseline 1), we merge the training and
validation data. Model parameters are tuned according to the
performance based on the merged dataset. In the second baseline
method (baseline 2), we train the DNN model based on the
validation dataset only. The DNNs of these baseline methods
contain one input layer, two hidden layers and one output
layer. The input layer includes all features. The method applies
a linear transformation to the input features and transfers the
transformed features to the first hidden layer. The first hidden
layer contains 128 neurons and the activation function is ReLU.
The second hidden layer contains 64 neurons and the activation
function is also the ReLU. The loss function is the cross entropy
loss. The optimizer is the Adam algorithm.

4. EXPERIMENTS AND RESULTS

We evaluated the sample reweighting method based on the
simulated data and calcium imaging data of anterior lateral motor
cortex (ALM) (Li et al., 2015). For a study, the training data had
label noises, the validation data had few mislabeled samples or
clean, and the test data were clean. An algorithm’s performance is
evaluated based on the test dataset. The prediction qualitymetrics
are the F1 score and balanced accuracy.

4.1. Simulated Data
The neuron model in the simulated data was integrate-and-
fire neurons with additive noise. Our simulation included 80
neurons. There were two groups of neurons: group A and group
B. Each group had 40 neurons. Neurons in group A were
activated by a stimulus and neurons in group B received synaptic
inputs from two or three neurons in group A. Neurons in groups
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FIGURE 1 | The model’s performances on the simulation datasets with different label noise levels. (A) is the F1 scores of baselines 1 and 2 and sample reweighting

method. (B) is the balanced accuracies of baseline 1 and 2 and sample reweighting method.

A and B formed a two-layer feed-forward neural network. The
feature vector included neural activities of groups A and B. Its
dimension was 80. The behavioral variable y is a non-linear
function of the average population activity of group B. Let rB
denote the average population activity of group B. If sin(π · rB) >

0.85, y = 1; otherwise, y = 0.
The simulated data consisted of training, validation, and test

data. Our task was to predict y. Each training dataset had 600
samples. The class distribution was imbalanced. The ratio of
the number of samples of classes 0 and 1 was around 3:1. For
the training dataset, we simulated noisy labeling by randomly
shuffling a portion of y. For example, the portion parameter was
80% representing a case that 0.8 × 600 = 480 data points of y
were randomly shuffled. We generated five training datasets with
different noise levels. For these five training datasets, the portion
parameters are 100, 80, 60, 40, and 20%. Table 1 summarized the
training data. These datasets were referred to as annotators 1–
5. The label noise levels of training samples after shuffling were
listed in the last column of Table 1.

The validation dataset was accurately labeled with portion
parameter = 10%. Most of samples in the validation dataset were
labeled correctly. We built a relatively big validation dataset with
600 samples. The sample sizes for classes 0 and 1 were 457
and 143, respectively. However, in our experiments, we might
only use a small portion of validation dataset (for example,
20 samples from the validation dataset). We created this large
validation dataset in order to assess the algorithm’s performance
relative to the sample size of the validation dataset. In real-
world applications, we always prefer a small validation dataset
due to the cost of obtaining high quality annotations. The test
dataset was clean and without noise. The sample size of test
dataset was 600, and the samples sizes for classes 0 and 1 were
449 and 151, respectively. Both the validation and test datasets
were imbalanced.

FIGURE 2 | The boxplots of weights for the correctly-labeled and mislabeled

samples in the simulation training dataset with noisy labels (the noise level is

36.3%). **** denotes that weights of the correctly-labeled samples were

significantly different from those of mislabeled samples (p < 0.0001).

4.1.1. Sample Reweighting Is Effective
The first sub-experiment aimed to assess model generalizability
under different noise levels for the sample reweighting and
baseline methods. For the sample reweighting method, we
used a very small validation dataset (20 samples) to guide
training. For the baseline and sample reweighting methods, the
model’s performances for different noise levels are shown in
Figure 1. For baseline 1, when the noise level increased, the
model performances (F1 score and balanced accuracy) decreased
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FIGURE 3 | The effects of sample size of validation data. (A) is the averages (the gray bars) and the standard deviations (the black line) of the F1 score. (B) is the

averages (the white bars) and the standard deviations (the black line) of the balanced accuracy.

significantly. The F1 score and balanced accuracy of the sample
reweighting method remained stable across noise levels. At 7.3%
noise level, the F1 score and balanced accuracy were greater
than 0.9. When the noise level was 36.3%, both the F1 score
and balanced accuracy of the sample reweighting method were
still around 0.9. When the noise level increased from 7.3 to
36.3%, the F1 score of sample reweighting method dropped
less than 0.1, whereas that of baseline 1 dropped around 0.4.
When the noise level increased from 7.3 to 36.3%, the balanced
accuracy of the sample reweighting method dropped less than
0.05, whereas that of the baseline 1 dropped more than 0.2.
The sample reweighting method obtained better performances
than baseline 2. Because baseline 2 didn’t use training data, the
method’s performance was constant across training data noise
levels. This sub-experiment demonstrated the effectiveness of the
sample reweighting method.

To illustrate how the samples were reweighted after meta-
learning, the sample weight distribution for the training dataset
was shown in Figure 2. The correctly-labeled samples in the
training dataset were up-weighted. Most of the mislabeled
samples (86.70%) had weight = 0. We conducted the Wilcoxon
rank-sum test to compare the weights between correctly-labeled
andmislabeled samples. Weights of the correctly-labeled samples
were significantly different from those of mislabeled samples
(p < 0.0001).

4.1.2. The Sample Reweighting Method Is Robust to

the Validation Sample Size
Our second sub-experiment aimed to assess the effects of sample
size of validation dataset. In this sub-experiment, the noise level
of the training datasets was 36.3%, and the sample sizes of the
validation dataset were 20, 40, 60, 80 and 100, respectively. For
a given validation sample size, we constructed five validation
datasets by randomly sampling the original dataset to reflect
sampling variability. We calculated the means and standard
deviations. The results (mean± standard deviation) were shown
in Figure 3. When the sample size of validation was 20, the

FIGURE 4 | The effects of the mixed training datasets. The pink squares and

black diamonds denote the balanced accuracy and F1 score, respectively.

F1 score and balanced accuracy were still greater than 0.9.
The model’s performance was relatively stable for different
validation sample sizes. We didn’t observe a significant drop in
the performance curve.

4.1.3. The Sample Reweighting Method Can Handle

Training Data With Mixed Annotation Quality
In many real-world applications, we want to pool datasets with
different annotation qualities to increase statistical power. For
example, we want to merge two training datasets that are labeled
by annotators with different experience levels. In the third sub-
experiment, we merged the training datasets with different noise
levels together and then test the sample reweighting method on
the mixed training dataset. The results are shown in Figure 4.
Although the training dataset contained data generated with
different label noise levels, the sample reweighting method
achieved good test performances. The balanced accuracy was
always greater than 0.88 and the F1 score was greater than 0.84.
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FIGURE 5 | The ALM data. The upper panel is for trial type “left” and the bottom panel is for trial type “right”.

TABLE 2 | The ALM study.

No. Sample Sample size Sample size Portion Noise

size (Label 0) (Label 1) Parameter Level

Training 1 853 446 407 100% 52.3%

Training 2 853 446 407 80% 41.3%

Training 3 853 446 407 60% 31.0%

Training 4 853 446 407 40% 21.1%

Training 5 853 446 407 20% 9.9%

Validation 66 33 33 0 (Clean) 0

Test 103 53 50 0 (Clean) 0

4.2. The Anterior Lateral Motor Cortex
Study
In mice, activities in the anterior lateral motor cortex (ALM)
predict movements. We reanalyzed two-photon calcium imaging
data of ALM (Li et al., 2015). In this dataset, mice underwent
a whisker-based object location discrimination task. A trial
included three epochs: sample, delay, and response. A pole in the
anterior or posterior position was presented during the sample
epoch. During the response epoch, mice reported the perceived
pole position by licking right for posterior or licking left for
anterior. Two-photon calcium imaging data of neurons in the

left ALM were acquired. We analyzed calcium imaging from
a single subject (subject an019). This subject had 18 imaging
sessions and the number of trials of a session was in [48, 67].
Each trial had 91 time points. For a time point, we calculated
the ensemble neural activity and used this trial trajectory as
the feature vector. The dimension of this feature vector was 91.
Figure 5 is an example of original ALM data. It depicts 66 trial
trajectories of session an019-2013-08-20-275. The x-axis is the
trial trajectory. All the original ALM data were preprocessed by
zero-mean normalization. The label variable is the trial type (left
or right).

We divided the original ALM dataset into training, validation,

and test datasets. The description of the ALM study is in Table 2.

The test dataset included two sessions (an019-2013-08-16-370

and an019-2013-08-19-410) because these two sessions had high

signal-to-noise ratios. Another high signal-to-noise ratio session,

an019-2013-08-20-275, was selected as the validation dataset.
Other sessions were used as the training data. We made five
copies of the original training dataset and then added label noises
into each copy to obtain five training datasets with different label
noise levels. For these five copies, the portion parameters are
100, 80, 60, 40, and 20%. The label noise levels of each copied
training dataset after shuffling were listed in the last column of
Table 2. The validation dataset was small (66 samples) and clean.
It had 33 samples for each trial type. The test dataset was clean
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FIGURE 6 | The test performances on the ALM data. (A) is the F1 scores of baselines 1 and 2 and sample reweighting method. (B) is the balanced accuracies of the

baseline 1 and 2 and sample reweighting method.

and had 103 samples, and the sizes of samples belonging to the
two trial types were 53 and 50, respectively.

We evaluated the sample reweighting method and baseline
methods based on the ALM dataset. The results are depicted in
Figure 6. When the noise level increased, the sample reweighting
method and baseline 1 performed quite differently. When the
noise level was 9.9%, the F1 scores and balanced accuracy of
the sample reweighting method were about 0.9, while they were
smaller than 0.8 for baseline 1. Even when the noise level
was 52.3%, the sample reweighting method still achieved good
performance and the F1 score and balanced accuracy were about
0.9, while they were smaller than 0.6 for baseline 1. When the
noise level increased from 9.9 to 52.3%, the F1 score and balanced
accuracy of the sample reweighting method dropped less than
0.05, whereas they dropped nearly about 0.2 for baseline 1. The
sample reweighting method obtained better performances than
baseline 2, as shown in Figure 6.

The weight distribution (after meta-learning) for the training
data was shown in Figure 7. The correctly-labeled samples in
training dataset were up-weighted while the mislabeled samples
were down-weighted. There was a significant difference between
weights of the correctly-labeled and those of mislabeled samples
(p < 0.0001, the Wilcoxon rank-sum test).

5. DISCUSSION

In this study, we propose to utilize a sample reweighting
algorithm that learns to assign weights to training data to solve
the label noise problem in neural decoding. The sample weights
are determined by minimizing the loss on a clean validation
set. The sample reweighting method requires a training dataset
that is massive but coarsely labeled and a validation dataset
that is small but accurately labeled. In many neural decoding
applications, labeling massive data accurately is expensive. The
sample reweighting method can improve the neural decoding

FIGURE 7 | The boxplots of weights for the correctly-labeled and mislabeled

samples in ALM training dataset (the noise level is 52.3%). **** denotes that

weights of the correctly-labeled samples were significantly different from those

of mislabeled samples (p < 0.0001).

performances by guiding the massive coarsely labeled training
data with a small clean validation dataset. This can greatly reduce
the annotation cost. To evaluate this method, we have designed
two experiments based on the simulated neural signal data and
ALM data. Each dataset contains several training datasets with
different label noise levels, one validation dataset with few or
without label noises and one test dataset without label noises.
Also, there is class imbalance in the simulated dataset.

Based on the simulated neural signal data, we have conducted
a series of experiments. The first sub-experiment is performance
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analysis of sample reweighting algorithm on training datasets
with different noise levels. The results have shown that the sample
reweighting method achieved better performances (higher F1
score and balanced accuracy) than the baseline methods. At
any noise level, the F1 score and balanced accuracy based of
the sample reweighting method were greater than 0.85. As the
noise level increased, the performances of baseline 1 decreased
significantly. This experiment has illustrated that the sample
reweighting method is effective in dealing with noisy labels.
Secondly, we assessed the impact of the sample size of the
validation dataset. It is expensive to label a big dataset accurately.
We need to balance the sample size of validation dataset and
model performance. The results are shown in Figure 3. When
the validation sample size increased from 20 to 40, both F1 score
and balanced accuracy increased. When the validation sample
size increased from 40 to 100, the balanced accuracy increased
non-significantly. The averages of F1 score and balanced accuracy
are greater than 0.9 when validation sample size is 20. Thirdly,
we have studied the mixed label quality problem to determine
whether the sample reweighting method works well when we
pool training data with different noise levels. The results show
that the sample reweighting method works well.

To evaluate the effectiveness of sample reweighting on real-
world application, we applied the sample reweighting method to
the ALM dataset (Li et al., 2015). Based on the original dataset,
we have constructed new training datasets with different label
noise levels, and generated five training datasets which were
coarsely labeled and a validation dataset which was small but
accurately labeled. The results are shown in Figure 6. We found
that the sample reweighting method was effective and had better
performances than the baseline methods. At any noise level,
the F1 score and balanced accuracy of the sample reweighting
method were greater than 0.85.

To understand the impact of the training dataset, we also
included a baseline method (baseline 2) that trains a DNN based
on the validation dataset alone. For both simulated data and the
ALM dataset, we found the sample reweighting method that uses
validation data to guide training obtained better performances
than baseline 2. We found that there was a significance difference

between weights for the correctly-labeled and those of mislabeled
samples (p < 0.0001, the Wilcoxon rank-sum test). The
correctly-labeled samples in training data were up-weighted
while the mislabeled samples were down-weighted. Collectively,
these results demonstrated that the sample reweighting method
used the information from both training and validation datasets
and effectively down-weighted mislabeled samples in the training
data based on the validation data.

In this study, we have adopted a sample reweighting method
by reweighting training samples to train models to solve the label
noise problem in neural decoding. As the sample reweighting
algorithm is based on DNNs, there are some parameters to
tune (such as learning rate, batch size and epoch size). This
is a common problem in deep learning. Our future work will
explore using automatic machine learning methods to tune these
parameters. In this paper, we used multilayer perceptrons for
features in vector form. The proposed method can also be used
for other neural network architectures such as convolutional
neural networks. In the future, we will apply the proposed
method to neuroimaging data, sequence data, or graph data.
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