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Among many artificial neural networks, the research on Spike Neural Network

(SNN), which mimics the energy-efficient signal system in the brain, is drawing

much attention. Memristor is a promising candidate as a synaptic component for

hardware implementation of SNN, but several non-ideal device properties are making

it challengeable. In this work, we conducted an SNN simulation by adding a device

model with a non-linear weight update to test the impact on SNN performance. We

found that SNN has a strong tolerance for the device non-linearity and the network can

keep the accuracy high if a device meets one of the two conditions: 1. symmetric LTP and

LTD curves and 2. positive non-linearity factors for both LTP and LTD. The reason was

analyzed in terms of the balance between network parameters as well as the variability of

weight. The results are considered to be a piece of useful prior information for the future

implementation of emerging device-based neuromorphic hardware.

Keywords: spiking neural network, memristor, non-linearity, homeostasis, LTP/LTD ratio

INTRODUCTION

The rapid growth of technological and industrial interests in artificial intelligence (AI) represented
by machine learning (ML) was appearing in the various tasks from recognition of images (Liu
et al., 2020) and sounds (Jung et al., 2020) to behavioral controls of autonomous cars and robots
(Atzori et al., 2016; Gao et al., 2019). The basic structure of most ML algorithms follows deep neural
networks (DNN). Although the existing deep learning models have proven their powerful learning
abilities, they demand expensive computing resources with a huge power budget (Demirci, 2015),
making them increasingly difficult to be used on edge devices such as smartphones and watches,
etc. This has led researchers to explore alternative computing paradigms inspired by the human
brain, e.g., neuromorphic computing, having remarkable power efficiency.

A spiking neural network (SNN) is an artificial neural network constructed using the knowledge
observed in biology, in which neurons communicate with each other using spikes via synapses
connecting the neurons with adjustable weight values (Ghosh-Dastidar and Adeli, 2009). Since the
spike is commonly a binary voltage pulse, neurons utilize a population in the temporal or spatial
domain to encode analog input data, and hence the learning rule should involve the spatiotemporal
data to train a targeted decoding system. Indeed, SNN updates synaptic weights based on localized
learning rules using spatiotemporal information such as spike time-dependent plasticity (STDP),
and several tasks including unsupervised and supervised learning are successfully demonstrated
(Wade et al., 2008; Lee et al., 2019b). It is expected that the energy efficiency of the computing in the
brain may results from the sparsity of neuron spike with low frequency and the localized approach
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(Yi et al., 2015). However, when it comes to the hardware
implementation, due to the inherent asynchrony and parallelism
in SNN operations, conventional von Neumann systems cannot
truly realize the potential of power efficiency (Jeong et al., 2016).
In the regards, neuromorphic hardware has been actively studied
in two approaches: using conventional complementary metal-
oxide-semiconductor (CMOS) technology (Indiveri et al., 2011;
Merolla et al., 2014; Imam and Cleland, 2020) and emerging
type of devices such as memristor, phase-changememory (PCM),
and spin-based device (Hassan et al., 2018; Nandakumar et al.,
2018; Wang et al., 2018; Yang et al., 2021). Memristor, also
called resistive switching memory, is one of the emerging
devices that can be used as an efficient synapse block when
building a future neuromorphic system. Specifically, it has a
tunable conductance directly representing a synaptic weight in
biology and a spike signal received from the pre-neuron is
transferred to the following post-neuron in the form of an
electric current (or charge) proportional to the conductance of
memristor (Jo et al., 2010). In a simple crossbar array structure,
the current from all the connected synapses is summed up at
the post-neuron in a parallel fashion with high efficiency. In
addition,memristor hasmimicked various biological phenomena
related to the human learning process such as short-/long-term
memory, STDP, hetero-synaptic plasticity, etc (Chang et al., 2013;
Yao et al., 2020). Thus, it can serve as a promising artificial
synaptic component.

Despite the above merits of using the emerging device,
several non-ideal effects in memristor can make it challenge
to be implemented in neuromorphic hardware. For example,
variation in device conductance and operation voltage, limited
reliability, and non-linear conductance update can severely
degrade network performances and the hardware system often
requires additional operation protocols or circuits to compensate
the non-idealities (Jeong et al., 2017; Brivio et al., 2018; Frascaroli
et al., 2018; Li et al., 2018; Cüppers et al., 2019). However,
most of the previous papers have focused on the impact of the
non-ideal device properties in DNN (Agarwal et al., 2016) and
few articles only studied on SNN. In Querlioz et al. (2013),
SNN simulation was conducted to examine how variations in
the device properties affect network performance. The network,
having lateral inhibition, homeostasis mechanism, and simplified
STDP rule, showed good immunity to device variations observed
in weight update (1w) as well as the range of the weight. Even
assuming a severe 100% of standard deviation in the device
parameters, the MNIST accuracy reduced only 10%. In Woo
et al. (2019), the authors confirmed the robustness of SNN
against device variation again, using a model of the double-gate
MOSFET device. The accuracy degradation was only 3% by 50%
of the standard deviation. There is still a lack of study on the
impact of device non-linearity in SNN performance with detailed
analysis. A synapse in the neuromorphic hardware is ideally
defined that the conductance should be updated depending on
the timing difference between neuron spikes to achieve long-term
potentiation (LTP) or long-term depression (LTD). However, in
most of the emerging devices, the conductance change varies
from the target value since it is also a function of the current
conductance state showing the non-linear change. Despite active

research so far, it is still struggling to fabricate highly linear
devices (Chandrasekaran et al., 2019). Hence, systematic research
on how and why the network degrades by the device non-ideality
is strongly demanded future robust implementation of emerging
device-based neuromorphic hardware.

In this work, a high-level SNN simulation including a device
model was conducted to examine the impact of the non-
linear conductance update on the network performance. SNN
keeps the classification accuracy high even with severe device
non-linearity, if a device meets one of the two conditions: 1.
symmetric LTP and LTD curves and 2. positive non-linearity
factors for both LTP and LTD. In addition, we analyzed that
balances in network parameters such as LTP/LTD ratio and
homeostasis are broken by the non-ideal device characteristics,
consequently causing degradation of the accuracy. And some
of the imbalance like homeostasis can be compensated partially
by selecting optimal network parameters considering imperfect
device properties. The results can provide useful information
for the future implementation of emerging device-based
neuromorphic hardware.

RESULTS AND DISCUSSIONS

Spiking Neural Networks Framework
In this study, a high-level simulation was conducted using a
personal Python code based on the previous papers (Querlioz
et al., 2013; Du et al., 2015). Input neurons are fully connected
to the output neuron via synapses having different connection
strength, w, as shown in Figure 1A. Depending on the
conductivity, weights, pre-synaptic spikes generate post-synaptic
current (PSC), which is gathered at the output neuron nodes and
increases the membrane potential U(t). In the leaky integrate-
and-fire (LIF) neuron model, the potential spontaneously decays
with a time constant τ as following (Brunel and Sergi, 1998):

τ
dUj (t)

dt
= −U j (t) +

n
∑

i=1

wji × ni (t) (1)

where, τ is the leakage time constant, and ni (t) is the input value
of ith neuron, and wji is a synaptic weight (conductance) between
neuron i and j. Membrane potential U(t) increases whenever
PSC is generated by input spikes and it will decay spontaneously
with time constant, τ . When the potential crosses over the pre-
defined threshold level, it fires a post-synaptic spike and U(t)
instantaneously relaxes to the resting state and maintains the
level for a refractory time, tref . without responding to any received
signals. Among several input encoding methods (Ponulak and
Kasinski, 2011), we used the rate coding, in which the input, e.g.,
a pixel of an image, is converted to a spike frequency according
to Equation (2) (A and B are constant value, A = 41/20, B =

2.004545), and then a neuron creates a spike-train by Poisson
translation (Du et al., 2015) as shown in Figure 1B. Each input
continues 500ms to make the Poisson events with a 1ms unit
clock time.

frequency (Hz) =
1

A− B×
pixel data

255

(2)
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FIGURE 1 | Description of structure and operation of Spiking Neural Network (SNN). (A) The basic functionality of unsupervised spiking neural network architecture.

(B) A raster plot of spiking inputs encoded by the rate-based Poisson method. (C) Spiking Neural Network for pattern recognition, consisting of input, excitatory, and

inhibitory neuron layers enabling lateral inhibition. (D) Simplified spike timing dependent plasticity (STDP) learning rule.

Using the framework, we designed a two-layer SNN in Figure 1C

to examine the impact of non-linear device properties. The
MNIST handwritten dataset converted to a Poisson spike train
was fed into the network, where the meaningless 2 edge
pixels from the 24×24 image were removed for simulation
speed. Therefore, the SNN contains fully wired 576×300
excitatory synaptic connections for 300 output neurons. To
enable the winner-take-all (WTA) mechanism, the excitatory
output neurons were connected to the subsequent inhibitory
neurons in a one-to-one manner. All the inhibit neurons are
fully reconnected to the excitatory neurons except for the self-
inhibition path. Once one output neuron fires, it suppresses the
membrane potential of the other neurons through the lateral
inhibition path. This enables competition between neurons and
prevents multiple columns from learning the same features
(Diehl and Cook, 2015). In addition, for homeostasis, the
threshold voltage deciding neuron’s firing was adjusted after
training every 600 samples and this will be discussed in section
Excessive Firing Phenomenon and Homeostasis in detail. The
distribution of firing frequency and initial and final threshold was
described in Supplementary Figure 2.

Updates of Synaptic Weights
It is widely believed that STDP underlies the learning process
in the brain by adjusting the strength of synaptic connections
(Feldman, 2012). The learning principle detects the causal
relationship between a pre-synaptic and post-synaptic spike from
their temporal correlation. If the pre-synaptic neuron sends a
spike a few milliseconds before firing of the post-neuron, the
synaptic connectivity is strengthened through a potentiation

process, whereas the weight is depressed in the reverse spike
timing order. In biology, the weight change, 1w, is a function
of timing difference, 1t, where 1w decays exponentially with
increasing1t undefined. However, for the simplicity of hardware
implementation, we used the simplified version of STDP having
fixed1w for LTP and LTD as shown in Figure 1D.1t up to 45ms
leads to an identical LTP and otherwise, LTD occurs.

Learning and Classification
To test the performance of the designed SNN, the MNIST dataset
was used: 60,000 samples for the training and 10,000 samples
for the following testing process. We assumed that synapses
require 256 voltage pulses to reach their maximum weight value:
in other words, it can memory 256 different states (28). And
during the simplified STDP process, we assumed that weight
change in LTP is 4-times stronger than that of LTD since it
allows the best performance. The simulation result for different
LTP/LTD ratio were described in Supplementary Figure 1. In
actual hardware, various LTP/LTD ratios can be readily achieved
by modulating the amplitude or duration of the LTP and LTD
pulses. The network learns representative features in the input
samples through updating the synaptic weights and 72 trained
features out of 300 are shown in Figure 2A. The initial values
of weight conductance were created by a uniform random
distribution. The initial and final weight distribution were
shown in Figure 7A. Since the STDP learning rule is suitable
for unsupervised learning, it is hard to evaluate the network
performance quantitatively. We manually assigned 0–9 labels to
each feature to run a classification task. In detail, feeding 60,000
training samples, we find the most resembling one among the
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300 features and count the input label whenever the feature
wins. Then, the most winning label is assigned and used in the
test. In the ideal device case with perfect linearity, the accuracy
reached over 89% from the average of the last 10 accuracies in the
evolution as shown in Figure 2B.

Non-linearity in Synaptic Weight Updates
Here, we introduced non-linear update properties in a synaptic
weight change, which is observed in most of the resistance
switching memory devices particularly in filament-based types
(Jang et al., 2015; Jeong et al., 2015). Whenever applying
programming pulses, a conductance representing synaptic
weight is changed and the update curve for LTP and LTD can
be numerically described by Equation (3) (Agarwal et al., 2016),

w (LTP) = normalized g = α

(

1− e−
νβp
256

)

+ gmin

w (LTD) = normalized g = gmax − α

(

1− e−ν
(

1−
p
256

)
)

(3)

α =
gmax − gmin

1− e−ν

, where gmax and gmin are the max and min values in the
boundaries of the weight conductance. The ν and p are non-
linearity factor and the number of applied pulses respectively,
and the denominator 256 was used for normalization. β is used
to enable different LTP/LTD ratio and we used β = 4. When
ν is zero, it is a fully linear curve and keeps the weight change
at a fixed value regardless of accumulated pulse numbers as
shown in Figure 3A. However, with higher ν, it deviates from
the linear case, where the change is very rapid at the small pulse
number, while it becomes slower as accumulating pulses. Another
important concept is symmetry in LTP and LTD curves. From
the above equation, LTP and LTD curves are symmetric when
they have the same ν value, but opposite sign, e.g., (10,−10) or
(−10,10) for (νLTP and νLTD). It is notable that depending on
device mechanisms LTP and LTD could have various ν values
as reported (Liu et al., 2018). Thus, we systematically tested
the SNN performance for 121 combinations of νLTP and νLTD
ranging from −10 to 10 and Figure 3B shows a contour map
of classification accuracies. First, it is interesting that the spiking
network maintains the high accuracy (red color) in a quite wide
range of ν, even for considerably worse nonlinearity cases like
νLTP, νLTD = (−10, 10). This is quite different from the DNN
simulation results, where the accuracy degrades monotonically
as it gets farther away from the linear value, ν = 0 (Agarwal
et al., 2016). Therefore, SNN seems to be more tolerable to
the non-linear weight updates of neuromorphic hardware. Next,
the accuracy map can be divided into three parts that should
be analyzed separately: P1, P2, and P3. In the P1 area, LTP
and LTD have symmetric curves and overall accuracy is very
high except for the region with large νLTP. The second part, P2,
is an area having high ν for both LTP and LTD, and it also
provides high accuracy in most of the conditions. In contrast, P3
shows low accuracy throughout the area. In the next section, a

detailed analysis of network behavior is provided. Comparing the
mapping results with the nonlinearity of the real device, we found
that many devices lie in the high accuracy region, since more
devices locate in the 1st quadrant (P2) showing high accuracy
than the 3rd quadrant (Supplementary Figure 3).

P1: Symmetry in LTP and LTD Curves
In Figure 3B, the area of P1 extends from the top-left to
the bottom-right of the map along the diagonal line and this
mainly covers symmetrical LTP and LTD regions. To figure out
the reason of the high accuracy in P1, we first selected five
distinctive (νLTP, νLTD) points that can represent the simulation
conditions well: the points are (0,0), (10,−10), (−10,10), (10,10),
and (−10,−10). It is expected that a different non-linearity value
causes different 1w during weight update operation and this
ultimately results in a different SNN accuracy. Hence, we plotted
how 1w changes depending on the non-linearity as well as
current weight value when applying a single LTP or LTD pulse
as shown in Figures 4A–E. The insets show the corresponding
LTP and LTD curves. For the linear case (0,0), 1w keeps the pre-
defined value regardless of the current weight, and consequently,
the ratio is also fixed to four from the β value in Equation (3) as
shown in Figures 4A,F. In contrast, when the case changes to the
non-linear conditions, the situation completely differs and there
are two types of behavior. First, for the condition of (10,−10),
wLTP is getting smaller at a constant rate as the current weight
level increases, while an absolute value of wLTD is also decreasing
as shown in Figure 4B. Hence, it is expected that the LTP/LTD
ratio calculated from the absolute values may maintain a fixed
value, even though the actual amount of 1w varies as a function
of the current weight. Indeed, in Figure 4F, (10,−10) exhibits
a constant LTP/LTD ratio independent of w and moreover, the
value is close to our parameter β = 4 making the network has the
best performance. The same thing happens in (−10,10) despite of
the opposite w dependency (Figure 4C). It should be noted that
both (10,−10) and (−10,10) have symmetric LTP and LTD curves
and are included in the region P1. Thus, the high accuracy in P1
can be accounted for the symmetric curves, leading to a constant
LTP/LTD ratio close to the pre-defined β and as a result, keeping
the network stable by balancing with other given parameters.
Therefore, symmetry in weight updates is considered extremely
important for SNN hardware to achieve high performance. On
the other hand, (10,10) and (−10,−10) out of the P1 have
asymmetric curves. As shown in Figures 4D,E, 1w change for
LTP and LTD has the same direction in the plot and hence the
ratio keeps changing whenever w varies (Figure 4F). Due to the
continual ratio change, the balance between network parameters
designed for the best performance could not be maintained and
the accuracy becomes lower. This could not be solved by just
changing network parameters because it is impossible to make
a balance between fixed other parameters with the continuously
changing LTP/LTD ratio.

Excessive Firing Phenomenon and
Homeostasis
The next question lies in the low accuracy conditions even in
the same P1, appearing at the bottom-right region with high

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 646125

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. SNN Simulation With Non-linear Synapses

FIGURE 2 | (A) Trained 72 weights patterns out of 300 output neurons. The network successfully learns input features during training. The white pixel is the maximum

weight, while the black one is the minimum. (B) Evolution of accuracy with 180,000 training samples. Our simulation proves 89.05% classification accuracy on

average from the last 10 samples.

FIGURE 3 | (A) The change of weights by repeating LTP and LTD pulses. Depending on the non-linearity factors, the evolution shows different weight update curves:

“0” indicates the perfect linear case. (B) The final accuracy for 121 different cases of νLTP and νLTD. Three areas, P1, P2, and P3 indicated in the map can depict the

overall accuracy behavior.

νLTP. For example, in the (10,−10) case, despite the symmetric
property keeping the parameter balance well, it gives very low and
unstable accuracy during training compared to (0,0) as shown in
Figure 5A. To investigate the reason, we plotted howmany times
of post-firing occurs in Figures 5B,C. In (0,0), the accumulated
firing number grows almost linearly (black line in Figure 5B,
zoomed in Figure 5C) since in the network, the threshold of the
neuron is adjusted according to Equation (4) to keep the firing
frequency similar as homeostasis in biology.

1threshold =
(

factual − ftarget
)

× threshold × γ (4)

, where factual is an actual firing count and ftarget is a predefined
target firing count. The γ is a homeostasis factor deciding the
threshold changing rate. As a result, the network can keep the
firing rate almost constantly and all parameters balance well
although the weights, one of the network components change
at every training cycle according to the learning algorithm.
However, in (10,−10), the stability breaks, and some of the
neurons (red line in Figure 5B) fire with higher frequency than

(0,0), whereas others (blue line in Figure 5B) keep silent for a
while and start to fire excessively from some point. This is due
to a combination of strong potentiation and weak depression
in (10,−10). The purpose of the potentiation process is to
increase weights. Thus, the flat area in the low νLTP (yellow
area in Figure 5D) makes it hard for LTP to work properly
since the weight update is negligible for many applied pulses.
However, the flat area in high νLTP (red area in Figure 5D) is
already at a high level and the slow LTP process has negligible
effects on the potentiation itself. Hence, it can be said that for
LTP, positive νLTP leads to stronger potentiation relatively than
negative νLTP. In contrast, positive (negative) νLTD can result in
a strong (weak) depression (pink and green area in Figure 5D).
Therefore, (10,−10) is considered to make strong LTP and weak
LTD, and consequently some neurons fire at a higher rate than
(0,0). In the meantime, the threshold adjust function in Equation
(4) is optimized for the (0,0) case and the parameters used do
not work perfectly in the abnormal high firing rate of (10,−10).
Thus, the network ends up failing to make a uniform distribution
of neuron’s firing. As a result, the firing concentrates on some
neurons, and others are delayed in triggering their firing (blue
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FIGURE 4 | 1w by a single LTP or LTD pulse for (A) (0,0), (B) (10,−10), (C) (−10,−10), (D) (10,10), (E) (−10,−10). For the linear case (0,0), 1w is independent of the

current weight, while 1w is a function of the current weight in all other non-linear cases. The insets show the corresponding LTP and LTD curves. And blue dotted line

indicates 1w = 0. (F) The ratio of 1w between LTP and LTD. The ratio keeps a constant value only for (0,0), (10,−10), and (−10,10).

FIGURE 5 | Analysis of the low accuracy at the bottom-right region of P1. (A) Evolution of accuracy during training at (νLTP, νLTD) = (0,0) and (10,−10) cases. (B,C)

Accumulated firing times was plotted during training. (D) The change of weight according to the number of pulses with different LTP and LPD non-linearity. The flat

area in high and low at νLTP and νLTD was highlighted. The evolution of (E) threshold and some of the (F) final weight of the entire output neuron are shown, where

some are over-trained with thick white digits (green box) and others are incomplete due to the delayed firing (orange box).
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line in Figures 5B,C). The evolution of threshold and some
of the final weight of the entire output neuron are shown in
Figures 5E,F, where some are over-trained with thick white digits
(green box) due to the over-firing and others are incomplete due
to the delayed firing (orange box). This imbalance in homeostasis

FIGURE 6 | Additional analysis and improvement of the singularity in the lower

right part of P1. The number of firings in the entire learning process was

classified based on the number of firings during one sample. With increasing

γ , the excessive firing counts in (10,−10) are reduced due to the strong

capability of adjusting threshold (red dotted square) and it recovers the

accuracy up to 85% (inset).

causes low accuracy and instability during training as shown in
the bottom-right area of P1 despite the high symmetry. Finally,
simulation results with various homeostasis factor, γ , are shown
in Figure 6. With increasing γ , the excessive firing counts in
(10,−10) are reduced due to the strong capability of adjusting
threshold (red dotted box) and it recovers the accuracy up to 85%
(inset). Hence, the selection of optimized parameters considering
device properties can partially alleviate the homeostasis problem
in neuromorphic hardware.

P2 and P3: Difference in Weight
Distribution
Lastly, we looked into the P2 and P3 area in the accuracy
map. To explain the accuracy results, weight distributions of
576 × 300 = 172,300 synapses are extracted as shown in
Figure 7. Before training, weights are randomly generated and
show uniform distribution (Figure 7A). With running the SNN
algorithm, it learns input features and makes synaptic patterns
primarily composed of black and white pixels as shown in
Figure 2A. Actually, for (0,0) representing P1, the weights after
training concentrate on the edge values, black and white, and
the distribution draws a U-shape (Figure 7B). However, for
(−10,−10) representing P3, due to the weak LTP and LTD
as mentioned in the previous section, weights barely get out
from the edge value once they reach the boundary. Therefore,
they accumulate at the edge during training, preventing the
proper learning process, and in the end, the final weights show
the extreme distribution in Figure 7D. This is the reason why
P3 marks the low accuracy: stuck of the weights at the edge

FIGURE 7 | Weight conductance distribution in the initial state before the learning process (A). After the whole learning process, we analyzed the weight distribution of

(B) P1, (C) P2, and (D) P3.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 646125

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. SNN Simulation With Non-linear Synapses

values with negligible migration, disabling fine tuning of them.
Contrastingly, for (10,10) representing P2, both operations, LTP
and LTD, are strong together and the weights update its value
more actively according to the algorithm without the stuck issue.
As a result, more weights place at the middle of the weight range
in the P2 case as shown in Figure 7C. Although P2 is expected
to face the parameter imbalance mentioned above due to the
asymmetry in LTP and LTD curves, the strong plasticity results in
a more active learning process and recovers the balance problems
by helping the network learn the best patterns with high accuracy.

CONCLUSION

We have conducted an SNN simulation with memristor synapse
models having non-linear conductance change. It implemented
the three main neuron functions [LIF (Lee et al., 2019a),
adjustable threshold (Woo et al., 2019), WTA(Hikawa, 2016)]
that can be implemented by hardware. The network consisting
of excitatory and inhibitory layers achieved over 89% of
classification accuracy for MNIST dataset by using 300 output
neurons. Using the same framework, 121 cases with different
non-linearity factors were simulated and the performance was
evaluated. We found that SNN has a strong tolerance for the
device non-linearity and keeps the accuracy high for a wide
range of non-linearity factor. In addition, we showed that balance
in network parameters such as LTP/LTD ratio and homeostasis
is very critical to maintaining high accuracy. Symmetric LTP
and LTD curves help the network keep the balance due to the
constant LTP and LTP ratio. It was also found that when both
νLTP and νLTD are positive, the variability of weights is very
active without stuck at the edge values because of the strong LTP
and LTD process. This results in enhanced learning capability
and allows high accuracy. Thus, for hardware implementation

of SNN, especially using emerging devices, the device property
should be optimized to keep the network in balance with high
learning ability.
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