
ORIGINAL RESEARCH
published: 06 January 2021

doi: 10.3389/fncom.2020.603765

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2021 | Volume 14 | Article 603765

Edited by:

Victor de Lafuente,

National Autonomous University of

Mexico, Mexico

Reviewed by:

Jose Bargas,

National Autonomous University of

Mexico, Mexico

Athanasia Papoutsi,

Foundation for Research and

Technology-Hellas (FORTH), Crete,

Greece

*Correspondence:

Shuvra S. Bhattacharyya

ssb@umd.edu

Rong Chen

rchen@umm.edu

Received: 07 September 2020

Accepted: 25 November 2020

Published: 06 January 2021

Citation:

Wu X, Bhattacharyya SS and Chen R

(2021) WGEVIA: A Graph Level

Embedding Method for Microcircuit

Data.

Front. Comput. Neurosci. 14:603765.

doi: 10.3389/fncom.2020.603765

WGEVIA: A Graph Level Embedding
Method for Microcircuit Data
Xiaomin Wu 1,2, Shuvra S. Bhattacharyya 1,3* and Rong Chen 2*

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States, 2Department

of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,
3 Institute for Advanced Computer Studies (UMIACS), University of Maryland, College Park, MD, United States

Functional microcircuits are useful for studying interactions among neural dynamics

of neighboring neurons during cognition and emotion. A functional microcircuit is a

group of neurons that are spatially close, and that exhibit synchronized neural activities.

For computational analysis, functional microcircuits are represented by graphs, which

pose special challenges when applied as input to machine learning algorithms. Graph

embedding, which involves the conversion of graph data into low dimensional vector

spaces, is a general method for addressing these challenges. In this paper, we discuss

limitations of conventional graph embedding methods that make them ill-suited to the

study of functional microcircuits. We then develop a novel graph embedding framework,

called Weighted Graph Embedding with Vertex Identity Awareness (WGEVIA), that

overcomes these limitations. Additionally, we introduce a dataset, called the five vertices

dataset, that helps in assessing how well graph embedding methods are suited to

functional microcircuit analysis. We demonstrate the utility of WGEVIA through extensive

experiments involving real and simulated microcircuit data.

Keywords: graph embedding, machine learning, neural decoding, microcircuit analysis, calcium imaging

1. INTRODUCTION

Graph-related data is widely used in real world applications, including social network graphs
and customers’ interest graphs in consumer applications (Huang et al., 2004), molecule and
protein networks in biology and chemistry (Yue et al., 2020), and brain networks (Chen et al.,
2017) for neuroscience and biomedical engineering. Graph embedding is a general approach
that is used to reduce the computational and storage complexity of graph analytics, and to
facilitate processing of graphs by well-known machine learning methods. Graph embedding
involves the conversion of graph data into low-dimensional spaces, and allows graphs to be
represented in compact vector form (input format preserving relevant network properties) (Cai
et al., 2018). Since vector format is one of the most widely used input formats in machine
learning algorithms, graph embedding enables downstream analysis with a wide variety of machine
learning methods, including methods for clustering and classification. Most graph embedding
algorithms are unsupervised learning algorithms with no requirement for labels (or annotations)
in the associated graph datasets. This eliminates the time consuming and error prone process of
labeling graphs. These characteristics of graph embedding (compact vector representation and
unsupervised learning) provide opportunities for developing new applications, such as neural
decoding (Chen and Lin, 2018; Lee et al., 2019).

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.603765
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.603765&domain=pdf&date_stamp=2021-01-06
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ssb@umd.edu
mailto:rchen@umm.edu
https://doi.org/10.3389/fncom.2020.603765
https://www.frontiersin.org/articles/10.3389/fncom.2020.603765/full

Wu et al. Graph Embedding for Microcircuit Data

In this work, we focus on graph embedding for graphical
models of functional microcircuits (Feldt et al., 2011), which
are studied in neuroscience and biomedical engineering. A
set of neurons forms a functional microcircuit if (a) they are
spatially close to one other (locality condition), and (b) their
neural activities are synchronized (Ko et al., 2013) (synchrony
condition). Various experimental and computational research
works have reported on interactions among neural dynamics
of neighboring neurons during cognition and expression of
emotion (Fujisawa et al., 2008; Ko et al., 2013; Barbera et al.,
2016). Many mechanisms can contribute to the observed
synchrony in functional microcircuits. For example, functional
microcircuits may reflect synaptically coupled subnetworks.
Ko et al. studied somatic calcium signals of nearby layer
2/3 pyramidal neurons in mouse visual cortex in vivo, and
synaptic connectivity of these neurons in vitro. They found that
bidirectional synaptic connections were more frequent between
neuronal pairs with strongly correlated visual response (Ko et al.,
2011). A functional microcircuit can be examined by using
calcium imaging (Chen and Lin, 2018).

For computational analysis, functional microcircuits are
represented by graphs, which we refer to as microcircuit
models. Microcircuit models can be in the form of weighted
or unweighted graphs. Vertices in these models correspond to
neurons, and edges connect pairs of neurons that satisfy or
are estimated to satisfy the locality and synchrony conditions
described above. The graphs may be directed or undirected, and
can consist of several hundreds of vertices. In a widely used
framework to derive microcircuit models, the connectivity (edge
weight) between a pair of neurons is quantified by a correlation
coefficient (with respect to some functional behavior) (Averbeck
et al., 2006). Vertices in a functional microcircuit represent
the biological cells, the so-called neurons. The vertices are,
therefore, generally not interchangeable. In the context of graph
embedding, this means that the identities of the vertices must be
taken into account in the embedding process.

In this work, we develop a novel graph embedding method
for microcircuit models that is based on deep learning (DL).
DL has achieved excellent performance levels in a great
variety of research fields, such as computer vision and natural
language processing. This work represents the first work, to our
knowledge, in applying and optimizing DL for the problem of
graph embedding for microcircuit models.

Two general classes of graph embedding methods are vertex-
level embedding methods, which generate a separate feature
vector for each vertex, and graph-level embedding methods,
which generate a single feature vector for the whole graph. In this
work, we are interested only in graph-level embedding methods
due to their importance in analyzing microcircuit models,
where the primary interest is on understanding the microcircuit
as a whole rather than on finer grained understanding of
individual neurons. In the remainder of this paper, when we
refer to “graph embedding,” we specifically mean “graph-level
embedding” unless otherwise specified.

Representative methods in the literature for graph embedding
include DeepWalk (Perozzi et al., 2014), node2vec (Grover
and Leskovec, 2016), graph2vec (Narayanan et al., 2017),

and PowerGNN (Xu et al., 2018). Among these, graph2vec
is especially effective. graph2vec is an unsupervised learning
method that employs random walks together with Doc2Vec (Le
and Mikolov, 2014), which is a popular DL-based method for
natural language processing. In graph2vec, a feature extractor
is used to generate a corpus of graphs, and then Doc2Vec
converts this corpus into a vector representation. On various
benchmark datasets, graph2vec has been shown to provide
better performance compared to alternative methods, including
node2vec (Grover and Leskovec, 2016), sub2vec (Adhikari et al.,
2018), Weisfeiler-Lehman graph kernels (Shervashidze et al.,
2011), and deepWeisfeiler-Lehman graph kernels (Yanardag and
Vishwanathan, 2015).

Existing graph embedding methods are not well-suited
to generating graph embeddings for microcircuit models.
First, many graph embedding methods focus on unweighted
graphs (Narayanan et al., 2017; Xu et al., 2018; Gutiérrez-
Gómez and Delvenne, 2019), whereas, as mentioned previously,
both unweighted and weighted graphs are generally relevant
in the analysis of microcircuit models. The inability to handle
weighted graphs therefore makes a graph embedding approach
too restrictive for the objectives of our work, which is to develop
a general framework that provides efficient graph embedding for
microcircuit models. Similarly, many graph embedding methods,
including the popular graph2vec and PowerGNN methods, do
not take the identities of vertices into account. To the best of
our knowledge, the graph embedding approach presented in this
paper is the first to simultaneously support weighted graphs, and
take into account the identities of vertices. This makes it uniquely
well-suited for application to microcircuit models.

To address the limitations of existing graph embedding
algorithms and leverage the capabilities of DL, we aim to develop
a new DL-based, graph-level embedding algorithm that is
effective for microcircuit models. To this end, we develop in this
paper a new unsupervised learning algorithm called Weighted
Graph Embedding with Vertex Identity Awareness (WGEVIA).
WGEVIA can generate embeddings for both weighted and
unweighted graphs, and can also account for vertex identities.
Through extensive experiments, we show that the graph
embeddings generated by WGEVIA are more effective than
previously developed graph embedding methods for analysis of
microcircuit models—specifically, for the problem of behavior
classification from calcium-imaging-based microcircuit data.

2. METHODS

In this work, we are interested specifically in an important class
of microcircuit models called coherence-based models (Zohary
et al., 1994; Averbeck et al., 2006). In this context, coherence
is a directionless association between pairwise neurons. The
coherence association models the synchrony between neuron
pairs with respect to the enclosing functional microcircuit.
The degree of coherence or synchrony between a pair of
neurons can be quantified by a metric, such as the correlation,
partial correlation, mutual information or maximal information
coefficient. In the remainder of this paper, when we use the term

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

“microcircuit model,” we mean a coherence-based model, unless
otherwise stated.

Although this work is focused on coherence based
microcircuit models, we envision that it provides a valuable
foundation that can be extended to other types of microcircuit
models, including those that involve directional associations
between neurons. Such extensions represent an interesting
direction for future work.

2.1. Objective
As described in section 1, a microcircuit model is a graphical
model of a functional microcircuit. Coherence-based models use
a form of graph called an undirected graph. An undirected graph
is an ordered pair G = (V ,E), where V is a finite set whose
elements are referred to as vertices, and each element of E is a pair
{x, y} of vertices (x, y ∈ V). Each element of E is called an edge.
In the remainder of this paper, when we use the term “graph,” we
mean an undirected graph, unless otherwise stated.

A microcircuit model is an ordered pair M = (G,W), where
G is a graph, and W :E → R is a function that maps the set
E of edges (in G) into the set R of real numbers. We refer to
G and W as the graph and weight function associated with M.
The vertex set and edge set of G are denoted as vertices(M) and
edges(M), respectively. Also, given an edge e = {x, y}, we say that
the vertices x and y are incident to e, and we say that x and y are
neighbors (x is a neighbor of y and vice versa). The number of
edges that are incident to a given vertex x is called the degree of
the vertex, and is denoted as deg(x).

In our experiments, the weight of a microcircuit edge is
taken to be the Spearman correlation coefficient (McDonald,
2014) between the neurons that are incident to the edge.
However, the proposed methods are not specific to use
of the Spearman correlation coefficient, and alternatively,
other methods for assigning edge weights can be used, such
as the partial correlation, mutual information or maximal
information coefficient.

We say that a weighted graph is a graph with a real-valued
quantity called the weight (or edge weight) associated with each
edge in the graph. Thus, a microcircuit model (G,W) can be
viewed as a weighted graph with the weight of each edge e defined
to beW(e).

A microcircuit dataset D is a set D =

{M[1],M[2], . . . ,M[DnG]}, where M[1],M[2], . . . ,M[DnG]
are microcircuit models with a common vertex set. We
denote the common vertex set of D as Vertices(D); thus,
vertices(M[i]) = Vertices(D) for all i.

The core contribution of this work is a novel algorithm, called
WGEVIA (Weighted Graph Embedding with Vertex Identity
Awareness), that takes as input a microcircuit dataset D and a
positive integer m, and outputs a mapping θm :D → R

m. The
mapping is derived in such a way so that machine learning tasks
(downstream analysis tasks) can operate efficiently and accurately
using the embedded dataset {θm(d) | d ∈ D}. A mapping
of this form (from a microcircuit D into R

m for some m) is
called a microcircuit embedding. More generally, it can also be
viewed as an embedding of a set of weighted graphs; however,

the motivation and experiments in this paper are developed in
the specific context of microcircuit models.

WGEVIA applies a novel algorithm, called UGEVIA
(Unweighted Graph Embedding with Vertex Identity
Awareness), which we develop to compute embeddings of
unweighted graphs. An embedding θu for unweighted graphs,
which we refer to as a graph embedding, maps a set of graphs
U = {G[1],G[2], . . . ,G[nG]} into R

m for some positive integer
m— θu :U → R

m.
The remainder of this section is summarized as follows. We

first discuss the problem of retaining vertex identities when
performing graph embedding, and we introduce a novel dataset
called the five vertices problem dataset. Next, in sections 2.3–
2.5, we introduce in detail the overall UGEVIA algorithm, the
feature extraction algorithm used in the UGEVIA algorithm, and
the WGEVIA algorithm, respectively. Then in section 2.6, we
summarize our approach for evaluating the effectiveness of the
proposed new embedding methods for microcircuit models.

2.2. Identities of Graph Vertices
An important characteristic of microcircuit models is that each
vertex represents a unique neuron, and in general, the identities
of the neurons and not just the connectivity patterns among them
are relevant to microcircuit analysis methods.

The five vertices problem is a simplified benchmark problem
that we have designed to help study the interaction between graph
embedding and vertex identity awareness. In our experiments, we
use this benchmark to assess how effective a graph embedding
approach is in terms of taking vertex identities into account.

The five vertices problem is a binary classification problem
involving a dataset 1 of 3,000 unweighted graphs. The dataset,
called the five vertices dataset, is a union of six subsets 1 =

δ1 ∪ δ2 ∪ . . . ∪ δ6, where each subset δi consists of 500 identical
unweighted graphs. We incorporate a large number of graphs,
even though they are identical, because the downstream classifier
needs a sufficiently large number of instances for proper training.
At the same time, in the design of this dataset, we would like
to make the two graph classes for each classification problem
as simple as possible—this helps to isolate the ability of a
given algorithm to take into account vertex identities (without
introducing other complicating factors to the classification
problem). All 3,000 unweighted graphs in 1 have a common
vertex set V1 = {v0, v1, v2, v3, v4}. The structures of the graphs
in δ1, δ2, . . . , δ6 are illustrated in Figure 1. Each graph g ∈ 1 is
assigned a binary label L(g), where L(g) = 0 for g ∈ (δ1∪δ3∪δ5),
and L(g) = 1 for g ∈ (δ2 ∪ δ4 ∪ δ6).

Now consider a graph embedding generator γ ′, which
operates on elements of the dataset 1, and provides input to
a classifier C, where C is designed to learn L based on some
partitioning of 1 into training and testing subsets dtr and
dte, respectively.

Intuitively, it is easy for C to distinguish between graphs in
δ1 and δ2 even if γ ′ does not take vertex identities into account.
On the other hand, without the use of vertex-identity awareness
in γ ′, it is impossible for C to distinguish between graphs in δ3
and δ4 and between graphs in δ5 and δ6. This is because of the

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

FIGURE 1 | The five vertices problem is a binary classification problem involving a dataset 1 of 3,000 unweighted graphs. All graphs in 1 have a common vertex set

V1 = {v0, v1, v2, v3, v4}. The structures of graphs with label 0 are depicted in (A,C,E). The structures of graphs with label 1 are depicted in (B,D,F).

isomorphic relationship between graphs in the subset pairs δ3/δ4
and δ5/δ6.

Now consider the accuracy of the (γ ′,C) combination in
classifying graphs in dte that belong to δ′ = (δ3 ∪ δ4 ∪ δ5 ∪ δ6).
This accuracy measurement can be considered as an assessment
of the effectiveness of γ ′ in taking vertex identities into account in
the embedding process. In particular, if γ1 and γ2 are alternative
graph embedding generators, then comparing the accuracy of
(γ1,C) and (γ2,C) on δ′ provides a useful assessment of the
relative effectiveness between γ1 and γ2 in taking vertex identities
into account.

At the same time, the subsets δ1 and δ2 help to provide a
comparison between γ1 and γ2 for scenarios in which vertex
identity information is not critical.

In summary, the five vertex dataset is a novel dataset for
assessing graph embedding algorithms. The primary emphasis in
this dataset is to help assess the effectiveness of an embedding
technique in taking vertex identity information into account.
The dataset is of special utility in computational neuroscience
because neurons that are represented in microcircuit models
often need to be distinguished in analysis that is performed on
these models.

2.3. UGEVIA: Identity-Aware Embedding for
Unweighted Graphs
The proposed UGEVIA algorithm can be viewed as a
modification to the algorithm used by graph2vec. Our developed
modification is aimed at incorporating vertex-identity awareness,
and further improving embedding quality.

The graph2vec (Narayanan et al., 2017) framework for graph
embedding is designed for unweighted graphs. The framework
is based on Weisfeiler-Lehman Graph Kernels (Shervashidze

et al., 2011), and it also applies Doc2Vec (Le and Mikolov,
2014), as described in section 1. In graph2vec, a feature extractor
based on Weisfeiler-Lehman Graph Kernels is used to generate
a collection of text strings (strings) from the given input graphs
to be embedded. Such a collection of strings is referred to as a
corpus. Doc2Vec is then applied to convert the generated corpus
into vector representations for the input graphs.

UGEVIA takes as input an indexed set Gu = {gu1 , g
u
2 , . . . , g

u
nG
}

of unweighted graphs which share a common indexed vertex
set, and a positive integer m, which gives the dimension for the
output embedding that is to be computed. The common indexed
vertex set for the input graphs is denoted as, employing a minor
abuse of notation, Vertices(Gu) = {v1, v2, . . . , vk}, and the index
of a given vertex vi is referred to as its identifier (ID) and denoted
by ID(vi) [i.e., ID(vi) = i]. UGEVIA also takes as input a positive
integer featureGenIters, which specifies the number of iterations
with which to execute the feature extractor on each input graph;
this input is discussed further in section 2.4.

UGEVIA produces as output an indexed set �u =

{νu1 , ν
u
2 , . . . , ν

u
nG
} of vectors in R

m, where each νui ∈ R
m is the

constructed embedding for gui .
As in graph2vec, all of the vertices in all of the input graphs

are initially labeled with the associated vertex degrees. The major
differences between UGEVIA and graph2vec, which are designed
to make the approach more suitable for microcircuit models, are
summarized as follows.

• The input to UGEVIA includes unique label IDs, and the
feature extraction process utilizes these IDs so that they are
taken into account in the generated embeddings.
• Non-zero-degree vertices are labeled with the index of

the vertex, while zero-degree vertices are labeled with the
character “Z” along with the index of the vertex.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

• Within each iteration of feature extraction, features of
non-zero-degree vertices are updated with features of
their connected neighbors. Unique features of the input
graph will be generated based on the relative indexing of
zero-degree vertices.

The special treatment of zero-degree vertices in UGEVIA
preserves the identities of zero-degree vertex subsets, and
avoids problems with random-walk approaches when zero-
degree vertices are encountered—in particular, random-walk
based approaches typically get stuck at zero-degree vertices (if
the walks start at such a vertex) or can never reach such a vertex
(if they start at a vertex with positive degree). UGEVIA’s careful
handling of zero-degree vertices is important in computational
neuroscience applications because microcircuit models are often
sparse, and therefore contain a large proportion of zero-degree
vertices. Although many vertices have zero degree, the associated
neuron identities must be taken into account for accurate analysis
of microcircuit models.

Algorithm 1 presents a pseudocode representation of the
UGEVIA algorithm. Here, featureDoc is a list of ordered pairs
having the form (g,β), where g is a graph, and β is a list of
strings that provide a feature representation for g. A feature set,
represented as a text string, is associated with each vertex in
each gui .

The function setFeatures(v, s) sets the features of vertex v to
be the string s. The feature set associated with a vertex, as set
by function setFeatures, can be retrieved or overwritten by the
UGEVIA feature extractor (see section 2.4) using the getFeatures
or setFeatures functions, respectively.

The function concat(s1, s2, delim) returns the concatenation of
string s1 followed by string delim (called the delimiter string), and
then followed by string s2. For example, concat(“27", “33", “_")
returns “27_33", which is a delimited concatenation of the string
representations for two integers. The function toString(x) returns
the string representation of the integer x.

The function featureExtractor(g, I) returns a list of strings
as features for the graph g. The feature extraction process is
parameterized with a number of iterations; the argument I
provides the setting for the iteration count parameter. More
details on the algorithm underlying function featureExtractor are
discussed in section 2.4.

The function append(κ , elem) in Algorithm 1 adds the new
list element elem (an ordered pair in this particular use of the
function) to the end of the list κ .

The function doc2vec in Algorithm 1 calls the off-the-shelf
Doc2Vec utility, which has been described above. The doc2vec
wrapper utilizes certain configuration parameters for Doc2Vec;
settings for these parameters in our experiments are discussed
in section 3.

2.4. UGEVIA Feature Extractor
The feature extractor for UGEVIA takes as input a graph gu

with an ordered vertex set {v1, v2, . . . , vk}. It is assumed that each
vertex has an initial feature set, which is accessible using the
getFeatures function (see section 2.3). The algorithm also takes
as input a positive integer featureGenIters, which as mentioned
previously, controls the number of iterations to employ in the

Algorithm 1: A pseuodcode representation of the UGEVIA
algorithm.

Input : Gu = {gu1 , g
u
2 , . . . , g

u
nG
}: an indexed set of graphs

with a common indexed vertex set {v1, v2, . . . , vk}.
featureGenIters: the number of iterations to use within the
feature extractor.
m: the dimension for the output vectors.
Output: �u = {νu1 , ν

u
2 , . . . , ν

u
nG
}: an indexed set of vectors

(each νui ∈ R
m), which respectively provide

embeddings for the graphs gu1 , g
u
2 , . . . , g

u
nG
.

featureDoc← emptyList

for i = 1 to (nG) do
for j = 1 to k do

if deg(vj) == 0 then
setFeatures(vj, concat(“Z", toString(j), “"))

else
setFeatures(vj, toString(j))

end

featureLib← featureExtractor(gui , featureGenIters)
append(featureDoc, (gui , featureLib))

end

�u ← doc2vec(featureDoc,m)
return �u

feature extraction process. The feature extractor produces as
output a list of strings featureLib, called a feature library, that
provides a feature set for representation of the input graph gu.

Use of a larger value of featureGenIters results in longer
computation time and more storage required for feature
extraction, but it may also lead to higher quality feature
sets, which improve the accuracy of downstream classification
tasks. In our current approach to applying UGEVIA, we
determine the value of featureGenIters empirically so as to
optimize accuracy up to a point of diminishing returns—
where additional iterations increase computational time with
negligible accuracy improvement. In our experiments, we used
the value featureGenIters = 4, which is found by Bayesian
optimization. With the value featureGenIters = 4, the
extracted features are effective for all of the datasets involved in
our experiments.

During each feature extraction iteration, the feature extractor
updates features for each vertex vi, and appends new features
to the feature library. If a vertex has non-zero degree, its
features are updated using the features of its neighbors in a
given feature extraction iteration. On the other hand, if a vertex
has zero degree, its features are updated with the features of
the vertices that immediately precede and succeed it within
the ordering v1, v2, . . . , vk. This is an additional way in which
the identities of vertices are taken into account in the graph
embedding process—different pairs of preceding and succeeding
vertices have distinct pairs of vertex IDs. The determination of
preceding and succeeding vertices is performed in a wrap-around
sense—i.e., using the interpretation that vk immediately precedes
v1, and equivalently, that v1 immediately succeeds vk.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

The method described above is tolerant to rearrangement of
the vertex sequence in the common vertex set. The algorithm is
tolerant to such rearrangement because the algorithm requires
only that each vertex has a unique label, and that the vertex
labels are consistent across all graphs. The consistency of the
labels allows the algorithm to extract features associated with
graph structure.

A pseudocode representation of the UGEVIA feature
extractor, encapsulated by the function featureExtractor, is shown
in Algorithm 2. Some functions, such as concat and getFeatures,
have been discussed already in section 2.3; in the remainder of
this section, we define the functions used in Algorithm 2 that have
not already been discussed.

The function edgeCount(g) returns the number of edges in
the graph g. The function getNeighbors(g, v) returns the set of
neighbors of a given vertex v in a given graph g. The function
card(S) returns the cardinality of the set S. The function sort(list)
modifies the list of strings list by sorting its elements.

The function λ(s) first employs a hash function to convert
a string s of arbitrary length into a 128-bit representation.
The function then converts the 128-bit representation into a
compact, fixed-length string representation of 32 characters. The
hash function used is the MD5 hash function (Rivest, 1992).
The 32-character string representation is derived as a string
representation of the hexadecimal number for the 128-bit output
of the hash function. The function λ is used to avoid excessive
storage size for vertex and graph features.

2.5. WGEVIA: A Multi-Channel Approach
for Microcircuit Datasets
UGEVIA is not suitable for microcircuit datasets because
although it takes vertex identities into account, the algorithm
does not take into account graph weights. To simultaneously take
into account vertex identities and graph weights, we develop the
WGEVIA algorithm.

A simplified description of the inputs to WGEVIA was
given in section 2.1. The full input list along with an output
specification, and a pseudocode representation is shown in
Algorithm 3. Since a microcircuit dataset is defined as an indexed
set of weighted graphs, WGEVIA can be applied to many other
application areas that employ weighted graphs; the underlying
method is not limited to applications in neural signal processing
and computational neuroscience.

WGEVIA repeatedly applies UGEVIA on sets of unweighted
graphs, called channels, that are derived from the input
microcircuit dataset. The use of channels in WGEVIA is inspired
by the common use of channelization in convolutional neural
networks (e.g., channelization of networks to process red, blue
and green components of color images). Intuitively, channels in
WGEVIA are derived by applying a threshold to the edge weights
and retaining only those edges in a channel whose weights exceed
the threshold. As shown in Algorithm 3, the threshold starts from
wmax
2×nc

, increments by wmax
nc

, and stops at wmax
2×nc
+wmax×

nc−1
nc

, where
nc is the number of channels. For example, if the edge weights
are uniformly distributed in [0, 1], and the number of channels
is 10, then according to method of how to set the threshold in

Algorithm 2: Feature extraction algorithm for UGEVIA.

Input : gu = (Vu,Eu): a graph with an ordered set of
vertices {v1, v2, . . . , vk}.

featureGenIters: number of feature extraction iterations to
carry out.
Output: featureLib: a list of features to represent gu.

featureLib← emptyList
for i = 1 to k do

append(featureLib, getFeatures(vi))
end

if edgeCount(gu) = 0 then
return emptyList

else

for iterNum = 0 to featureGenIters do
nextIterFeatures← emptyList
for i = 1 to k do

neighbors← getNeighbors(gu, vi)
if card(neighbors) > 0 then

φn ← emptyList
foreach neighbor ∈ neighbors do

newFeatures = getFeatures(neighbor)
append(φn, newFeatures)

end

sort(φn)
φv ← concat(getFeatures(vi),φn, “_")

else
vi has zero degree
if 1 < i < k then

φv ←

concat(getFeatures(vi−1), getFeatures(vi+1), “_")
else if i = 1 then

φv ←

concat(getFeatures(vk), getFeatures(v2), “_")
else

i = k
φv ←

concat(getFeatures(vk−1), getFeatures(v1), “_")

encodedFeature = λ(φv)
append(nextIterFeatures, encodedFeature)
append(featureLib, encodedFeature)

end

for i = 1 to k do
Replace features of vi with the newly-generated
features
setFeatures(vi, nextIterFeatures[i− 1])

end

end

return featureLib

Algorithm 3, the first channel will have 95% of edges remaining,
the second channel will have 85% of edges remaining, and the
tenth channel will have 5% of edges remaining.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

Algorithm 3: A pseuodcode representation of the WGEVIA
algorithm.

Input : A microcircuit dataset
D = {M[1],M[2], . . . ,M[DnG]} consisting of
graphs {g1

w, g2
w, . . . , gwnG}, respectively, with the

common indexed vertex set {v1, v2, . . . , vk}.
nc: the number of channels used for graph embedding.
µc: the dimension of the embedding vector for a single
channel.
featureGenIters: the number of iterations to use within the
UGEVIA feature extractor.

Output: 2w = {νw1 , ν
w
2 , . . . , ν

w
nG
}: an indexed set of vectors

(each νwi ∈ R
µc×nc), which respectively provide

embeddings for the models
M[1],M[2], . . . ,M[DnG].

ωmax ← max(getWeights(D))
φC ← emptyList

Ŵu = disconnectedGraph({v1, v2, . . . , vk})
for t = 0 to (nc − 1) do

T ← ωmax
2×nc
+

ωmax×t
nc

for i = 1 to nG do
Initialize gui with a copy of Ŵu

gui = Ŵu

edges = getEdges(gwi)
for j = 0 to (card(edges)− 1) do

if getWeight(edges[j]) > T then
addUnweightedEdge(gui , edges[j])

end

end

end

Gu = {gu1 , g
u
2 , . . . , g

u
nG
}

subFeatures = UGEVIA(Gu, featureGenIters,µc)
appendList(φC, subFeatures)

end

2w ← φC

return 2w

Note that the dimension of the output embedding vectors
for WGEVIA is not specified explicitly; instead, it is derived as
(µc × nc), where nc is the number of channels to be employed
in WGEVIA, and µc is the embedding vector dimension used on
each channel when invoking UGEVIA.

We tune the WGEVIA parameters µc and nc experimentally.
Through empirical analysis together with Bayesian
optimization (Pelikan et al., 1999), we derived the values
nc = 10 and µc = 8 for use in our experiments.

In Algorithm 3, the function max(S) returns the maximum
value from a given set S of real numbers. The function
getWeights(H) returns the set of all of the unique edge weight
values (i.e., a set of real numbers) across all of the weighted
graphs within the given microcircuit dataset H. The function
disconnectedGraph(V) takes as argument a set V of vertices and
returns an unweighted graph whose vertex set is V and whose

edge set is empty. The function getEdges(g) returns the set of
edges in the weighted or unweighted graph g. The function
getWeight(e) returns the weight of the given edge e. The function
addUnweightedEdge(g, e) takes as argument an unweighted graph
g and a weighted edge e. The function modifies g by adding an
unweighted version of e to the edge set of g. An unweighted
version of e is simply an edge that is incident to the same
pair of vertices, but has no associated weight. The function
appendList(L1, L2) modifies the list L1 by appending to it all of
the elements in L2. The resulting L1 is the concatenation of the
original L1 with L2.

The approach in WGEVIA for deriving thresholds can be
modified in various ways. For example, instead of setting the
minimum threshold to be ωmax

2×nc
, one can generate thresholds

within the range (ωmin,ωmax), where ωmin is the minimum
weight across all edges in the microcircuit dataset. Similarly,
instead of using uniformly-spaced thresholds, one can distribute
the thresholds non-uniformly using more sophisticated
computations to determine the inter-threshold spacings.
Investigation into strategies for adapting the threshold derivation
in WGEVIA is beyond the scope of the paper. This is another
interesting direction for future work.

2.6. Graph Classification
We demonstrate the effectiveness of WGEVIA by applying it to
two different microcircuit classification problems and studying
its performance when it is connected to four different classifiers
for each classification problem.

Both of the classification problems that we study are
binary classification problems, where the objective involves
discriminating between 0- and 1-valued labels for each
microcircuit model. The first classification problem, which is
based on data generated from a real-world calcium imaging
study, involves a dataset that we refer to as the REAL dataset. The
second classification problem involves a dataset generated using
simulation techniques; we refer to it as the SIMU dataset. Section
3.4 provides more details on these microcircuit classification
problems, and the associated datasets.

The four different types of classifiers used in our
experiments are:

• single-mlp: a multilayer perceptron (MLP) (Gardner and
Dorling, 1998) with one hidden layer.
• multi-mlp: an MLP with two hidden layers.
• SVM-rbf: a support vector machine (SVM) (Boser et al., 1992)

with Radial Basis Function (RBF) kernel.
• LDA: a Linear Discriminant Analysis (LDA)

classifier (Balakrishnama et al., 1998).

The classifiers are used in the experiments as downstream
analysis tasks that operate on the graph embeddings generated
by WGEVIA. The experiments with these classifiers demonstrate
the improvements in classification accuracy enabled byWGEVIA
when applied to our two different microcircuit classification
problems. The use of two different classification problems and
a variety of classifiers in the experiments helps to demonstrate
the general utility of WGEVIA in enhancing the performance of
different types of downstream analysis subsystems.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

3. EXPERIMENTAL RESULTS

In this section, we present experiments that demonstrate the
effectiveness of our proposed graph embedding framework for
microcircuit models. The section is organized as follows. First,
section 3.1 describes two baseline methods that we use for
comparison purposes in our experiments. Next, section 3.2
describes four different classifiers that we use as downstream
analysis tasks to demonstrate the application of WGEVIA to
a variety of different analysis subsystems. Then section 3.3
describes common settings of the doc2vec utility that we employ
in our experiments (doc2vec is used within graph2vec and
WGEVIA). Section 3.4 describes microcircuit datasets used in
our experiments. Section 3.5 evaluates graph2vec, PowerGNN
and UGEVIA on the five vertices problem described in
section 2.2. Recall from section 1 that graph2vec and PowerGNN
are two state-of-the-art methods for graph embedding. In
section 3.6, we present a quantitative evaluation comparing
WGEVIA with graph2vec and PowerGNN. In section 3.7,
comparison experiments are presented to assess the impact of
selected design decisions in section 2. Section 3.8 shows how
visualization can be used to gain intuitive insight into the results
produced by WGEVIA. Section 3.9 examines the runtime of the
proposed algorithms and studies hyperparameter tuning. Our
algorithms are implemented with Python 3.

3.1. Baseline Methods
We apply graph2vec and PowerGNN, which were introduced in
section 1, as two baseline graph embedding methods to compare
with the proposed UGEVIA and WGEVIA methods. Both
graph2vec and PowerGNN are state-of-the-art graph embedding
methods for unweighted graphs. Recall that graph2vec is also
a foundation on which the UGEVIA method builds. For our
comparisons with graph2vec, we use the popular graph2vec
implementation by Rozemberczki et al. (2020).

PowerGNN is a specialized graph embedding method for
graph classification applications. Unlike graph2vec, UGEVIA,
and WGEVIA, a classifier is integrated within PowerGNN.
The fully connected layers in a PowerGNN model can be
considered as its classifier. The fully connected layers are similar
to a multi-layer perceptron (MLP) introduced in section 3.2.
Although PowerGNN uses a graph embedding technique
internally, it outputs only the classification results, not the
intermediate embedding results. Thus, in our experiments, we
apply PowerGNN as a combined embedding + classification
method without adding any downstream classifier to it. We use
a Bayesian optimization technique to tune the hyperparameters
of PowerGNN.

3.2. Downstream Classifiers
All reported accuracy scores are from classification tasks on input
graphs with embedding vectors generated by different graph
embedding methods. The embedding vectors are the input to
classification tasks. The embedding vector is a representation
of the whole graph. Each element of the vector is a floating
point value. Graph embedding quality is assessed in terms of the
accuracy of classifiers that operate on the generated embeddings.

To ensure that our measurement of graph embedding quality
is not specific to a particular type of downstream classifier, we
used four different downstream classifier models: single-mlp,
multi-mlp, SVM-rbf, and LDA, as described in section 2.6.

The single-mlp model has one hidden layer with 128 nodes
with a RELU activation function. The output layer has two nodes
with a Softmax activation function. Themulti-mlpmodel has two
hidden layers. The first hidden layer has 128 nodes with a RELU
activation function. The second hidden layer has 64 nodes, also
with a RELU activation function. The output layer is the same as
that of the single-mlp classifier.

The Adam optimizer is used to train the single-mlp andmulti-
mlp models (Kingma and Ba, 2014). Both models are constructed
with TensorFlow (Abadi et al., 2016), and trained for 100
epochs each. The SVM-rbf classifier has two hyperparameters,
C and γ ; we refer readers to Han et al. (2012) for more
details about these two hyperparameters in this classifier. We
have tuned the SVM-rbf model using grid search to determine
the optimized hyperparameter values C = 100 and γ =

0.1. For the LDA classifier, we used the same grid search
strategy to tune the tolerance tol; the value we derived for
this hyperparameter is tol = 0.0001. For each of the four
classifiers, we fixed the structure and hyperparameters across
all experiments to help derive fair comparisons across different
graph embedding methods.

All models are trained with a Tesla K40c GPU with 12 GB
memory and an Intel Xeon E5-2620 v4 CPU with 128 GB
memory. All reported accuracy results are based on 10-fold cross-
validation (Refaeilzadeh et al., 2009). For each round of cross
validation, the input dataset is randomly divided into training
and test sets. The random division is performed in such a way
that there is no overlap between the test sets of different rounds.

3.3. Doc2Vec Settings
As described in section 2, the Doc2Vec algorithm is used
both in graph2vec and WGEVIA. Doc2Vec involves many
hyperparameters. We carefully tuned the hyperparameters and
used the same hyperparameters for the Doc2Vec model used
inside both graph2vec and WGEVIA. Specifically, we set the
learning rate to 0.025, downsampling rate to 0.0001, minimum
count to 1, and number of epochs to be 100. The minimum
count provides a threshold that Doc2Vec uses to determine
which words to ignore. All words with total frequency below this
threshold are ignored. The downsampling rate is a threshold that
Doc2Vec uses to downsample high-frequency words. We refer
the reader to Le and Mikolov (2014) for more details about the
hyperparameters of Doc2Vec.

3.4. Microcircuit Datasets
We assessed the proposed algorithm on two microcircuit
datasets: REAL and SIMU, which were briefly introduced in
section 2.6. In this section, we provide more details about these
datasets. As mentioned in section 2.6, REAL is generated from
a real-world calcium imaging study (Zaremba et al., 2017),
while SIMU is generated by simulation. In both datasets, each
microcircuit is associated with a binary behavioral variable as
its label.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

The neuron model used in SIMU is the integrate-and-fire
model with additive noise (Gütig and Sompolinsky, 2006). The
model can be represented by

dρ

dt
=

ρrest − ρ

τ
+ σ × τ × (−0.5)× ε (1)

where ρ is the membrane potential, ε is a Gaussian random
variable with mean 0 and standard deviation 1, σ is a parameter
that controls the noise, τ is themembrane time constant, and ρrest
is the resting potential. The membrane potential ρ changes with
spikes that are received through the synapses. A neuron generates
a spike if ρ is greater than a threshold. The neuron model
has refractoriness—i.e., a brief time period is needed between
two spikes of a neuron. Such a neuron model can represent
post-synaptic potentials described in the literature (Brette et al.,
2007).

Our simulation to generate the SIMU dataset included a
simulation model consisting of 100 neurons. Neurons in the
simulation were divided into two groups: groups A and B.
Neurons in group A (50 neurons) had no parent neurons.
They were activated by a stimulus. Neurons in group B (50
neurons) were activated by neurons in group A. We simulated
two experimental conditions. The simulated data were binary. In
condition 1, neurons in group B were activated by one or two
neurons in group A. In condition 2, neurons in group B were
activated by three or four neurons in group A. Based on the
generated ensemble neural activities, we calculated the Spearman
correlation coefficient of two neurons’ activities within a time
window. The Spearman correlation coefficient between a neuron
pair is calculated based on the signals of the two neurons in a time
window. SIMUhas 580 graphs labeled as “0” and 583microcircuit
models labeled as “1,” where these labels correspond to conditions
1 and 2, respectively. Details about the microcircuit generation
process employed to generate SIMU are described in Chen and
Lin (2018).

The REAL dataset was generated from the reward zone study
in Zaremba et al. (2017). This dataset (id: jz121, 2015-02-21-
16h06m) was originally used in Zaremba et al. (2017). We
reanalyzed this dataset. The experimental procedures conducted
in that study involving animals were approved by the Columbia
University Institutional Animal Care and Ethics Committee. A
mouse licked to receive water rewards when entering a fixed
reward zone on a treadmill belt. The context considered involved
the environment and a set of features during the experiment,
including the cues, fabric belts, and non-spatial odor. The animal
was trained to learn the reward zone location during context
presentation. A reward zone was a 20-cm region in a 2-m
long treadmill belt. Two-photon imaging was used to image the
CA1 pyramidal layer. There were 21 trials. Details about the
animal, virus, surgical procedure, behavioral training, stimulus
presentation, and in vivo two-photon imaging were discussed
in Zaremba et al. (2017). A microcircuit model in this dataset
has 420 vertices. The Spearman correlation coefficient between a
neuron pair is calculated based on the signals of the two neurons
in a time window of 40 frames. The edges are quantified by
the Spearman correlation coefficient. The label of a microcircuit

model in REAL is a binary behavioral variable that indicates
whether or not the mouse is in the reward zone—labels of 1
and 0 correspond to being and not being in the reward zone,
respectively. For behavior assessment, only location (whether
or not the mouse is in the reward zone) is used and no other
behavior variables, such as the animal’s velocity, are used. REAL
has 1,836 graphs labeled as “1” and 16,036 graphs labeled as
“0.” Because REAL is a highly imbalanced dataset, we report
the balanced accuracy for experiments involving REAL. The
balanced accuracy in our context is the average recall across both
classes (label 1 and label 0).

Microcircuits are generated based on a stream of neuron
signals which are generated by the neuron detection algorithm.
The neuron detection algorithm analyzes the whole data stream
and guarantees that the microcircuit graphs will have a common
fixed vertices set.

Examples of microcircuits from both label “1” and label “0”
classes in SIMU and REAL are plotted in Figures 2, 3. The
weighted edges are represented as colored connections between
neurons with weight values mapped to colors, as shown in the
color bars.

3.5. Experiments Using the Five Vertices
Dataset
We perform experiments using the five vertices dataset (see
section 2.2) to evaluate the ability of different graph embedding
methods to take vertex identities into account. UGEVIA,
graph2vec, and PowerGNN are applied in three comparison
experiments involving different subsets of the five vertices dataset
1. As described in section 2.2, each panel δ1, δ2, . . . , δ6 in the five
vertices dataset 1 contains 500 identical unweighted graphs with
structure shown in Figure 1. In the first experiment, δ1 and δ2
are combined into a set with 1,000 graphs. The first experiment
aims to test whether a given graph embedding algorithm can
effectively distinguish graphs holding unique vertex identities
and different numbers of edges. In the second experiment, δ3
and δ4 are combined into a set with 1,000 graphs. In the third
experiment, δ5 and δ6 are combined into a set with 1,000 graphs.
The goal of the second and third experiments is to test whether
a graph embedding algorithm can effectively distinguish graphs
with identical numbers of edges but with the edges located
between vertices having different identities.

Throughout the remainder of this section, results on
classification accuracy are reported with the mean and standard
deviation from 10-fold cross-validation. The results are tabulated
in the format “mean± standard deviation.”

The results for the first, second and third experiments are
summarized in Tables 1–3, respectively. In Tables 1–3, we use
“∗” to mark a significant difference between the reference
method and the comparison (p-value < 0.05, pairwise t-test,
two-tailed). UGEVIA is the reference method. Note that only
one value is reported in each row associated with PowerGNN
because PowerGNN uses its own internal classifier instead of the
downstream classifier that we use with graph2vec and UGEVIA
(see section 3.1). According to the results of the first experiment,
graph2vec is not able to fully distinguish between graphs from δ1

Frontiers in Computational Neuroscience | www.frontiersin.org 9 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

FIGURE 2 | Examples of microcircuits from both label “1” and label “0” classes in the SIMU dataset.

FIGURE 3 | Examples of microcircuits from both label “1” and label “0” classes in the REAL dataset.

and δ2, whereas UGEVIA and PowerGNN can fully distinguish
graphs from these two subsets. From the results of the second
and third experiments, we see that graph2vec and PowerGNN
are unable to distinguish between graphs from δ3 and δ4,
nor between δ5 and δ6, respectively. On the other hand, the
UGEVIA algorithm can fully distinguish between those pairs
of graph subsets. This is because the graphs from δ3 and δ4
are indistinguishable without a mechanism for vertex identity
awareness, and so are the graphs from δ5 and δ6. The graph2vec
and PowerGNN methods lack any such mechanism. For graphs
from δ1 and δ2, although the two groups of graphs contain
different numbers of edges, graph2vec treats edges in subsets (a)
and (b) similarly, and extracts the same features for all edges.
The identical features extracted by graph2vec degrade the final
classification performance.

3.6. Graph Classification With Microcircuit
Data
We apply WGEVIA, graph2vec and PowerGNN to the SIMU
and REAL datasets. Since PowerGNN and graph2vec were
designed for unweighted graphs, we introduce a threshold-
based method to convert weighted graphs to unweighted graphs

TABLE 1 | Results from the first experiment using the five vertices dataset.

Test accuracy (Graph set 1)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.726 ± 0.043* 0.73 ± 0.038* 0.481 ± 0.093* 0.761 ± 0.047*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 1 ± 0

Train accuracy (Graph set 1)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 1 ± 0 1 ± 0 1 ± 0 0.791 ± 0.008*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 1 ± 0

Performance results for 10-fold cross-validation are reported in the form mean ±

standard deviation.

before inputting microcircuit models to these two methods. The
conversionmethod uses a hyperparameterχ , which is a threshold
for determining whether or not a weighted edge is removed from
the graph during the conversion process. In particular, if W(e)

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

TABLE 2 | Results from the second experiment using the five vertices dataset.

Test accuracy (Graph set 2)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.482 ± 0.057* 0.516 ± 0.063* 0.446 ± 0.037* 0.507 ± 0.052*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 0.5 ± 0*

Train accuracy (Graph set 2)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 1 ± 0 1 ± 0 1 ± 0 0.625 ± 0.005*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 0.5 ± 0*

TABLE 3 | Results from the third experiment using the five vertices dataset.

Test accuracy (Graph set 3)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.489 ± 0.029* 0.514 ± 0.059* 0.453 ± 0.024* 0.51 ± 0.028*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 0.5 ± 0*

Train accuracy (Graph set 3)

Algorithm single-mlp multi-mlp SVM-rbf LDA

graph2vec 1 ± 0 1 ± 0 1 ± 0 0.621 ± 0.011*

UGEVIA 1 ± 0 1 ± 0 1 ± 0 1 ± 0

PowerGNN 0.5 ± 0*

represents the weight of an edge e in a microcircuit model, then
our weighted-to-unweighted conversion process removes e from
the graph if W(e) ≤ χ ; otherwise, the edge e is retained in the
converted graph. In either case, the weight information [W(e)]
is discarded in the conversion process since the objective is to
derive an unweighted graph. We tune the hyperparameter χ to
maximize accuracy using Bayesian optimization (Pelikan et al.,
1999). The hyperparameter value in our experiments that results
from this tuning process is χ = 0.196. Hyperparameter settings
for WGEVIA that are used in this experiment are: nc = 10 and
µc = 8.

The results of this experiment using microcircuit data are
summarized in Table 4. In Table 4, we again use “∗” to
mark a significant difference between the reference method
and the comparison (p-value < 0.05, pairwise t-test, two-
tailed). Our method WGEVIA is the reference method. From
the results, we see that WGEVIA consistently outperforms
graph2vec and PowerGNN on both datasets SIMU and
REAL. WGEVIA outperforms the other two methods by
significant margins for each dataset. This is perhaps not
surprising since edge weights are critical to microcircuit analysis,
and we expect that we would need to deeply take weight
values into account to achieve high accuracy. The results
in this experiment help to quantify this intuition, and to

validate the effectiveness of WGEVIA in taking edge weights
into account.

3.7. Evaluation on Design Decisions
As described in section 2, there are three main improvements
incorporated on top of graph2vec in our design of the WGEVIA
algorithm: (1) adding vertex identity awareness, (2) designing
special features for zero-degree vertices, and (3) utilizing a
multi-channel approach, where a weighted graph is processed as
multiple unweighted graphs, and each of the unweighted graphs
is referred to as a channel. In this section, we aim to evaluate the
impact of each of these improvements. The algorithms applied in
this evaluation are:

• graph2vec, which is the original graph2vec algorithm without
any modification except for weighted-to-unweighted graph
conversion being applied to its input, as described in
section 3.6;
• Multi-Channel graph2vec (MC-graph2vec), which

incorporates Modification 3 described above while not
incorporating Modifications 1 and 2;
• Multi-Channel Index Labeled graph2vec, which incorporates

Modifications 1 and 3, but not Modification 2;
• WGEVIA, which incorporates all three modifications.

Both the SIMU and REAL datasets are used for the evaluation
presented in this section. We perform the experiments with
two sets of hyperparameters for the multi-channel approaches:
(a) nc = 10 and µc = 8, and (b) nc = 4
and µc = 8. The first set of hyperparameters is the
common set that we used for all other experiments involving
multi-channel approaches. The second set of hyperparameters
makes the generated embedding vectors less informative. The
results with the second set help to provide insight into
the robustness of the different methods to variations in
hyperparameter settings.

The results from the experiments presented in this
section are summarized in Tables 5, 6. For both sets of
hyperparameters, we see that Modification 3 alone (MC-
graph2vec), Modifications 1 + 3, and Modifications 1 + 2
+ 3 (WGEVIA) provide progressively better (monotonically
increasing) accuracy compared to the original graph2vec
approach. Moreover, except for the case of the LDA classifier
with the REAL dataset, WGEVIA provides very high accuracy
even with the lower-quality hyperparameter configuration in
the second hyperparameter set. Even for the LDA classifier
and the second hyperparameter set, the results provided by
WGEVIA on REAL are significantly better than the original
graph2vec method.

In Tables 5, 6, we use “∗” to mark a result if it indicates a
significant difference (p-value < 0.05, pairwise t-test, two-tailed)
between two designs. A given row R is only compared with rows
below it, and methods in all rows below R can be regarded as
reference methods for the method in the row R. For example, we
compare graph2vec to MC-graph2vec with MC-graph2vec being
the reference method.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

TABLE 4 | Results of WGEVIA, graph2vec, and PowerGNN for graph classification on microcircuit data.

Test accuracy (SIMU) Test accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.943 ± 0.018* 0.955 ± 0.014* 0.896 ± 0.027* 0.769 ± 0.035* 0.677 ± 0.011* 0.686 ± 0.008* 0.55 ± 0.008* 0.513 ± 0.007*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.997 ± 0.004 0.991 ± 0.001 0.993 ± 0.001 0.993 ± 0.001 0.913 ± 0.003

PowerGNN 0.788 ± 0.033* 0.509 ± 0.002*

Train accuracy (SIMU) Train accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.999 ± 0 0.999 ± 0 1 ± 0 0.83 ± 0.008* 0.789 ± 0.006* 0.822 ± 0.024* 0.644 ± 0.003* 0.498 ± 0.001*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.998 ± 0 0.998 ± 0.001 0.998 ± 0.001 1 ± 0 0.909 ± 0.002

PowerGNN 0.819 ± 0.021* 0.522 ± 0.002*

TABLE 5 | Results from evaluating the impact of modifications incorporated on top of graph2vec in our design of the WGEVIA algorithm—results for nc = 10 and µc = 8.

Test accuracy (SIMU) Test accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.943 ± 0.018* 0.955 ± 0.014 0.896 ± 0.027* 0.769 ± 0.035* 0.677 ± 0.011* 0.686 ± 0.008* 0.55 ± 0.008* 0.513 ± 0.007*

MC-graph2vec 0.973 ± 0.015* 0.97 ± 0.02* 0.938 ± 0.02* 0.851 ± 0.046* 0.753 ± 0.007* 0.794 ± 0.008* 0.726 ± 0.006* 0.569 ± 0.006*

MC-graph2vec (Index Labeled) 0.998 ± 0.003* 0.998 ± 0.003* 0.997 ± 0.008 0.987 ± 0.002* 0.97 ± 0.015* 0.986 ± 0.002* 0.97 ± 0.003* 0.647 ± 0.006*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.997 ± 0.004 0.991 ± 0.001 0.993 ± 0.001 0.993 ± 0.001 0.913 ± 0.003

Train accuracy (SIMU) Train accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA single-mlp multi-mlp SVM-rbf LDA

graph2vec 0.999 ± 0 0.999 ± 0 1 ± 0 0.83 ± 0.008* 0.789 ± 0.006* 0.822 ± 0.024* 0.644 ± 0.003* 0.498 ± 0.001*

MC-graph2vec 1 ± 0 1 ± 0 1 ± 0 0.864 ± 0.005* 0.998 ± 0.001 0.996 ± 0.004 0.761 ± 0.006* 0.574 ± 0.002*

MC-graph2vec (Index Labeled) 1 ± 0 1 ± 0 1 ± 0 0.993 ± 0.004* 0.998 ± 0.001 0.998 ± 0.001 1 ± 0 0.649 ± 0.007*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.998 ± 0 0.998 ± 0.001 0.998 ± 0.001 1 ± 0 0.909 ± 0.002

TABLE 6 | Results from evaluating the impact of modifications incorporated on top of graph2vec in our design of the WGEVIA algorithm—results for nc = 4 and µc = 8.

Test accuracy (SIMU) Test accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.943 ± 0.018* 0.955 ± 0.014* 0.896 ± 0.027* 0.769 ± 0.035* 0.677 ± 0.011* 0.686 ± 0.008* 0.55 ± 0.008* 0.513 ± 0.007*

MC-graph2vec 0.961 ± 0.02* 0.963 ± 0.01* 0.924 ± 0.02* 0.798 ± 0.02* 0.733 ± 0.01* 0.783 ± 0.006* 0.713 ± 0.003* 0.561 ± 0.006*

MC-graph2vec (Index Labeled) 0.995 ± 0.006* 0.992 ± 0.008* 0.993 ± 0.005* 0.869 ± 0.02* 0.96 ± 0.002* 0.984 ± 0.002* 0.962 ± 0.001* 0.621 ± 0.007*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.988 ± 0.009 0.986 ± 0.002 0.99 ± 0.002 0.986 ± 0.002 0.857 ± 0.005

Train accuracy (SIMU) Train accuracy (REAL)

Algorithm Single-mlp Multi-mlp SVM-rbf LDA Single-mlp Multi-mlp SVM-rbf LDA

graph2vec 0.999 ± 0 0.999 ± 0 1 ± 0 0.83 ± 0.008* 0.789 ± 0.006* 0.822 ± 0.024* 0.644 ± 0.003* 0.498 ± 0.001*

MC-graph2vec 1 ± 0 1 ± 0 1 ± 0 0.787 ± 0.03* 0.977 ± 0.007* 0.993 ± 0.005* 0.734 ± 0.004* 0.531 ± 0.002*

MC-graph2vec (Index Labeled) 1 ± 0 1 ± 0 1 ± 0 0.877 ± 0.06* 0.996 ± 0.002 0.997 ± 0.002 0.997 ± 0 0.646 ± 0.005*

WGEVIA 1 ± 0 1 ± 0 1 ± 0 0.998 ± 0.009 0.996 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 0.868 ± 0.004

3.8. Result Visualization
A distinguishing characteristic of WGEVIA is its multi-channel
approach, where individual channels correspond to sets of
unweighted graphs that are derived from the given microcircuit
dataset D using thresholds that are applied to the edge weights.
Each channel contains all of the unweighted graphs that result

from a given threshold setting T (see Algorithm 3) when applied
to D. A core part of WGEVIA is the iterative application of
UGEVIA to each channel.

In this section, we show how visualizations can be used to gain
intuitive insight into the contributions of different channels to
the overall process in WGEVIA of deriving embedding vectors.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

FIGURE 4 | Visualizations derived using t-SNE for all channels when WGEVIA is applied to the REAL dataset with nc = 10 and µc = 8.

FIGURE 5 | Test accuracy and runtime for different settings of the featureGenIters parameter when WGEVIA is applied to the REAL dataset with nc = 10 and µc = 8.

For this purpose, we use t-Distributed Stochastic Neighbor
Embedding (t-SNE) (van der Maaten and Hinton, 2008), which
enables the visualization of high dimensional data by mapping
each data point into a point in a two-dimensional space.

Figure 4 shows visualizations derived using t-SNE for all
channels when WGEVIA is applied to the REAL dataset with
nc = 10 and µc = 8. Plots are shown for each of the 10
channels, where higher channel indices (1–10) correspond to
higher threshold values (T values) in Algorithm 3.

For a given plot in Figure 4, each point is derived from
the embedding vector generated by UGEVIA for a specific
unweighted graph within the channel associated with the plot.
The t-SNE approach is used to project the µc-dimensional
embedding vector associated with each point into the two-
dimensional space illustrated in the plot. A point is colored in
blue if the corresponding unweighted graph is derived from a 0-
labeled element of the REAL dataset, while brown-colored points
correspond to 1-labeled elements.

Intuitively, we expect that a channel contributes more useful
information to the output of WGEVIA if its embedding vectors
are clustered together more tightly for the two different input
labels (0 or 1). For example in Figure 4, we see that Channels

1 and 4 have most of the 1-labeled (brown) points clustered
together, whereas the 1-labeled points are highly scattered in
the plots for Channels 9 and 10. The application of the t-SNE
visualization approach, as illustrated in Figure 4, therefore is
useful in gaining insight into how different channels contribute
to the output embedding vectors produced by WGEVIA, and
the utility of the channels in helping a downstream classification
task distinguish between different classes in the associated
classification problem.

3.9. Runtime and Hyperparameter Tuning
As shown in Figure 5 and Table 7, we measured the runtimes
TfeatureExtractor , Tdoc2vec, and TWGEVIA of the UGEVIA feature
extractor featureExtractor, doc2vec, and WGEVIA,
respectively. The runtime measurements were performed with
featureGenIters = [1, 2, 3, 4, 5, 6], nc = 10, and µc = 8 on
the REAL dataset (nG = 17, 872, k = 420). We found that the
product nG × TfeatureExtractor is far less (over 100 times less) than
the runtime Tdoc2vec. As featureGenIters varies, TWGEVIA remains
almost linearly related to Tdoc2vec: TWGEVIA ≈ α × Tdoc2vec,
where α = 2.4 based on our experimental device and parallelism
settings; we anticipate that the factor α arises mainly due to

Frontiers in Computational Neuroscience | www.frontiersin.org 13 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

the overhead of executing UGEVIA in parallel. Detailed runtime
complexity analysis of WGEVIA can be found in Appendix.

Based on Figure 5, the choice of featureGenIters does not
significantly impact the embedding vector quality. This is because
for the REAL dataset, smaller values of featureGenIters are
sufficient to extract most of the information. For this reason,

TABLE 7 | Measured runtime of the UGEVIA featureExtractor, doc2vec, and

WGEVIA with increasing values of the featureGenIters parameter.

featureGenIters 1 2 3 4 5 6

featureExtractor

runtime (s)

0.00177 0.00368 0.00503 0.00683 0.00859 0.01011

doc2vec

runtime(s)

1047.93 2528.76 5350.58 8791.51 12829.42 16861.66

WGEVIA

runtime(s)

2894.96 6381.24 12600.51 20962.63 30241.33 40034.20

we are able to get high quality results with a setting of
featureGenIters = 4 in our experiments.

Figure 6 depicts experimental results with nc = 10,
featureGenIters = 4, and µc = [1, 2, . . . , 10]. In these results,
we see that the classification accuracy increases as µc increases
and µc = 8 is sufficient for WGEVIA to produce high quality
results for the REAL dataset. By comparing with Figure 7, we see
that the parameterµc has less impact on the runtime ofWGEVIA
than nc.

Figure 7 depicts experimental results with µc = 8,
featureGenIters = 4, and nc = [1, 2, . . . , 11]. In these
results, the classification accuracy increases as nc increases. This
demonstrates that the proposed multi-channel approach extracts
more information whenmore channels are employed. The setting
nc = 10 is sufficient for WGEVIA to produce high quality
results for the REAL dataset. To further assess the impact of
the nc parameter, we run experiments with µc = 4 and the
corresponding results are shown in Figure 8. Here, nc and µc

work together to impact on the embedding quality of WGEVIA.

FIGURE 6 | Test accuracy and runtime for different settings of the µc parameter when WGEVIA is applied to the REAL dataset with nc = 10 and featureGenIters = 4.

FIGURE 7 | Test accuracy and runtime for different values of the nc parameter when WGEVIA is applied to the REAL dataset with µc = 8 and featureGenIters = 4.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

FIGURE 8 | Test accuracy and runtime for different values of the nc parameter when WGEVIA is applied to the REAL dataset with µc = 4 and featureGenIters = 4.

In these results, we see that with a smaller value of µc, the impact
of nc becomes more significant.

The runtime of the downstream classifiers depends on the
number and dimension of the input embedding vectors and the
structure of classifier models. In our experiments, the output
embedding vector fromWGEVIA has a dimension of nc × µc =

80 since nc = 10 and µc = 8. There are nG = 17, 872 graphs in
the REAL dataset and we use 90% of them for training. The MLP
model has 128 nodes in the first hidden layer (h1 = 128), and
64 nodes in the second hidden layer (h2 = 64). The output layer
has 2 nodes corresponding to the two binary classes (o = 2). The
measured run time results for embedding vectors generated from
the REAL dataset are shown in Table 8. All of the runtime results
here are averaged over 10 runs.

4. CONCLUSION AND DISCUSSION

In this paper, we have developed a novel algorithm, called
Weighted Graph Embedding with Vertex Identity Awareness
(WGEVIA), for embedding graph models of functional
microcircuits. Distinguishing characteristics of WGEVIA that
make it well-suited for functional microcircuit analysis include
its ability to take graph weights and vertex identities into account.
We also introduce a novel dataset, called the five vertices dataset,
which helps to experiment with and evaluate how effective
graph embedding algorithms are at taking vertex identities into
account. WGEVIA introduces a novel concept of analyzing
functional microcircuits in terms of well-defined collections of
simplified (unweighted) graph models. These collections, called
channels, can be visualized to gain insight into how different
thresholds on between-neuron synchrony lead to different levels
of behavior discrimination. Through extensive experiments
using real and simulated microcircuit data, we demonstrate the
effectiveness of the proposed new models and methods for graph
embedding, and we show that the proposed methods outperform
state-of-the-art graph embedding methods when applied to
microcircuit data.

In this paper, we focus on undirected graphs. Edges in such
undirected graphs quantify functional connectivity. Another

TABLE 8 | Runtime results for downstream classifiers.

Single-mlp Multi-mlp SVM LDA

Train time (s) 130.481 140.642 32.371 0.224

Inference time (ms) 0.0355 0.0361 2.1 0.000547

kind of connectivity is effective connectivity. Two neurons are
effectively connected if the firing of one neuron can trigger
(or predict) the firing of another, without any assumption on
how this effect is mediated (Feldt et al., 2011). A microcircuit
describing effective connectivity is a directed graph. We may use
the method in Chen et al. (2012) to detect effective connectivity.
We plan to develop a graph embedding method for directed
weighted graphs in our future work.

Current neural recording methods are limited in spatial
coverage. For example, a typical calcium imaging study may
observe several hundred neurons. Due to the limitation
of the recording method, it is possible that the observed
microcircuit is a subgraph of a local circuitry. With the advance
of neural recording methods, which can observe 800,000–
1,100,000 individual neurons across the dorsal surface of the
neocortex (Kim et al., 2016), we will test our graph-embedding
algorithm in these large-scale graphs in our future work.

The proposed method is a whole-graph embedding method
and represents a whole-graph as a vector. In our future work,
we plan to improve the model’s interpretability by describing the
relationship between individual graph vertices and the whole-
graph embedding vector. Such analysis will shed light on which
vertices contribute most to the whole-graph embedding vector.

Other interesting directions for future work include
investigating extensions to WGEVIA for online graph
embedding, for applicability beyond coherence-based
microcircuit models, and for systematically optimizing the
hyperparameters involved in WGEVIA.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here: The five vertices

Frontiers in Computational Neuroscience | www.frontiersin.org 15 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

problem dataset is available for download from http://dspcad-
www.iacs.umd.edu/bcnm/index.html. The data for the reward
zone study is publicly available at https://datadryad.org/stash/
dataset/doi:10.5061/dryad.rq560. The code is available under
reasonable request.

ETHICS STATEMENT

The animal study was reviewed and approved by The
Columbia University Institutional Animal Care and
Ethics Committee.

AUTHOR CONTRIBUTIONS

XW wrote the first draft of the manuscript and conducted
experiments. SB and RC contributed to the conception and
design of the study and review and revision of manuscript
drafts. All authors contributed to the article and approved its
submission.

FUNDING

This work was supported by the NIH NINDS (R01NS110421)
and the BRAIN Initiative.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.

(2016). TensorFlow: large-scale machine learning on heterogeneous distributed

systems. arXiv 1603.04467v2 [cs.DC].

Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash, B. A. (2018).

“Sub2vec: feature learning for subgraphs,” in Pacific-Asia Conference on

Knowledge Discovery and Data Mining (Melbourne, VIC: Springer), 170–182.

doi: 10.1007/978-3-319-93037-4_14

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,

population coding and computation. Nat. Rev. Neurosci. 7, 358–366.

doi: 10.1038/nrn1888

Balakrishnama, S., and Ganapathiraju, A. (1998). “Linear discriminant analysis-a

brief tutorial,” in Institute for Signal and information Processing, Vol. 18, 1–8

Barbera, G., Liang, B., Zhang, L., Gerfen, C. R., Culurciello, E., Chen,

R., et al. (2016). Spatially compact neural clusters in the dorsal

striatum encode locomotion relevant information. Neuron 92, 202–213.

doi: 10.1016/j.neuron.2016.08.037

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A

training algorithm for optimal margin classifiers,” in Proceedings

of the Fifth Annual Workshop on Computational Learning

Theory (New York, NY), 144–152. doi: 10.1145/130385.1

30401

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools and

strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Cai, H., Zheng, V. W., and Chang, K. C. (2018). A comprehensive survey of graph

embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data

Eng. 30, 1616–1637. doi: 10.1109/TKDE.2018.2807452

Chen, R., and Lin, D.-T. (2018). “Decoding brain states based on microcircuits,” in

Proceedings of the IEEE International Conference on Cyborg and Bionic Systems

(Shenzhen), 397–400. doi: 10.1109/CBS.2018.8612236

Chen, R., Resnick, S. M., Davatzikos, C., and Herskovits, E. H. (2012). Dynamic

bayesian network modeling for longitudinal brain morphometry. Neuroimage

59, 2330–2338. doi: 10.1016/j.neuroimage.2011.09.023

Chen, R., Zheng, Y., Nixon, E., and Herskovits, E. H. (2017). Dynamic network

model with continuous valued nodes for longitudinal brain morphometry.

Neuroimage 155, 605–611. doi: 10.1016/j.neuroimage.2017.05.018

Feldt, S., Bonifazi, P., and Cossart, R. (2011). Dissecting functional connectivity of

neuronal microcircuits: experimental and theoretical insights. Trends Neurosci.

34, 225–236. doi: 10.1016/j.tins.2011.02.007

Fujisawa, S., Amarasingham, A., Harrison,M. T., and Buzsáki, G. (2008). Behavior-

dependent short-term assembly dynamics in the medial prefrontal cortex. Nat.

Neurosci. 11:823. doi: 10.1038/nn.2134

Gardner, M. W., and Dorling, S. (1998). Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences. Atmos.

Environ. 32, 2627–2636. doi: 10.1016/S1352-2310(97)00447-0

Grover, A., and Leskovec, J. (2016). “node2vec: Scalable feature learning for

networks,” in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (San Francisco, CA), 855–864.

doi: 10.1145/2939672.2939754

Gutiérrez-Gómez, L., and Delvenne, J.-C. (2019). Unsupervised network

embeddings with node identity awareness. Appl. Netw. Sci. 4:82.

doi: 10.1007/s41109-019-0197-1

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Han, S., Qubo, C., and Meng, H. (2012). “Parameter selection in SVM with RBF

kernel function,” in Proceedings of the World Automation Congress (Puerto

Vallarta).

Huang, Z., Chung, W., and Chen, H. (2004). A graph model for e-commerce

recommender systems. J. Am. Soc. Inform. Sci. Technol. 55, 259–274.

doi: 10.1002/asi.10372

Kim, T. H., Zhang, Y., Lecoq, J., Jung, J. C., Li, J., Zeng, H., et al. (2016). Long-term

optical access to an estimated one million neurons in the live mouse cortex. Cell

Rep. 17, 3385–3394. doi: 10.1016/j.celrep.2016.12.004

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

1412.6980.

Ko, H., Cossell, L., Baragli, C., Antolik, J., Clopath, C., Hofer, S. B., et al. (2013).

The emergence of functional microcircuits in visual cortex.Nature 496, 96–100.

doi: 10.1038/nature12015

Ko, H., Hofer, S. B., Pichler, B., Buchanan, K. A., Sjöström, P. J., and Mrsic-Flogel,

T. D. (2011). Functional specificity of local synaptic connections in neocortical

networks. Nature 473, 87–91. doi: 10.1038/nature09880

Le, Q., and Mikolov, T. (2014). “Distributed representations of sentences and

documents,” in Proceedings of the International Conference onMachine Learning

(Beijing), 1188–1196.

Lee, K., Lee, Y., Lin, D.-T., Bhattacharyya, S. S., and Chen, R. (2019). “Real-time

calcium imaging based neural decoding with a support vector machine,” in

Proceedings of the IEEE Biomedical Circuits and Systems Conference (Nara), 1–4.

doi: 10.1109/BIOCAS.2019.8919061

McDonald, J. H. (2014).Handbook of Biological Statistics, 3rd Edn. Baltimore, MD:

Sparky House Publishing.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., and Jaiswal,

S. (2017). graph2vec: Learning distributed representations of graphs. arXiv

1707.05005.

Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. E. (1999). “BOA: the Bayesian

optimization algorithm,” in Proceedings of the Genetic and Evolutionary

Computation Conference (Orlando, FL), 525–532.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: online learning of

social representations,” in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (New York, NYS),

701–710. doi: 10.1145/2623330.2623732

Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation. Boston, MA:

Springer US.

Rivest, R. (1992). The MD5 Message-Digest Algorithm. Technical report, MIT

Laboratory for Computer Science and RSA Data Security, Inc.

Rozemberczki, B., Kiss, O., and Sarkar, R. (2020). Karate club: an API oriented

open-source Python framework for unsupervised learning on graphs. arXiv

2003.04819v3 [cs.LG].

Shervashidze, N., Schweitzer, P., Leeuwen, E. J., v., Mehlhorn, K., and Borgwardt,

K. M. (2011). Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12,

2539–2561. doi: 10.5555/1953048.2078187

Frontiers in Computational Neuroscience | www.frontiersin.org 16 January 2021 | Volume 14 | Article 603765

http://dspcad-www.iacs.umd.edu/bcnm/index.html
http://dspcad-www.iacs.umd.edu/bcnm/index.html
https://datadryad.org/stash/dataset/doi:10.5061/dryad.rq560
https://datadryad.org/stash/dataset/doi:10.5061/dryad.rq560
https://doi.org/10.1007/978-3-319-93037-4_14
https://doi.org/10.1038/nrn1888
https://doi.org/10.1016/j.neuron.2016.08.037
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/CBS.2018.8612236
https://doi.org/10.1016/j.neuroimage.2011.09.023
https://doi.org/10.1016/j.neuroimage.2017.05.018
https://doi.org/10.1016/j.tins.2011.02.007
https://doi.org/10.1038/nn.2134
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1007/s41109-019-0197-1
https://doi.org/10.1038/nn1643
https://doi.org/10.1002/asi.10372
https://doi.org/10.1016/j.celrep.2016.12.004
https://doi.org/10.1038/nature12015
https://doi.org/10.1038/nature09880
https://doi.org/10.1109/BIOCAS.2019.8919061
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.5555/1953048.2078187
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural

networks? arXiv 1810.00826.

Yanardag, P., and Vishwanathan, S. (2015). “Deep graph kernels,” in Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (Sydney, NSW), 1365–1374. doi: 10.1145/2783258.27

83417

Yue, X., et al. (2020). Graph embedding on biomedical networks:

methods, applications, and evaluations. Bioinformatics 36, 1241–1251.

doi: 10.1093/bioinformatics/btz718

Zaremba, J. D., Diamantopoulou, A., Danielson, N. B., Grosmark, A. D.,

Kaifosh, P. W., Bowler, J. C., et al. (2017). Impaired hippocampal place cell

dynamics in a mouse model of the 22q11. 2 deletion. Nat. Neurosci. 20:1612.

doi: 10.1038/nn.4634

Zohary, E., Shadlen, M. N., and Newsome, W. T. (1994). Correlated neuronal

discharge rate and its implications for psychophysical performance.Nature 370,

140–143. doi: 10.1038/370140a0 .

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Wu, Bhattacharyya and Chen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 January 2021 | Volume 14 | Article 603765

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1093/bioinformatics/btz718
https://doi.org/10.1038/nn.4634
https://doi.org/10.1038/370140a0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Wu et al. Graph Embedding for Microcircuit Data

APPENDIX: RUNTIME ANALYSIS

In this appendix, we analyze the time complexity of WGEVIA.
From Algorithm 3, the runtime TWGEVIA of WGEVIA is

O(nc×TUGEVIA), where TUGEVIA is the runtime of UGEVIA. On a
machine with sufficient resources, the channels can be processed
in parallel so that the actual runtime does not necessarily scale
linearly with nc; however, for the analysis in the remainder of
this discussion, we do not take into account the potential for
acceleration by exploiting parallelism.

From Algorithm 1, the runtime TUGEVIA is O(nG ×
TfeatureExtractor + Tdoc2vec), where nG is the set of input graphs,
TfeatureExtractor is the complexity of the UGEVIA feature extractor,
and Tdoc2vec is the complexity of doc2vec. The authors have been
unable to find a complexity analysis of doc2vec in the literature so
the expression Tdoc2vec is left as as a “black box” in the remainder
of our analysis in this appendix.

Finally, from Algorithm 2, the runtime TfeatureExtractor can be

expressed as O(featureGenIters × k2), where k is the number of
vertices in a given input graph. The term k2 can be replaced by
k for sparse graphs where the number of neighbors for a given
vertex is bounded by a constant.

Putting the three pieces discussed above together yields the
following time complexity expression for WGEVIA:

O(nc × ((nG × featureGenIters× k2)+ Tdoc2vec))

Frontiers in Computational Neuroscience | www.frontiersin.org 18 January 2021 | Volume 14 | Article 603765

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	WGEVIA: A Graph Level Embedding Method for Microcircuit Data
	1. Introduction
	2. Methods
	2.1. Objective
	2.2. Identities of Graph Vertices
	2.3. UGEVIA: Identity-Aware Embedding for Unweighted Graphs
	2.4. UGEVIA Feature Extractor
	2.5. WGEVIA: A Multi-Channel Approach for Microcircuit Datasets
	2.6. Graph Classification

	3. Experimental Results
	3.1. Baseline Methods
	3.2. Downstream Classifiers
	3.3. Doc2Vec Settings
	3.4. Microcircuit Datasets
	3.5. Experiments Using the Five Vertices Dataset
	3.6. Graph Classification With Microcircuit Data
	3.7. Evaluation on Design Decisions
	3.8. Result Visualization
	3.9. Runtime and Hyperparameter Tuning

	4. Conclusion and Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References
	Appendix: Runtime Analysis

