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Brain function networks (BFN) are widely used in the diagnosis of

electroencephalography (EEG)-based major depressive disorder (MDD).

Typically, a BFN is constructed by calculating the functional connectivity (FC)

between each pair of channels. However, it ignores high-order relationships

(e.g., relationships among multiple channels), making it a low-order network.

To address this issue, a novel classification framework, based on matrix

variate normal distribution (MVND), is proposed in this study. The framework

can simultaneously generate high-and low-order BFN and has a distinct

mathematical interpretation. Specifically, the entire time series is first divided

into multiple epochs. For each epoch, a BFN is constructed by calculating the

phase lag index (PLI) between different EEG channels. The BFNs are then used

as samples, maximizing the likelihood of MVND to simultaneously estimate its

low-order BFN (Lo-BFN) and high-order BFN (Ho-BFN). In addition, to solve

the problem of the excessively high dimensionality of Ho-BFN, Kronecker

product decomposition is used for dimensionality reduction while retaining

the original high-order information. The experimental results verified the

effectiveness of Ho-BFN for MDD diagnosis in 24 patients and 24 normal

controls. We further investigated the selected discriminative Lo-BFN and Ho-

BFN features and revealed that those extracted from different networks can

provide complementary information, which is beneficial for MDD diagnosis.
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Introduction

Major depressive disorder (MDD) is a common mental
illness. A recent report by the World Health Organization
(WHO) showed that approximately 340 million people
worldwide suffer from depression of different severities (Gray
et al., 2020; Liu et al., 2020). During a depressive episode,
patients experience physical symptoms such as insomnia, poor
diet, and psychological symptoms. They gradually lose interest
in things, which often leads to suicide in severe cases (Kraus
et al., 2019; Orsolini et al., 2020). In recent years, EEG has been
widely used in clinical research (Liu et al., 2008; Wang et al.,
2013) to provide support for the diagnosis of MDD. Owing to its
high temporal resolution, which can detect short-term changes
in neural signals, EEG is very suitable for capturing rapid and
dynamic changes in the brain (Teplan, 2002; Fingelkurts et al.,
2007; Loo et al., 2016).

The existing analysis methods based on EEG data can be
classified into two categories. The first category is based on the
independent characteristics of each EEG channel (Bachmann
et al., 2018; Lotte et al., 2018; Newson and Thiagarajan, 2019).
For example, Hosseinifard et al. (2013) extracted four EEG band
powers and four non-linear features to classify 45 depressed
patients and 45 normal subjects, achieving 90% accuracy.
Boonyakitanont et al. (2020) analyzed the classification results
of epilepsy, based on classic linear and non-linear features in
EEG, and explored the most discriminative features according to
their experimental results. Although these methods can provide
useful information for exploring the relationship between
depression and EEG signals, they only extract the isolated
features of each channel and ignore the correlation among
different channels. In fact, experiments have shown that even for
the simplest task, the brain needs to coordinate multiple regions.
Therefore, the independent analysis of channel characteristics
without considering their connections cannot comprehensively
capture useful discriminative information in the brain (Abrams
et al., 2013; Vecchio et al., 2013; Chu et al., 2015).

The second category corresponds to methods based on
the brain function network (BFN), which can capture the
relationship between channels (Dell’Acqua et al., 2021; Yasin
et al., 2021). For example, Zhang et al. (2020) extracted
discriminative features from a constructed phase lag index (PLI)
matrix using graph theory, classified 24 depression patients and
29 normal controls, and finally achieved an accuracy of 93.31%.
Li et al. (2017) compared the coherence relationship between
MDD and normal control (NC). Their experiment revealed that
the connections capable of discriminating between MDD and
NC were mainly distributed in the left hemisphere of the brain,
particularly in the parietal and temporal regions. To date, many
popular connectivity indicators have been proposed, including
the phase-locking value (PLV), phase slope index (PSI), PLI,
and weighted phase-lag index (WPLI). These methods capture
features from different perspectives and have achieved few

results in patients’ classification (MohanBabu et al., 2021; Cao
et al., 2022).

These studies have demonstrated the effectiveness of the
functional connectivity in the study of depression. However,
traditional functional connectivity, which we refer to as low-
order BFN (Lo-BFN), only reflects the pairwise relationship
between EEG channels while ignoring the relationship among
multiple channels. As mentioned above, even for the simplest
task, the brain needs the coordination of multiple brain regions;
thus, analyzing only the relationship between two channels
is not sufficient to explore the relationship among multi-
EEG channels. In fact, in a biological sense, multiple distinct
channels that are structurally separated may also be functionally
tightly coordinated. We refer to a network that can reflect
multiple EEG channels as high-order BFN (Ho-BFNs). To the
best of our knowledge, few studies have used EEG-based Ho-
BFNs for MDD diagnoses. Therefore, in our present study, we
aim at exploring: (1) how to construct Ho-BFN, capable of
reflecting the connection relationship among multiple channels,
in order to further assist in exploring the deep-level connection
relationship of the brain; and (2) to what extent integrating Ho-
BFN and Lo-BFN can improve the accuracy of MDD diagnosis.

Based on the above analysis, we propose a framework, which
can simultaneously capture both the Lo-BFN and Ho-BFN from
EEG signals for MDD diagnosis. Figure 1 shows the workflow
of the proposed framework. First, we used the sliding window
strategy to divide the entire time series into multiple epochs
and construct the BFN for each epoch [Figure 1 (1)]. Then, the
constructed BFN are used as samples to simultaneously estimate
the low- and high-order networks by maximizing the likelihood
of the matrix variate normal distribution (MVND) [Figure 1
(2)]. In particular, the mean matrix of the Gaussian distribution,
which expresses the Lo-BFN reflects the mean value of
the dynamic connection relationship between every pair of
channels. The covariance matrix, which expresses the Ho-BFN,
reflects the pairwise interaction pattern between functional
connectivity (FC) involving multiple channels. In addition,
considering the high dimension of the generated covariance
matrix, we use the Kronecker product decomposition to reduce
its dimensions. Finally, the low-and high-order BFN are fused at
the feature layer to predict the target class label (MDD or NC)
for a given testing subject.

In fact, similar high-order network methods have been
applied in the field of functional magnetic resonance imaging
(fMRI) (Zhao et al., 2018, 2021; Zhou et al., 2018), where
experimental results have shown that the high-order network
method can explore more advanced features on the basis of
the traditional low-order network. However, owing to the low
temporal resolution of fMRI, the Gaussian distribution leads
to inaccurate estimation results. In contrast, EEG has the
characteristic of high temporal resolution, which can provide
more samples for the calculation of the Gaussian distribution
and more accurately estimate the Gaussian distribution of the
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FIGURE 1

The flowchart of the proposed framework.

BFNs. To the best of our knowledge, EEG-based high-order
networks have not yet been used for MDD diagnosis. Thus,
applying a high-order network to EEG-based MDD diagnosis
is clinically and scientifically valuable.

Overall, this study makes the following contributions: (1)
a high-order network method is proposed to first express the
deeper connection relationships among multiple channels and
reflect the deep connection mechanism of the brain, which
has not been explored previously in the literature. (2) Based
on the MVND estimation, we propose a framework that
constructs and fuses both low-and high-order networks for
MDD classification. The experimental results demonstrate that
the proposed framework can distinguish between MDD and NC
better than traditional methods.

Materials and data preprocessing

In this study, we used a public depression dataset from
MODMA (Cai et al., 2020). The total number of samples
was 48, including 24 patients with MDD (12 males and 12
females) and 24 normal controls (15 males and 9 females).
All subjects gave written informed consent before the start
of the experiment. Detailed demographic information of

these subjects is summarized in Table 1. All participants
were right-handed, and their education level was primary
school or above. To ensure that the mental state of the
subjects was not affected by other factors, for the normal
control group, we excluded those with personal and family
mental history, and also investigated whether the subjects had
alcohol dependence or drug use in the past year. For MDD
patients, we tested the degree of depression using the PHQ-
9 standard (Spitzer et al., 1999) to ensure that the PHQ-9
score was greater than or equal to five. In addition, none
of the patients with depression received psychotherapy within
2 weeks.

A 128 channel HydroCel Geodesic Sensor Net (HCGSN)
with a Cz reference is used for data acquisition. During the
collection process, to reduce the interference of EEG data, the
subjects sat in a chair in a dark room and were asked to close
their eyes and avoid moving.

For each subject, we conduct 0.1–40 Hz filtering and
48–52 Hz depression filtering to remove the baseline drift
and electrical interferences from the data. The REST (Yao,
2001) method is then used to re-reference the data, which
is a method of standardizing scalp EEG recording to the
infinity point, helpful to more accurately restore the data
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of the frontal region. Finally, the ASR method was used to
remove bad epochs (produced by eye blinks, muscle activity,
sensor motion, etc.) from the EEG data. At the same time,
we also removed the beginning part and the end part of
the whole data to ensure that the subjects were in a stable
state. In the end, we get the percentage of clean data is 89%.
In this study, the frequency bands of interest are delta (1–
4 Hz) and theta (4–8 Hz), computed by fast Fourier transform
(FFT). The aforementioned processing steps were performed
in MATLAB R2018b.

Methods

In this section, we introduce the construction of Lo-BFNs
and Ho-BFNs using the MVND method. First, we demonstrate
how to construct a set of BFNs using a sliding window. We
then introduce MVND to simultaneously construct Lo-BFN and
Ho-BFN. Finally, we elaborate on the framework for feature
extraction, fusion, and classification.

Construction of phase lag index
correlation matrices

Let xi = (xi1, xi2, · · · , xiC)(i = 1, 2, · · · ,N) denote the
EEG time series associated with the i-th channel, where C
is the number of time-sample points and N represents the
number of subjects.

We adopted the sliding window method to generate the
sequence of BFNs, which can reflect the dynamic changes in the
correlation between channels. Suppose that the window width
and step size are W and S, respectively. We can then generate
K windows for a given EEG time series, where K = [(C −
W)/S] + 1.

For each sliding window, we adopt the PLI method
to construct the corresponding BFNs and obtain a series
of BFNs {H(1),H(2), · · · ,H(k)

} (k = 1, 2, · · · ,K). The PLI
method is widely used in EEG classification tasks because it
can exclude the influence of the common source problem
and estimate the degree of phase synchronization more

TABLE 1 Demographic information of the subjects.

MDD NC P-values

Gender (M/F) 12/12 15/9 0.2059a

Age (mean± SD) 30.9± 21.1 30.9± 20.1 0.9880b

PHQ-9 (mean± SD) 18.3± 7.3 2.6± 2.6 0.0000b

GAD-7 (mean± SD) 13.4± 11.4 2.1± 4.9 0.0000b

MDD, major depression disorder; NC, normal control; M, male; F, female; PHQ-9,
Patient Health Questionnaire-9 item; GAD-7 (Spitzer et al., 2006), Generalized Anxiety
Disorder-7. aThe p-value obtained by chi-square test; bThe p-value obtained by two-
sample t-test.

accurately. For two EEG signals i and j, the PLI was computed
as follows:

PLIij =

∣∣∣∣∣ 1
n

N∑
n=1

sign
(
1φi (tn)−1φj (tn)

)∣∣∣∣∣ , (1)

where 1φi(t) and 1φj(t) are the phase values of EEG signal
i and j at time t, respectively, sign is the sign function, and

tn denotes the range of the entire time series. Therefore, we
generate a 128× 128 matrix as BFN under each sliding window.

Construction of low and high order
brain function networks based on
matrix variate normal distribution

After we obtained a set of BFNs by applying the PLI
method to each sliding window (Figures 2A,B), we adopted
the MVND (Gupta and Nagar, 2018) method to simultaneously
construct the low-and high-order BFNs. Suppose the correlation
between the EEG signal x and y is a random variable hxy

with a normal distribution. Then, the sequence of BFNs H =
(hxy)N×N follows the multivariate normal distribution, which is
defined as follows:

H ∼ N (M, 6) , (2)

where M ∈ RN×N is the population mean or mathematical
expectation of H. 6 is the population covariance matrix of
H. It should be noted that, M represents the average BFN
under different windows, which is still a low-order correlation
(Figure 2C). The covariance matrix6 represents the correlation
between random variables h. Therefore, 6 reflects information
from multiple channels, which is a Ho-BFN.

Considering that the dimension of the covariance matrix
6 with a size of 1282

× 1282 is too high, the Kronecker
product decomposition, i.e., 6 = �1 ⊗ �2, is used to reduce
the dimension. Therefore, H can be expressed as:

H ∼ N (M, �1 ⊗ �2) , (3)

where �1, �2 ∈ RN×N represent the row covariance and
column covariance (Figure 2D) of the original matrix H,
respectively. Because the correlation of PLI adopted in this
study is undirected, the constructed correlation matrix is
symmetric, so the row covariance �1 and column covariance
�2 are equal. Specifically, we used the maximum likelihood
estimation (MLE) method to solve the mean and variance of
MVND (Zhang and Schneider, 2010; Gupta and Nagar, 2018),
the formula of which is as follows:

M =
1
K

K∑
k=1

H(k). (4)
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FIGURE 2

The flowchart of low- and high-order brain function networks (BFN) construction based on matrix variate normal distribution (MVND).
(A) EEG epochs generated by sliding window. (B) FC network sets generated by PLI method. (C) Low-order functional connectivity network.
(D) High-order functional connectivity network.

� is obtained by iteration, and its initial condition is � = I,
where I is the identity matrix. The formula is as follows:

� =
1

KN

K∑
k=1

(H(k) −M)�−1(H(k) −M)T . (5)

Feature extraction, selection, and
classification

In this section, we introduce how to extract, select, and
classify features. For each subject, we used the MVND method
to obtain the Lo-BFN and Ho-BFN and then vectorized the
two matrices as the characteristics of the subject. Because the
constructed matrix is symmetric, we retain only the effective
features in the vectorization. Specifically, for an n× n BFN, the
size after vectorization is (n× n–n)/2, where n is the number of
EEG channels. Specifically, we use the linear fusion method to
fuse the features of the low-order and high-order networks.

Considering the feature dimension too high, which may
cause overfitting, we used the t-test and least absolute shrinkage
and selection operator (LASSO) to extract the discriminative
features. For this binary classification problem, both methods
are classic and effective. We conducted a t-test on the positive
and negative examples of the training data to extract the
discriminative features, and then used LASSO to further remove
redundant features. Suppose ωi = (ωi1,ωi2, · · · ,ωir) is the
weight of the eigenvector, where r is the number of features
obtained from the t-test. Let y = {y1, y2, · · · , yd, } represent

the feature set extracted from BFN and I the label of the
corresponding BFN. For the positive example, the label is 1,
whereas for the negative ones, the label is −1. The LASSO is
calculated as:

1
2

L∑
l=1

||Il
− 〈ŷ,ωi〉||

2
2 + λ||ωi||1, (6)

where λ is the parameter that controls the regular term L1−
norm. Sparse feature selection can be achieved by setting a
specific value for λ. Furthermore, we used an SVM classifier to
classify the extracted features and identify the EEG signals of
patients with depression.

Results

The proposed method was evaluated by testing it for
the classification of MDD and NC subjects. Additionally, we
analyzed the feature weights of the Lo-BFN and Ho-BFN to
identify the most discriminative EEG channels and brain regions
for classifying MDD and NC.

For the problem of small sample dataset, a six-fold
cross-validation (CV) method was adopted to evaluate the
performance of the proposed method. This method can separate
the training set and the test set, which can effectively avoid the
problem of overfitting. At the same time, in order to avoid the
chance of the experimental results, we repeated the process of
cross-validation ten times, and finally took the average of the
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ten results as the final result. In the choice of the classifier,
we chose the SVM classifier. The reason is that the essence
of SVM is a convex optimization problem, which makes it
unique in dealing with small sample data. There are three
hyper-parameters in the training process: the coefficient λ of
the regularization term in the lasso model, parameter p of the
t-test, and penalty coefficient c of the SVM classifier. In our
experiment, we tuned these parameters in the following ranges:
λ ∈ [0.1 : 0.1 : 0.7], p ∈ [0.01 : 0.01 : 0.1], c ∈ [0.1 : 0.1 :
0.9]. Specifically, we nested three layers of loops, corresponding
to three parameters, respectively. Under this condition, we fixed
three different parameters before performing cross-validation.

The influence of parameters on brain
function networks

To estimate the normal distribution of the matrix, we
used the sliding window method to generate BFN sequences
as samples. Two key parameters of the sliding window affect
the final classification results: the window width (W) and
the step size (S). A small window can capture the short-
term fluctuation of the signal more accurately, whereas a large
window can estimate the BFN more stably. Therefore, we
designed experiments to evaluate the classification accuracy
under different window widths and steps. Specifically, the
window width was set to [2,000, 3,000, 4,000, 5,000, and 6,000]
and the step size was set to [100, 150, 200, 250, 300, and 350].
Figure 3 shows the experimental results. The three regions
from left to right in the figure are Lo-BFN, Ho-BFN and the
fusion of them (Fu-BFN). The y-axis represents the classification
accuracy.

Fusion results of the low-order brain
function networks, high-order brain
function networks, and fusion brain
function networks

We used the optimal parameters discussed in the previous
section to build a classifier that was evaluated for MDD
diagnosis. Similar to previous studies, we used six metrics
to evaluate the classification performance: accuracy (ACC),
sensitivity or true positive rate (TPR), specificity or true negative
rate (TNR), precision or positive predictive value (PPV),
negative predictive value (NPV), and F1 score. Higher values of
these metrics indicate better classification performance. Table 2
reports the best results of MDD diagnosis with the Lo-BFN, Ho-
BFN, and Fu-BFN strategies under the optimal parameters in
the delta and theta bands. The best results are highlighted in
bold font. In addition, we depict the ROC curves of the above
classification results in Figure 4.

The most discriminative features for
major depressive disorder diagnosis

To explore why the Ho-BFN improves MDD classification
performance from a physiological perspective, we identified a set
of the most discriminative features. Specifically, we computed
the frequency at which features were selected in the Lo-
BFN and Ho-BFN in the cross-validation of the two bands.
A higher frequency indicated that the corresponding feature was
more discriminative.

As shown in Figure 5, we visualized the most discriminative
features using circular graphs, where the nodes represent
the EEG channels, the line represents the FC relationship
between the two channels, and the line thickness indicates
the discriminative ability. Because not all FCs have good
discrimination in disease classification, we select the top
50 discriminative connections and display them. To clearly
express the physiological location of the connection and the
discriminative characteristics of the Lo-BFN and Ho-BFN, we
counted the channels involved in the discriminative FC and
plotted them into a topographic map, which is shown in
Figure 6.

Discussion

This study provides a mean for assisting with the assessment
of clinical suicidal ideation. We analyzed EEG signals from
a new perspective, taking into account the connections
between multiple channels, and conducted several experiments.
We provide a more detailed discussion of the results of
these experiments.

Figure 3 shows the accuracy of Lo-BFN and Ho-
BFN with different parameters. We derive the following
conclusions: (1) the accuracy of the classification is
sensitive to two parameters, i.e., window width and step
size. Specifically, for Lo-BFN, the highest accuracy was
achieved when W = 4 and L = 3. For Ho-BFN and their
fusion, the highest accuracy was achieved when W = 5
and L = 4. (2) When using the same sliding window
parameters, the results of Ho-BFN and Fu-BFN significantly
outperformed those of Lo-BFN. (3), Fu-BFN had a higher
discrimination ability in the delta band compared to the theta
band.

To further analyze the reliability of the proposed method,
we selected the optimal parameters for the analysis. From the
experimental results in Table 2 and Figure 4, it can be seen
that (1) the classification accuracy of the Ho-BFN is significantly
higher than that of the traditional Lo-BFN. (2) Fu-BFN can
further improve the classification accuracy, which indicates
that Lo-BFN and Ho-BFN can be complementary to enhance
classification performance. (3) The Lo-BFN accuracy of the theta
band was higher than that of the delta band, whereas in the
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TABLE 2 Performance of different order brain function networks (BFNs) in different bands.

Frequency band Network ACC TPR TNR PPV NPV F1

Delta Lo-BFN 63.75± 0.04 60.69± 0.15 61.60± 0.37 65.96± 0.12 59.69± 0.07 65.03± 0.12

Ho-BFN 80.33± 0.20 79.31± 0.19 80.00± 0.26 82.14± 0.05 76.92± 0.32 80.70± 0.05

Fu-BFN 83.54± 0.06 84.14± 0.42 82.40± 0.10 84.72± 0.11 81.75± 0.08 84.43± 0.09

Theta Lo-BFN 74.17± 0.29 73.58± 0.18 64.17± 0.08 73.61± 0.25 77.92± 0.33 76.17± 0.40

Ho-BFN 79.21± 0.09 75.33± 0.05 79.17± 0.20 77.50± 0.12 78.61± 0.17 78.56± 0.55

Fu-BFN 81.46± 0.24 84.17± 0.23 80.25± 0.11 79.81± 0.06 81.94± 0.34 78.92± 0.26

Reports the best results of MDD diagnosis with the Lo-BFN, Ho-BFN, and Fu-BFN strategies under the optimal parameters in the delta and theta bands. The best results are highlighted
in bold font.

FIGURE 3

Effect of different sliding window parameters on classification accuracy. (A) The histogram of different brain function networks (BFN) orders in
delta band. (B) The histogram of different BFN orders in theta band.

proposed Ho-BFN, the accuracy in the delta band was higher
than that in the theta band.

We further identified important brain regions associated
with MDD, based on the high frequency connections involved
in our method. The results in Figures 5, 6 reveal the following

findings: (1) some high-order and low-order discriminative
features are shared, and some are different. Ho-BFN can
generate more discriminative features than Lo-BFN. This
dissimilar feature between Lo-BFN and Ho-BFN explains the
improved classification accuracy. (2) Lo-BFN and Ho-BFN are
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FIGURE 4

ROC curves of brain function networks (BFNs) in different bands. (A) ROC curves of three classification methods in delta band. (B) ROC curves
of three classification methods in theta band.

FIGURE 5

The discriminative functional connectivity (FC) of low- and high-order brain function networks (BFNs) in delta and theta band. The thicker the
line, the stronger the discrimination.

FIGURE 6

The discriminative channels on topographic map. The warmer the color, the stronger the discrimination of the corresponding channel.

significantly different in the frontal region and left temporal
region of the electrodes in the delta band. The frontal region
is central to the emotions and thought processes that translate

into personality (Lee et al., 2020). Therefore, differences in
the frontal region may be an important cause of memory loss
and inattention in patients with MDD. The function of the
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temporal lobe is centered on memory and emotion (AlShorman
et al., 2020), which corresponds to the clinical manifestations of
MDD, such as emotional instability. Zhang et al. (2020) found
that significant alterations of brain synchronization occurred
in frontal, temporal, parietal-occipital regions of left brain and
temporal region of right brain in MDD patients. Another
studies (Li et al., 2017; Kiriyama et al., 2020) found that the
left temporal region plays a critical role in MDD patients.
Combined with our findings, the frontal and left temporal lobes
may play an important role in the pathogenesis of MDD. In
addition, we found a difference in the left parietal lobe in
the theta band. The left parietal lobe is located behind the
frontal lobe, which is the starting point of sensory processing
within the brain. Some changes in the parietal lobe may reflect
the cognitive problems of MDD patients, which is similar
to findings in the literature (Bobde et al., 2018; Li et al.,
2021).

Although the Ho-BFN proposed in this study can be helpful
in the diagnosis of patients with MDD, several limitations could
be discussed. As in many previous studies (Shao et al., 2021; Zhu
et al., 2021), the first limitation relates to the small sample size.
In the future, further validation of the reliability of our method
with larger sample sizes (e.g., using other publicly available
datasets) should be considered to avoid possible overfitting
issues. Therefore, caution must be exercised when applying this
method in a clinical setting. Second, the Ho-BFN is constructed
using MVND, which analyzes the discrete degree of the time
series of correlation changes as a whole, but does not consider
short-term changes in the series. Finally, we compare our
accuracy with the highest accuracy in the field, and find that
our accuracy is still has room to improve. The next step is to
consider combining our features with theirs to further improve
the performance of identifying MDD.

Conclusion

In this study, we proposed a method for EEG-based
MDD diagnosis. We constructed the Lo-BFN and Ho-BFN,
which can capture high-order relationships across different
EEG channels. This method treats the time-varying sequence
of the correlation matrix between each pair of channels as a
normal distribution and simultaneously estimates the Lo-BFN
and Ho-BFN. The experimental results have shown that: (1)
Compared to traditional Lo-BFN, Ho-BFN can further extract
discriminative features and improve classification accuracy.
Moreover, the features of the Lo-BFN and Ho-BFN can
complement each other in MDD classification. Their fusion can
further improve the diagnosis performance. (2) We found that
the most discriminative brain regions were mainly located in
the left frontal, right frontal, and left temporal regions, which
is consistent with previous studies.
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